Stable isotope variations ($\delta^{18}O$ and δD) in modern waters across the Andean Plateau

John Bershaw a,*, Joel E. Saylor b, Carmala N. Garzione c, Andrew Leier d, Kurt E. Sundell b

a Portland State University, Portland, OR, USA
b University of Houston, Houston, TX, USA
c University of Rochester, Rochester, NY, USA
d University of South Carolina, Columbia, SC, USA

Received 16 December 2015; accepted in revised form 7 August 2016; available online 13 August 2016

Abstract

Environmental parameters that influence the isotopic composition of meteoric water ($\delta^{18}O$ and δD) are well characterized up the windward side of mountains, where orographic precipitation results in a predictable relationship between the isotopic composition of precipitation and elevation. The topographic and climatic evolution of the Andean Plateau and surrounding regions has been studied extensively by exploiting this relationship through the use of paleowater proxies. However, interpretation on the plateau itself is challenged by a poor understanding of processes that fractionate isotopes during vapor transport and rainout, and by the relative contribution of unique moisture sources. Here, we present an extensive dataset of modern surface water samples for the northern Andean Plateau and surrounding regions to elucidate patterns and causes of isotope fractionation in this continental environment. These data show a progressive increase in $\delta^{18}O$ of stream water west of the Eastern Cordillera (~1‰/70 km), almost identical to the rate observed across the Tibetan Plateau, attributed to a larger fraction of recycled water in precipitation and/or increased evaporative enrichment downwind. This may lead to underestimates of paleoelevation, particularly for sites deep into the rainshadow of the Eastern Cordilleran crest. That said, elevation is a primary control on the isotopic composition of surface waters across the entire Andean Plateau and its flanks when considering the most negative $\delta^{18}O$ values, highlighting the need for sufficiently large datasets to distinguish minimally evaporated samples. There is a general increase in $\delta^{18}O$ on the plateau from north to south, concomitant with an increase in aridity and decrease in convective moistening (amount effect). Lastly, stable isotope and seasonal precipitation patterns suggest easterlies provide the vast majority of moisture that falls as precipitation across the Andean Plateau and Western Cordillera, from Peru to northern Bolivia (~13° to ~20° latitude), with Pacific-derived moisture contributing a minor amount at low elevations near the coast.

© 2016 Elsevier Ltd. All rights reserved.

Keywords: Stable isotope geochemistry; Meteoric water; South America; Andes; Altiplano; Climate; Paleoaltimetry

1. INTRODUCTION

Modern stable isotope variation in precipitation is fairly well-understood for the windward side of mountains where $\delta^{18}O$ and δD have been shown to be inversely related to elevation (Garzione et al., 2000; Gonfiantini et al., 2001;...
Poage and Chamberlain, 2001). This relationship has been exploited for paleoaltimetry studies where various proxies for precipitation are used in the rock record to estimate the timing of topographic growth (or decay) for many of the world’s mountain ranges and plateaux (Bershaw et al., 2010; Currie et al., 2016; Kar et al., 2016; Kent-Corson et al., 2009; Leier et al., 2013; Mulch, 2016; Mulch et al., 2006; Rowley and Garzione, 2007; Saylor and Horton, 2014; Saylor et al., 2009; Takeuchi and Larson, 2005). Often, modern precipitation or surface water isotope-elevation relationships are used to estimate surface elevation and/or climate changes on the leeward side of mountain ranges where factors other than elevation have a significant impact (Cyr et al., 2005; Fan et al., 2014; Polissar et al., 2009). In many continental environments, evaporation of surface water and raindrops as they fall through the air significantly affects the isotopic composition of both precipitation and surface water, complicating the interpretation of stable isotope variations (Gat and Airey, 2006; Stewart, 1975; Yamada and Uyeda, 2006; Yang et al., 2007). In addition, surface water recycling, where continental surface water is evaporated and integrated into downwind precipitation, may result in isotopic patterns that deviate from simple temperature (elevation) dependent Rayleigh distillation models (Bershaw et al., 2012; Froehlich et al., 2008; Kurita and Yamada, 2008). Elsewhere, moisture source mixing has been inferred to cause both seasonal and spatial variability in the isotopic composition of meteoric water (Sjostrom and Welker, 2009; Tian et al., 2007), along with spatiotemporal variation in air trajectories (Lechler and Galewsky, 2013).

Isotopes of modern meteoric water have been used to constrain the spatial extent, magnitude, and temporal variability of the South American monsoon (Vuille et al., 2012; Vuille and Werner, 2005). Though variation in monsoon strength has been related to the height and/or extent of the Andes (Insel et al., 2009; Poulsen et al., 2010), the modeled effects of changing topography on precipitation patterns vary across the orogen (Garreaud et al., 2010; Jeffery et al., 2012). A better understanding of the forcing mechanisms behind modern changes in water chemistry across the Andean Plateau will enable us to better interpret proxy records of South American paleo-elevation, paleoclimate, and by extension, predict future climate change. This is especially important considering an entire Andean civilization perished during an abrupt period of climate change (1100 AD; Binford et al., 1999; Fiorella et al., 2015a; Gonfiantini et al., 2001). Progressive rain-out of atmospheric moisture westward across the Atacama Desert receives negligible precipitation (Miller, 1976). Relatively dry westeifers have been shown to contribute significantly to atmospheric circulation on the Western Cordillera and Andean Plateau, particularly during austral winter. However, westerlies apparently contribute very little to annual precipitation budgets (Aravena et al., 1999; Fiorella et al., 2015a).

2. BACKGROUND

2.1. Climate on the Andean Plateau

The Andean Plateau extends from approximately 15°S to 23°S, occupying the South American countries of Peru, Bolivia, Chile, and NW Argentina (Fig. 1). The climate across the northern Andean Plateau, including the Altiplano basin, Western and Eastern cordilleras, is characterized by large-scale (synoptic) atmospheric circulation modified by surface topography. The plateau itself averages about 4000 m elevation and is bound by the Western and Eastern cordilleras, which can reach elevations over 6000 m (Fig. 1).

Precipitation falls primarily during the austral summer, brought in by equatorial westerlies that originate in the Atlantic and traverse the Amazon Basin (Garreaud and Vuille, 2003; Lenters and Cook, 1997). Easterly circulation is driven by trade winds that converge on the inter-tropical convergence zone (ITCZ) across northern South America. As a whole, this topographic barrier receives intense precipitation on the eastern flank of the Eastern Cordillera, with increasingly dry conditions westward (Bookhagen and Streecker, 2008) and southward (Fiorella et al., 2015a; Garreaud and Vuille, 2003) (Fig. 2). Precipitation on the Andean Plateau is primarily convective and typically occurs during afternoon thunderstorms (Garreaud and Vuille, 2003; Houston and Hartley, 2003; Samuels-Crow et al., 2014a; Vuille and Keimig, 2004). West of the plateau, the Atacama Desert receives negligible precipitation (Miller, 1976). Relatively dry westerlies have been shown to contribute significantly to atmospheric circulation on the Western Cordillera and Andean Plateau, particularly during austral winter. However, westerlies apparently contribute very little to annual precipitation budgets (Aravena et al., 1999; Fiorella et al., 2015a).

2.2. Stable isotopes across the Amazon Basin and Eastern Cordillera

The isotopic composition (δ18O and δD) of meteoric water across the Eastern Cordillera can be traced back to the equatorial Atlantic Ocean (Bershaw et al., 2010; Fiorella et al., 2015a; Gonfiantini et al., 2001). Progressive rain-out of atmospheric moisture westward across the
Amazon Basin results in a steady depletion of relatively heavy isotopes (the continental effect). This is attenuated by widespread transpiration resulting in a continental gradient in isotopic composition that is less than that observed in other continental environments (0.75–1.5‰/1000 km inland compared to 2‰/1000 km for Europe) (Rozanski et al., 1993; Salati et al., 1979). The isotopic composition of precipitation and surface water have been shown to inversely correlate with elevation from the lowlands of Brazil up the eastern (windward) flank of the Eastern Cordillera (Bershaw et al., 2010; Gonfiantini et al., 2001). This pattern is consistent with the progressive removal of relatively heavy isotopes during orographic ascent and condensation of atmospheric moisture, typical of the windward side of mountain ranges globally (Poage and Chamberlain, 2001). The relationship between the isotopic composition of stream water and elevation breaks down south of −24° latitude along the Eastern Cordillera where convective storms dominate, masking the depletion of heavy isotopes in precipitation as a function of elevation. This observation is based on trends in stream water datasets located at −22° ($R^2 = 0.68$), −24° ($R^2 = 0.43$), and −26° ($R^2 = 0.17$) (Rohrmann et al., 2014).
2.3. Stable isotopes on the Andean Plateau

Spatial patterns in water isotopes across the northern Andean Plateau, which sits on the leeward side of the Eastern Cordillera, are not well-constrained. However, Fiorella et al. (2015a) observe a significant correlation ($R^2 = 0.82$) between elevation and $\delta^{18}O$ of annual mean precipitation throughout the southern Altiplano and Eastern Cordillera (Fig. 1). Evaporation in an arid (low relative humidity) environment causes kinetic fractionation that often increases $\delta^{18}O$ values of residual surface water reservoirs (Gat, 1996; Stewart, 1975). Unlike precipitation, there is evidence that surface waters are highly evaporated across much of the southern Altiplano (Fiorella et al., 2015b). In addition, precipitation samples along transects up the Western Cordillera in northern Chile show a very steep isotopic lapse rate that is almost four times the global average, -10%/km and -2.5%/km, respectively (Aravena et al., 1999; Poage and Chamberlain, 2001). This has been interpreted by Aravena et al. (1999) to be the result of air mass mixing where Atlantic-derived moisture dominates precipitation at high elevations in the Western Cordillera and Pacific-derived moisture dominates at low elevations in the hyper-arid Atacama Desert.

To better understand controls on the isotopic composition of meteoric water for the Andean Plateau where evaporation may be significant, we report deuterium excess ($d^{excess} = \delta D - 8\times \delta^{18}O$) values (Dansgaard, 1964; Steward, 1975). A function of both H and O in a water sample, d^{excess} may be used to constrain both the source of moisture and evaporative processes during and after transport in meteoric water samples (Froehlich et al., 2001). Relatively low d^{excess} of precipitation is often associated with sub-cloud evaporation of raindrops during their descent through the air. Similarly, d^{excess} can be lowered in surface water samples through evaporation, often seen in closed basin lakes with high residence times. Relatively high d^{excess} values have been observed in moisture derived from the evaporation of surface water reservoirs (both marine and continental) at low relative humidity (Bershaw et al., 2012; Froehlich et al., 2008; Pang et al., 2011). Relatively high d^{excess} values can also be caused by precipitation at very low temperatures, observed in Antarctica and at high elevation in some mountain ranges (Jouzel and Merlivat, 1984; Liotta et al., 2006; Samuels-Crow et al., 2014b).

3. METHODS

The strategy was to collect surface water samples, both with high and low residence time across the northern Andean Plateau to observe spatial patterns, including the magnitude of evaporation, across a region where little published data currently exists. We focused on sampling from...
high elevation (>3500 m) on the plateau, but also collected lower elevation samples when convenient. We targeted rivers of all sizes and some standing water bodies. Because we are interested in using results to better understand long-term records, including those interpreted from paleowater proxies, we targeted rivers which average numerous precipitation events. Finding surface water to sample in the Western Cordillera was especially challenging considering the very arid climate there. In total, 275 water samples were collected throughout Peru and Bolivia from 2009 through 2014, during the months of May and June, from many sources.

Analyses completed at the University of Rochester were made by laser absorption spectroscopy on a Los Gatos Research Liquid Water Isotope Analyzer (LWIA-24d DLT-100) with a GC-PAL autosampler. Approximately 900 nl of water was injected into a heated, evacuated block. Water was vaporized and drawn into a laser cavity, where absorption analysis took place. Reported results are the average and standard deviation of 5–10 adjacent injections and measurements of a water sample from a single vial. Standardization is based on internal standards referenced to Vienna Standard Mean Ocean Water (VSMOW) and Vienna Standard Light Antarctic Precipitation (VSLAP). The 2σ uncertainties of H and O isotopic results are ±2.4‰ and ±0.020‰ respectively, unless otherwise indicated.

Analyses completed at the University of Arizona were made using a dual inlet mass spectrometer (Delta-S, Thermo Finnegan, Bremen, Germany) equipped with an automated chromium reduction device (H-Device, Thermo Finnegan) for the generation of H gas using metallic chromium at 750 °C. Water δ18O was measured on the same mass spectrometer using an automated CO2-H2O equilibration unit. Standardization is also based on internal standards referenced to VSMOW and VSLAP. The 1σ uncertainties of H and O isotopic results from this lab are better than ±1‰ and ±0.08‰ respectively.

4. RESULTS

Results are listed in Supplementary Table 1 and Table 1 with δ18O and d excess values mapped using natural neighbor interpolation in ArcGIS ArcMap version 10.3 in Figs. DR1A and DR1B respectively. Surface water isotopes from streams show significant variability across the Andean Plateau, from a minimum of −19.6‰ to a maximum of 5.6‰ (Supplementary Table 1). Standing water samples show similar variability with a range from −17.4‰ to 4.2‰ (Table 1). Because of the broad spatial variability in the dataset, we have produced a number of transects that highlight patterns observed in data subsets for the Eastern Cordillera (Fig. 3), across the Andean Plateau itself (Figs. 4–7), and in the Western Cordillera (Fig. 8). In each of the plots, elevation is measured as the mean basin hypsometry, which is the average elevation of the watershed upstream from the sample site. The centroid of stream catchments is used instead of sample location to better represent the geographic distribution of meteoric water contributing to the sample. Note that the locations shown in Fig. 1 are the sample sites, while locations shown in Figs. DR1A and DR1B are the centroid of associated watersheds.

5. DISCUSSION

5.1. Isotope trends up the Eastern Cordillera

On the windward flank of the Eastern Cordillera isotopic lapse rates are consistent with Rayleigh distillation of moisture during orographic ascent, as observed in global datasets (−2.8‰/km) (Poage and Chamberlain, 2001) and as predicted by thermodynamic modeling (Rowley, 2007; Rowley et al., 2001). West of Cusco, Peru, we observe an inverse relationship between δ18O and elevation along transect BC up a tributary of the Rio Ene (Fig. 3), with an isotopic lapse rate of −2‰/km elevation gain. Samples included in this transect are noted in Supplementary Table 1. This is similar to the isotopic lapse rate of −1.9‰/km previously recorded up the windward (east) side of the Eastern Cordillera along transects GH and KL. (Bershaw et al., 2010; Fiorella et al., 2015a; Gonfiantini et al., 2001). This pattern reflects moisture transported from the Brazilian lowlands up through valleys in the Eastern Cordillera. Because watersheds that contribute to the Rio Ene (transect BC) penetrate deeply into the Andean Plateau from the north, we show that this δ18O-elevation relationship is seen over 100 km into the rainshadow of the Eastern Cordilleran crest. This suggests that water on the leeward (plateau) side of mountain ranges may still faithfully record paleoelevation as calibrated to the isotopic lapse rate on a range’s windward flank where deep valleys provide pathways for moisture to bypass a mountain range’s highest peaks.

5.2. Isotope trends on the Andean Plateau

5.2.1. Elevation

Systematic spatial patterns in the isotopic composition of meteoric water are notoriously challenging to discern on the leeward (rainshadow) side of mountain ranges (Bershaw et al., 2012; Hren et al., 2009; Lechler and Niemi, 2011a). Standing water was collected throughout the plateau with many samples showing extreme evaporation (negative d excess), typical of arid, closed basin environments (Table 1). Stream water also shows significant variability across the Andean Plateau, from a minimum of −19.6‰ to a maximum of 5.6‰ at elevations >3500 m, suggesting many streams are significantly affected by evaporative enrichment as well (Supplementary Table 1 and Fig. DR1). When the entire stream water dataset is considered, the vast majority of which is from the Andean Plateau itself, we do not observe a significant relationship between δ18O and elevation (R² = 0.12) (Fig. 4A). Over half of stream water samples have d excess values <5‰ (Supplementary Table 1), suggesting that evaporative enrichment is creating considerable scatter in the data. Similar observations have been made in other relatively dry, continental regions including central Asia (Bershaw et al., 2012; Liu et al., 2015; Tian et al., 2007), in the southern Andean Plateau (Fiorella et al., 2015b;
<table>
<thead>
<tr>
<th>Sample ID</th>
<th>δ¹⁸O (vsmow)</th>
<th>δD (vsmow)</th>
<th>d excess</th>
<th>Sample Site</th>
<th>Mean Basin Hypsometry (m)</th>
<th>Latitude (Centroid)</th>
<th>Longitude (Centroid)</th>
<th>Catchment Size (km²)</th>
<th>Collection Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>10PE-33w</td>
<td>1.7</td>
<td>–23.1</td>
<td>–36.6</td>
<td>3927</td>
<td>4334</td>
<td>–14.765</td>
<td>–70.732</td>
<td>–14.381</td>
<td>–70.821</td>
</tr>
<tr>
<td>10PE-47w</td>
<td>–2</td>
<td>–43.5</td>
<td>–27.8</td>
<td>3824</td>
<td>4170</td>
<td>–15.835</td>
<td>–70.014</td>
<td>–16.086</td>
<td>–69.545</td>
</tr>
</tbody>
</table>

* The centroid is defined as the geographic center of a catchment upstream from a sample site.
Fig. 3. A compilation of stream water data along an elevation transect on the plateau corresponding with transect BC in Fig. 1. The isotopic lapse rate is approximately –2‰/km elevation gain, consistent with transects up the windward side of the Eastern Cordillera. Circles are shaded by δ18O (VSMOW) with a gradient from 10‰ (black) to –5‰ (white). 95% confidence intervals are shown as grey dashed lines. Elevation is reported as the mean basin hypsometry.

Fig. 4. (a) A compilation of δ18O values (x-axis) for stream and river water samples collected from the Andean Plateau plotted against elevation (y-axis). A linear regression suggests there is not a significant relationship when the entire stream dataset is considered ($R^2 = 0.12$). (b) The most negative δ18O values per 200 m elevation are denoted with triangles (noted in Supplementary Table 1 and Fig. DR1A). The open square shows the annual weighted mean of precipitation at Cuiaba and Manaus, Brazil (IAEA/WMO, 2016) at low elevation (<200 m) in the Andean foreland (NE of the map shown in Fig. 1). The black dashed line is a regression through these most negative δ18O values (triangles and open square). 95% confidence intervals are shown as grey dashed lines. The standard error on this regression is 780 m. Lower elevation (<2.5 km) scatter may be due to low sample density. The isotopic lapse rate is approximately –3.5‰/1 km elevation gain, suggesting elevation exerts a first-order control on the isotopic composition of relatively non-evaporated surface water across the northern Andean Plateau. Symbols are shaded by δ excess value with a gradient from 10‰ (black) to –5‰ (white). Elevation is reported as the mean basin hypsometry. Samples with extremely low δ excess values (<–5‰, 18 samples) are not included as they are likely affected significantly by evaporation.
Rohrmann et al., 2014), and the southwest United States (Lechler and Niemi, 2011b). However, we do observe an inverse relationship between δ18O and elevation for the most negative δ18O values (Fig. 4B). The sample subset used in this regression were chosen based on the most negative δ18O value per 200 m elevation gain and are noted in Supplementary Table 1 and Fig. DR1 (triangles). The isotopic lapse rate for these most negative values collected across the entire plateau is −3.5‰/km ($R^2 = 0.72$). This indicates that the isotopic composition of water that has experienced minimal evaporation is controlled by changes in elevation across the entire Andean Plateau. The isotopic lapse rate across the plateau is steeper than that observed up the eastern (windward) side of the Eastern Cordillera ($−2%$/km) (Bershaw et al., 2010; Fiorella et al., 2015a; Gonfiantini et al., 2001). This may be due to evaporative enrichment at relatively low elevations and/or a larger contribution from low δ18O snow at the highest elevations. These results are consistent with Fiorella et al. (2015a), who suggest that elevation is the most significant control on the isotopic composition of precipitation for the southern Altiplano ($R^2 = 0.82$). This relationship breaks down in stream water south of −24° latitude on the plateau’s eastern flank where convective storms transport moisture vertically as opposed to orographic lifting, resulting in little to no isotopic lapse rate (Rohrmann et al., 2014).

5.2.2. Longitude

While the isotopic composition of surface waters across the Andean Plateau is apparently controlled by elevation, it is often heavily modified by surface water recycling and/or evaporative enrichment. Along transect DEF, which crosses the plateau in southern Peru (Fig. 1), we observe a general increase in the most positive δ18O values of stream water southwestward while elevation remains relatively constant (Fig. 5). The isotopic composition of surface (stream) water also becomes more variable, with a range of $−1%$ in the northeast to $−6%$ in the southwest part of the plateau (maximum difference between samples 75 km and 225 km from the Andean foreland respectively). This trend is inconsistent with the continental effect, described from a global long-term precipitation dataset (Rozanski et al., 1993). The approximate rate of increase for the most positive values along this transect ($−1%/70$ km) is conspicuously similar to that observed northward across the Tibetan Plateau ($−1%/72$ km) (Bershaw et al., 2012; Hren et al., 2009; Li and Garzione, submitted for publication; Quade et al., 2011; Tian et al., 2001).

![Fig. 5. A compilation of stream and river water samples along a NE-SW transect shown as DEF in Fig. 1. Only samples within 25 km of transect DEF are included (noted in Supplementary Table 1). The gray curve is the average elevation over a 100 km wide swath following this transect. δ18O values of stream water decrease significantly up the windward side of the Eastern Cordillera. The most negative values (−19%) correspond with an elevation of ~4.2 km based on the isotopic lapse rate in Fig. 4B. Westward across the plateau, the most positive values increase at a rate of ~1%/70 km inland from the Eastern Cordilleran crest, consistent with recycling of evaporatively enriched surface waters. For sample locations, the geographic center of catchments upstream from stream or river sample sites (centroid) is used. Elevation is reported as the mean basin hypsometry. Three samples with very low d excess values <−5% are not included as they represent extreme evaporative enrichment (170511-01, 030611-01, and 10PE-88w).](image-url)
The observation that the isotopic composition of meteoric water becomes progressively enriched at a similar rate deep into the rainshadow of both the Andean and Tibetan Plateaux suggests common processes during moisture transport, such as surface water recycling and/or evaporative enrichment, are responsible, as opposed to mixing of unique moisture sources, which would be unique to each region. On the Tibetan Plateau, surface water reservoirs are progressively enriched in 18O through evaporation and partial removal (advection) of relatively low δ18O vapor off the plateau. This trend is observed in d excess values which increase in streams but decrease in lakes downwind (north) from the Himalayan rainshadow (Bershaw et al., 2012). As the recycling ratio increases downwind (westward) across the Andean Plateau, the proportion of locally-derived moisture versus that advected from outside the plateau increases (Trenberth, 1999). Standing water, a source of recycled precipitation on the plateau, also shows a strong to non-existent (R² = 0.003) (Fig. DR2).

It is also possible that stream water samples are enriched prior to sampling through surface water evaporation and/or subcloud evaporation of raindrops as they fall through the air (Gat and Airey, 2006). According to this model, we would expect a progressive increase in evaporation downwind to result in an inverse relationship between d excess and distance from the Andean foreland. Though this relationship is not clear in our stream water dataset, precipitation samples from Fiorella et al. (2015a) and Aravena et al. (1999) (Tables 2 and 3) on the southern plateau (elevation > 3500 m) do show an inverse relationship with distance from the Andean foreland (longitude) (R² = 0.69), suggesting evaporative enrichment due to subcloud evaporation plays a significant role (Fig. 6A). While precipitation d excess decreases downwind (westward) across the Andean Plateau, δ18O values of precipitation do not exhibit an obvious trend, possibly due to the wide range in latitude and poor sample representation between −67° and −68.5° longitude (Fig. 6B). The observation that there is not a clear decrease in precipitation δ18O values to the west is consistent with evaporative enrichment mitigating the continental effect.

5.2.3. Latitude

Because this dataset does not include many locations south of −18°, published precipitation datasets from Aravena et al. (1999) and Fiorella et al. (2015a) have been included in a plot of latitudinal variation (Fig. 7). When

Table 2
Locality information and stable isotope results for precipitation samples published by Aravena et al. (1999).

<table>
<thead>
<tr>
<th>Sample Location</th>
<th>δ18O (vsmow)</th>
<th>δD (vsmow)</th>
<th>d excess</th>
<th>Sample Site Elevation (m)</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Precipitation Amount (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>POROMA</td>
<td>−4.5</td>
<td>−21.4</td>
<td>14.3</td>
<td>2880</td>
<td>−19.867</td>
<td>−69.183</td>
<td>41</td>
</tr>
<tr>
<td>HUATACONDO</td>
<td>−11.4</td>
<td>−79.9</td>
<td>11.5</td>
<td>2460</td>
<td>−20.917</td>
<td>−69.05</td>
<td>15</td>
</tr>
<tr>
<td>PUCHULDIZA</td>
<td>−14.4</td>
<td>−104</td>
<td>11.2</td>
<td>4200</td>
<td>−19.4</td>
<td>−68.95</td>
<td>100</td>
</tr>
<tr>
<td>COLCHANE</td>
<td>−14.9</td>
<td>−106.3</td>
<td>13.3</td>
<td>4100</td>
<td>−19.7</td>
<td>−68.883</td>
<td>208</td>
</tr>
<tr>
<td>HUAYTANE</td>
<td>−14.1</td>
<td>−100.9</td>
<td>11.9</td>
<td>3790</td>
<td>−19.543</td>
<td>−68.604</td>
<td>161</td>
</tr>
<tr>
<td>CANCOSA</td>
<td>−14</td>
<td>−96.4</td>
<td>15.6</td>
<td>3850</td>
<td>−19.85</td>
<td>−68.6</td>
<td>143</td>
</tr>
<tr>
<td>PAMPA LIRIMA</td>
<td>−9.8</td>
<td>−67.8</td>
<td>10.9</td>
<td>4100</td>
<td>−19.82</td>
<td>−68.9</td>
<td>79</td>
</tr>
<tr>
<td>PARCA</td>
<td>−6.6</td>
<td>−40.9</td>
<td>12.2</td>
<td>2700</td>
<td>−20.017</td>
<td>−68.85</td>
<td>20</td>
</tr>
<tr>
<td>COLLAGUASI</td>
<td>−22.1</td>
<td>−165.9</td>
<td>11.1</td>
<td>4550</td>
<td>−20.983</td>
<td>−68.7</td>
<td>43</td>
</tr>
<tr>
<td>UJINA</td>
<td>−10</td>
<td>−68.4</td>
<td>11.6</td>
<td>4200</td>
<td>−20.983</td>
<td>−68.6</td>
<td>123</td>
</tr>
</tbody>
</table>

* Stable isotope averages are weighted by precipitation amount for each site.

Table 3
Locality information and stable isotope results for precipitation samples published by Fiorella et al. (2015a).

<table>
<thead>
<tr>
<th>Sample Location</th>
<th>δ18O (vsmow)</th>
<th>δD (vsmow)</th>
<th>d excess</th>
<th>Sample Site Elevation (m)</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Precipitation Amount (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAN JUAN</td>
<td>−14.3</td>
<td>−99.8</td>
<td>14.6</td>
<td>3663</td>
<td>−20.9</td>
<td>−67.76</td>
<td>162</td>
</tr>
<tr>
<td>SALINAS</td>
<td>−17.5</td>
<td>−122.6</td>
<td>17.4</td>
<td>3719</td>
<td>−19.65</td>
<td>−67.64</td>
<td>255</td>
</tr>
<tr>
<td>NOEL MARIACA</td>
<td>−14.1</td>
<td>−97.8</td>
<td>15</td>
<td>3780</td>
<td>−20.68</td>
<td>−66.64</td>
<td>169</td>
</tr>
<tr>
<td>GRAN CHOCAYA</td>
<td>−14</td>
<td>−92</td>
<td>20</td>
<td>4340</td>
<td>−20.97</td>
<td>−66.33</td>
<td>227</td>
</tr>
<tr>
<td>ORURO</td>
<td>−15.5</td>
<td>−107.1</td>
<td>16.9</td>
<td>3718</td>
<td>−17.98</td>
<td>−67.11</td>
<td>401</td>
</tr>
<tr>
<td>EL CHORO</td>
<td>−15.6</td>
<td>−109.2</td>
<td>15.6</td>
<td>3706</td>
<td>−18.36</td>
<td>−67.11</td>
<td>547</td>
</tr>
<tr>
<td>QUILLACAS</td>
<td>−15.5</td>
<td>−108.1</td>
<td>15.9</td>
<td>3780</td>
<td>−19.23</td>
<td>−66.94</td>
<td>360</td>
</tr>
</tbody>
</table>

* Average per year for 3–5 years.
Fig. 6. (a) A compilation of published precipitation data from Aravena et al. (1999) (Table 2) and Fiorella et al. (2015a) (Table 3). Sample locations are throughout the central and southern Andean Plateau (Fig. 1). d excess values are plotted against longitude as this part of the Andean Plateau strikes roughly north–south. Though we do not see a meaningful trend in d excess from stream water samples (Fig. DR2), d excess in precipitation decreases with distance from the Andean foreland, suggesting evaporative enrichment through subcloud evaporation becomes increasingly significant westward (downwind). (b) Interestingly, there is not a meaningful trend in $\delta^{18}O$ values of precipitation in the same dataset. The observation that there is not a clear decrease in precipitation $\delta^{18}O$ values to the west may be interpreted as evaporative enrichment mitigating the continental effect downwind.

Fig. 7. A compilation of $\delta^{18}O$ values (x-axis) for stream (circles) and precipitation (triangles) samples from the Andean Plateau plotted against latitude (y-axis). Stream data (circles) are from this study (Supplementary Table 1) while precipitation data (triangles) are from Aravena et al. (1999) (Table 2) and Fiorella et al. (2015a) (Table 3). Published precipitation data was added south of -18° due to a paucity of stream data there. Symbols are shaded by d excess value with a gradient from 10‰ (black) to 5‰ (white). The black dashed line is a regression through this combined dataset showing a weak correlation ($R^2 = 0.17$). Though there is considerable scatter, it appears that $\delta^{18}O$ values are generally more positive on the southern Andean plateau, consistent with more arid conditions there. For stream samples, the geographic center of catchments upstream from stream or river sample sites (centroid) is used and elevation is reported as the mean basin hypsometry. Only samples from elevations >3500 m are included, limiting the dataset to the plateau itself. Samples with extremely low d excess values <−5‰ (15 samples) are not included as they are likely significantly affected by evaporation.
considering these combined datasets, the correlation between isotopic composition and latitude is weak ($R^2 = 0.17$). That said, it appears there is a general shift towards more positive values on the southern Andean Plateau, even in samples with consistently high (>10‰) d excess values. A latitudinal gradient in isotopic composition, where $\delta^{18}O$ values are more positive in the south, would be contrary to global patterns where $\delta^{18}O$ values of meteoric water are observed to decrease at higher latitudes (e.g. Rozanski et al., 1993). On the Andean Plateau, the south receives less precipitation than the north. Modern rainfall estimates range from >50 cm/yr north of 18°S to <25 cm/yr south of 20°S (Bookhagen and Strecker, 2008; Garreaud and Vuille, 2003; IAEA/WMO, 2016). Higher precipitation amounts in the north are also influenced by Lake Titicaca, a likely source of recycled moisture (García et al., 2007). Higher $\delta^{18}O$ of surface water in the southern Andean Plateau may be due to this climate gradient leading to higher rates of evaporation (Gat and Airey, 2006) and/or decreased amount effect precipitation and convective moistening on the southern Andean Plateau (Galewsky and Samuels-Crow, 2015). Surface water reservoirs often exhibit high $\delta^{18}O$ and very low d excess (Table 1) suggesting evaporation post-deposition is significant. If surface water and/or subcloud evaporation were more intense in the south, one might predict that d excess values would be more negative. However, similar to observations made on the Andean Plateau’s southeast flank, we do not observe systematic changes in d excess with latitude (Rohrmann et al., 2014). Relatively dry conditions in the south may also decrease the amount of convective moistening (amount effect) there, resulting in relatively high $\delta^{18}O$ values of meteoric water.

5.3. Isotope trends up the Western Cordillera

There is a unique relationship between $\delta^{18}O$ and elevation along transects AB and DE, up the western flank of the Western Cordillera in Peru (Fig. 1). These stream water data show a consistently steep isotopic lapse rate of -10‰/km elevation gain (Fig. 8). A remarkably similar pattern was observed in precipitation data farther south along transect JI by Aravena et al. (1999). An isotopic lapse rate of this magnitude is not consistent with Rayleigh distillation of westerly-derived moisture from the Pacific Ocean (Rowley, 2007). It contrasts with isotopic lapse rates observed up the windward side of the Eastern Cordillera (-2‰/km) presented here along transect BC (Fig. 3) and along transects GH and KL in Fig. 1 (Bershaw et al., 2010; Fiorrella et al., 2015a; Gonfiantini et al., 2001), consistent with easterly (Atlantic) derived precipitation. These anomalously steep isotopic lapse rates up the flank of the Western Cordillera likely represent mixing between highly evolved Atlantic moisture (low $\delta^{18}O$ values) and Pacific-derived fog and/or drizzle at low elevations (high $\delta^{18}O$ values). The Western Cordillera appears to be a transition zone, where the relative influence of easterly (Atlantic) derived moisture increases with elevation. Climate modeling corroborates this interpretation as easterlies contribute more to atmospheric circulation in the Western Cordillera during precipitation events (Aravena et al., 1999; Fiorrella et al., 2015a; Garreaud et al., 2009).

Additional evidence is found in seasonal patterns of precipitation for sites throughout the region. La Paz, Bolivia receives most of its precipitation during austral summer (Dec, Jan, Feb, and Mar) (Figs. 1 and DR3). Precipitation that falls in La Paz is ultimately Atlantic-derived moisture that crosses the Amazon Basin before climbing up valleys that dissect the Eastern Cordillera, recycled many times along the way (Gonfiantini et al., 2001). Though Arequipa, Peru is located much farther downwind, across the plateau in the Western Cordillera, it displays a very similar seasonal pattern of precipitation with the vast majority also falling during austral summer. Closer to the Pacific Ocean, both Tacna, Peru and Iquique, Chile are the opposite, receiving precipitation primarily during austral winter (Jun, Jul, Aug), with dramatically less annual precipitation. These observations suggest that easterlies dominate at high and mid-elevations in the Western Cordillera, but do not contribute significantly to precipitation at low elevations near the Pacific coast. This may explain an anomalously steep isotopic lapse rate as relatively low $\delta^{18}O$ (depleted), Atlantic-derived moisture in the Western Cordillera transitions to relatively high $\delta^{18}O$ (enriched), Pacific-derived fog and/or drizzle at low elevations in Peru and Chile.

Intense evaporation of surface waters at low elevations near the Pacific coast may also contribute to the steep isotopic lapse rate as the total amount of annual precipitation decreases by orders of magnitude down the Western Cordilleran flank (Fig. DR3). This is seen in d excess values of streams that are relatively negative at low elevations near the Pacific Ocean, consistent with evaporative enrichment. Because precipitation samples from Aravena et al. (1999) do not show relatively low d excess values near the coast, it can be inferred that stream samples are primarily experiencing evaporation post-deposition (Figs. 8 and DR1B).

5.4. Studies of Paleoclimate and Paleohydrology

The isotopic composition of paleowater from the Andean Plateau is often estimated using proxies from the rock record (Garzione et al., 2008; Kar et al., 2016; Leier et al., 2013; Saylor and Horton, 2014). Though some may exhibit seasonal bias (Breecker et al., 2009), isotopic proxies have the benefit of time-averaging, reflecting paleoclimate. Across the Andean Plateau, surface water evaporation, evaporation of raindrops as they fall through the air, surface water recycling, and air mass mixing affect the isotopic composition of surface waters to varying degrees. To minimize the effect of post-depositional evaporation, proxies that integrate water with a short residence time at the surface should be targeted. Sedimentary carbonates, volcanic glass, lipid biomarkers, fossil teeth, and hydrated clays occur in diverse depositional environments and have all been used as proxies for the isotopic composition of paleowater (Bershaw et al., 2010; Canavan et al., 2014; Garzione et al., 2008; Mulch et al., 2006; Polissar et al., 2009; Saylor and Horton, 2014). The likelihood of evaporative enrichment depends partly on the depositional environment. Lacustrine and/or fluvial proxies may be
Samples with extremely low d excess the effects of evaporation in arid environments. Circles are shaded by d excess Transect IJ shows weighted mean precipitation data from Aravena et al. (1999) (Table 2). Significant scatter (low d means that large datasets should be obtained to effectively...20140518-04). The watershed of this sample is likely not defined correctly as its...et al., 2011, 2007).

...enriched in arid environments, particularly if samples are...isotopic composition of soil water may also become...evaporatively enriched if surface water is exposed to the...atmosphere, particularly if relative humidity is low and residence times are high. For this reason, paleosol proxies may be less susceptible to evaporative enrichment. However, the isotopic composition of soil water may also become enriched in arid environments, particularly if samples are from <50 cm depth (Cerling and Quade, 1993; Quade et al., 2011, 2007).

The likelihood of evaporation in arid environments means that large datasets should be obtained to effectively distinguish between samples that have and have not been evaporatively enriched. Considering the wide range of δ18O values observed across the Andean Plateau, individual samples are not a good predictor of elevation (Fig. 4A). In some cases, evaporatively enriched samples (e.g. 170511-01) collected at over 3500 m elevation predict elevations at sea-level using the isotopic lapse rate from Fig. 4B. Proxies that reflect highly evaporated paleowater have similar potential to significantly underestimate paleoelevation.

Of 242 stream water samples, we took the most negative δ18O value per 200 m elevation to establish an isotopic lapse rate (~3.5‰/km) across the plateau. Stream water samples that plot within 780 m of the trend line (standard error) are within statistical uncertainty of the regression. For the plateau (elevations > 3500 m), where evaporative enrichment of meteoric water can be pronounced, 26% of stream samples fall within the standard error, suggesting that a quarter of all samples are useful for predicting elevation. This highlights the importance of using the most negative of numerous samples to constrain paleoelevation in relatively arid environments such as the Andean Plateau. This does not account for additional proxy considerations, each of which have unique uncertainties associated with their recording of paleowater chemistry (Rowley and Garzione, 2007).

Using the modern isotopic lapse rate established up the Eastern Cordillera (~2‰/km) for paleowater proxies in the Eastern Cordillera is warranted. However, using the same isotopic lapse rate for sites in the western Altiplano and Western Cordillera is likely to result in underestimates of paleoelevation and overestimates of temperature. That said, this data shows that the most negative isotopic values still exhibit a significant relationship with elevation (Fig. 4B), suggesting that given a large enough sample population, paleoelevation constraints based on the most negative values and an appropriate isotopic lapse rate are justified, even deep into the rainshadow of a mountain range.

6. CONCLUSIONS

The northern Andean Plateau shows patterns of stable isotope evolution that appear dominated by processes that fractionate during and after vapor transport from the Atlantic via the Amazon Basin, with mixing between easterly and westerly (Pacific) derived moisture limited to the western flank of the Western Cordillera. Considerable recycling and/or evaporative enrichment of meteoric water across the Andean Plateau will likely lead to underestimates of paleoelevation, unless a sufficient number of samples are obtained to distinguish minimally evaporated samples. The most negative δ18O values of stream water across the entire Andean Plateau show a significant relationship with elevation (~3.5‰/km) that is unique to this arid environment, and different from that observed on the relatively wet, windward flank of the Eastern Cordillera (~2‰/km). Therefore, we recommend using this steeper isotopic lapse rate for proxies obtained from the Andean Plateau itself.

Spatial patterns of isotope variability due to moisture source mixing appear limited to the coastal flank of the Western Cordillera, where we interpret a transition from Atlantic-derived moisture at high elevations to Pacific-derived fog and/or drizzle at lower elevations. This is supported by consistently steep isotopic lapse rates...
(-10‰/km) along the Western Cordillera from Peru to Chile (Fig. 8), climate modeling (Aravena et al., 1999), and seasonal patterns of precipitation (Fig. DR3). We conclude that elevation exhibits a primary control on the isotopic composition of surface waters across the Andean Plateau and its flanks (-13° to -20° latitude), often modified significantly by surface water recycling and/or evaporation.

ACKNOWLEDGEMENTS

Thank you to Penny Higgins for help in running samples at SIREAL (University of Rochester) and to Katherine DeLoach for assistance in calculating watersheds for samples. Also, to Robinson Cecil and Nicholas Perez for help collecting samples in the field and Ken Cruikshank for statistical advice. Lastly, thank you to two anonymous reviewers whose feedback greatly improved this manuscript. This work was partially funded by NSF EAR-0908858 and EAR-1338694 to Garzione.

APPENDIX A. SUPPLEMENTARY DATA

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.gca.2016.08.011.

REFERENCES

Associate editor: Anthony Dosseto