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Heavier vehicles are safer for their own occupants but more hazardous for other vehicles. Simple
theory thus suggests that an unregulated vehicle fleet is inefficiently heavy. Using three separate
identification strategies we show that, controlling for own-vehicle weight, being hit by a vehicle that
is 1000 pounds heavier generates a 40–50% increase in fatality risk. These results imply a total accident-
related externality that exceeds the estimated social cost of US carbon emissions and is equivalent to a gas
tax of $0.97 per gallon ($136 billion annually). We consider two policies for internalizing this external
cost, a weight-varying mileage tax and a gas tax, and find that they are similar for most vehicles. The
findings suggest that European gas taxes may be much closer to optimal levels than the US gas tax.
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1. INTRODUCTION

The average weight of light vehicles sold in the United States has fluctuated substantially over the
past 35 years. From 1975 to 1980, average weight dropped almost 1000 pounds (from 4060 pounds
to 3228 pounds), likely in response to rising gasoline prices and the passage of the Corporate
Average Fuel Efficiency (CAFE) standard. As gasoline prices fell in the late-1980s, however,
average vehicle weight began to rise, and by 2005 it had attained 1975 levels (US Environmental
Protection Agency, 2009). A rich body of research examines the effects of CAFE and gasoline
prices on consumers’ vehicle choices (Portney et al., 2003; Austin and Dinan, 2005; Bento et al.,
2009; Li et al., 2009; Klier and Linn, 2012; Busse et al., 2013).

One area of intense research interest is how the choices consumers make in response to
gasoline prices and fuel economy standards affect traffic fatalities. Traffic accidents are the
leading cause of death for persons under the age of 40, and they are a major source of life-
years lost.1 Intuitively, heavier cars are safer than lighter cars, and previous research has argued

1. Lung cancer, a disease that is generally the result of smoking, kills approximately four times as many Americans
each year as traffic accidents. However, the average lung cancer decedent is 71 years old while the average traffic accident
decedent is only 39 years old. The number of life-years lost to traffic accidents is thus similar in magnitude to the number
of life-years lost to lung cancer.
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that a heavier vehicle fleet is a safer vehicle fleet (Crandall and Graham, 1989). Much of the
subsequent transportation safety literature has focused on the effects of average vehicle weight
on safety, reaching varying conclusions.

From an economic standpoint, however, an unregulated vehicle fleet must be inefficiently
heavy. A heavier vehicle is safer for its own occupants but more hazardous for the occupants of
other vehicles. The safety benefits of vehicle weight are therefore internal, while the safety costs
of vehicle weight are external. Consumers’ vehicle choices thus have the important features of
an “arms race”. To date no comprehensive attempt has been made to quantify the external safety
costs of vehicle weight. This figure is essential for determining the socially optimal weight of
the vehicle fleet, and it cannot be inferred from the net effects on traffic safety of average vehicle
weight or fuel economy regulations.

We quantify the external costs of vehicle weight using a census of police-reported crashes
across 8 heterogeneous states. Unlike data sets employed in the existing transportation literature
or Jacobsen (2013), our data include both fatal and non-fatal accidents. Using unique vehicle
identifiers (VINs), we determine the curb weight of each vehicle in an accident, thus minimizing
concerns about attenuation bias due to measurement error. The rich set of vehicle, person, and
accident observables in the data set allow us to minimize concerns about omitted variables bias.
Using these data, we estimate the external effects of vehicle weight on fatalities and serious
injuries conditional on a collision occurring.

Two key results emerge from our estimates. First, we show that vehicle weight is a critical
determinant of fatalities in other vehicles in the event of a multivehicle collision; our preferred
estimate implies that a 1000 pound increase in striking vehicle weight raises the probability
of a fatality in the struck vehicle by 47%. When we translate this higher probability of a
fatality into external costs (relative to a small baseline vehicle), the total external costs of
vehicle weight from fatalities alone are estimated at $136 billion per year. Second, by separately
controlling for vehicle weight and whether the striking vehicle is a light truck (i.e. a pickup
truck, sport utility vehicle, or minivan), we show that light trucks significantly raise the
probability of a fatality in the struck car—in addition to the effect of their already higher vehicle
weight.

Our unique data set allows us to condition on a collision occurring and thus ensures that our
results cannot be generated by differences in collision rates between drivers of lighter and heavier
vehicles. Nevertheless, driver selection could bias our results if drivers of heavy vehicles have
a tendency towards severe accidents. We rule out this possibility through falsification tests and
two alternative sources of identification. First, we show that our estimates persist even when
controlling for specific vehicle type via make and model fixed effects. Second, we estimate the
effect of striking vehicle weight using variation in the number of occupants in the striking vehicle
and find estimates that are close to our main estimates. Finally, we show that vehicle weight
does not predict fatalities when two vehicles of equal weight collide. This suggests that drivers
of heavy vehicles are not predisposed towards severe accidents. All three tests suggest that we
successfully identify the causal effect of vehicle weight on the probability of fatalities in two-car
collisions.

One way to internalize the identified externality is through a weight varying mileage tax.
However, such a tax could be logistically difficult to implement. We apply our estimates
to consider whether a simple gasoline tax could be an alternative to internalize most of
the external costs and conclude that it could. Our calculations suggest that the level of the
optimal gasoline tax is much higher than previously estimated (e.g. Parry and Small, 2005)
and that the external traffic fatality costs of vehicle weight eclipse the sum of all other
vehicle-related externalities (Portney et al., 2003). Total accident-related external costs exceed
central estimates of the annual social cost of US carbon emissions (US EIA, 2009; Greenstone
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et al., 2011). We estimate that a weight or gasoline tax would not substantially increase total
traffic fatalities.

This article is organized as follows. Section 2 conducts a literature review. Section 3 presents
the analytic and empirical framework. Section 4 details the data, and Section 5 presents the
main results. Section 6 presents two alternative sources of identification and falsification tests to
confirm that selection bias does not drive our results. Section 7 links the results to energy policy
implications, focusing on the gasoline tax, and estimates the potential effects of such a tax on
total fatalities. Section 8 concludes.

2. LITERATURE REVIEW

A large traffic safety literature examines the relationship between average vehicle weight and
traffic fatality rates. Most of this literature estimates aggregate time series correlations (Robertson,
1991; Khazzoom, 1994; Noland, 2004; Ahmad and Greene, 2005). Two exceptions are Kahane
(2003) and Van Auken and Zellner (2005), which use micro data on fatal accidents only.2 These
studies come to varying conclusions regarding the sign of the relationship between average
vehicle weight and overall fatality rates, but all conclude that the magnitude of this relationship
is relatively modest.

In recent years economists have studied the “arms race” nature of vehicle choice. This
work focuses on the internal and external risks posed by the largest vehicles—pickup trucks
and sport utility vehicles (SUVs)—relative to the typical passenger car. White (2004), Gayer
(2004), Anderson (2008), and Li (2012) all conclude that light trucks (pickups and SUVs) impose
significant risks relative to passenger cars.

This study builds upon the existing literature by considering the fundamental role that vehicle
weight plays in determining external risk. We recognize that any vehicle that is heavier than the
smallest feasible vehicle poses some external risk to other roadway users. We quantify that risk
and find total external safety costs of vehicle weight that are at least 11.6 times larger than Li’s
estimates and 7.4 times larger than Anderson’s estimates.3 Our comprehensive results span the
entire range of the vehicle fleet and allow us to consider the broader implications of vehicle weight
for energy policy. We also develop a theoretical model that captures the central role that weight
disparity plays in determining traffic fatalities. The model, in combination with the empirical
results, establishes several results with significant policy implications. First, we show that the
fatality externality does not result from a failure to coordinate on a single vehicle weight. Second,
we show that “downsizing” the vehicle fleet does not significantly increase traffic fatalities unless
it dramatically increases fleet heterogeneity. Finally, we show that decreasing the weight of lighter
vehicles can be welfare enhancing even if traffic fatalities increase. Our estimates of the function
relating weight disparity and traffic fatalities also illuminate the mechanisms underlying existing
findings in the traffic safety literature.

Concurrent work by Jacobsen (2013) is particularly relevant to this article. Jacobsen uses data
on fatal accidents to explore the traffic safety implications of different fuel economy regulatory

2. They supplement the fatal accident data with data on police-reported accidents from several states to estimate the
rate at which different types of vehicles enter into collisions. However, unlike this study, they do not use police-reported
accident micro data to estimate their econometric specifications.

3. Li (2012) and Anderson (2008) calculate lifetime accident externalities of $2,444 and $3,850, respectively for
each light truck sold. In the steady state, annual truck sales must average 5.8 million to maintain the current fleet of 108
million light trucks (California Air Resources Board, 2004; US Department of Transportation, 2011). The annual safety
externality for light trucks is thus between $14.2 billion (Li) and $22.3 billion (Anderson). We find an annual safety
externality of $135.8 billion from vehicle weight alone, and an additional $28.7 billion from light truck bodies.
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schemes across 10 broad vehicle classes. While both Jacobsen and this article explore issues
related to energy policy and traffic fatalities, the two papers address different questions. We
estimate a parameter, the external cost of vehicle weight, which is crucial for determining the
appropriate level of vehicle or gasoline taxation. Jacobsen estimates the net effect of changes
to an existing policy, CAFE, on net traffic fatalities. Loosely speaking, Jacobsen concludes that
scheduled changes to CAFE may not increase traffic fatalities, while we demonstrate that increased
energy taxes or stricter CAFE standards may internalize an important externality. Empirically,
the two papers use different data and identification strategies. Jacobsen uses fatal accident data
and adjusts for differences in driver collision rates by controlling for fatality rates in single-
vehicle accidents. We use data on all police reported accidents, which automatically adjusts for
differences in driver collision rates.

3. ANALYTIC AND EMPIRICAL FRAMEWORK

The wider impacts of consumers’ vehicle choices represent a classic example of an externality.
Purchasing a heavier vehicle enhances safety for the individual, but it also increases the risk to
other drivers in the case of an accident. The net benefit of vehicle weight on traffic fatalities is
thus smaller than the private benefit of vehicle weight on traffic fatalities, and consumers are
incentivized to purchase heavier vehicles than is socially optimal. The following stylized model
outlines how the socially optimal vehicle weight differs from the privately chosen weight.

Consider a population of N consumers. Consumer i spends income yi on xi units of the
composite good x, which is normalized to have price 1, and on a vehicle weighing wi pounds,
which costs p dollars per pound. The price per pound, p, is positive because heavier vehicles cost
more to build and fuel. For simplicity we assume an additive utility function:

Ui(xi,w1,...,wN )=xi +Ej �=i[ f (wi −wj)]+gi(wi) (1)

Consumer i gets utility from the composite good x, the safety benefits of driving a heavier vehicle
than other consumers, captured by the function f , and the larger capacity of a heavier vehicle,
captured by the function gi. One way to view f is as −α ·h(wi −wj), where α is positive and
h(wi −wj) is the probability that driver i dies if a collision occurs between vehicles i and j. In
this formulation, increases in the overall fatality rate due to factors other than the relative weight
distribution (e.g. an increase in the number of drunk drivers) will increase α and thus increase f ’s
impact in the utility function. The function gi also captures private benefits from other features
related to weight, including engine size and even safety features like reinforced bars. We assume
that f ′,g′ >0, f ′′ ≤0, and g′′ <0. We allow heterogeneity in vehicle preferences by indexing g
by i. For tractability we assume that safety is a function of relative weight; i.e., extra weight
does not independently make vehicle i safer except insofar as it increases its weight relative to
other vehicles. We relax this assumption in our regressions, but there are two reasons to believe
it holds empirically. First, adding vehicle i’s weight to a regression of fatalities on the difference
in vehicle weights does not increase the regression’s explanatory power (see Section 5). Second,
vehicle weight is uncorrelated with performance in controlled crash tests (see Section 6.3). We
assume consumer i takes the weight of other vehicles as given and that the safety benefits and
costs do not vary with the size of the vehicle fleet.4 We substitute the consumer’s budget constraint

4. In practical terms this implies that the average probability that consumer i experiences a collision does not
increase with the size of the vehicle fleet. The effect of congestion on accident rates is the focus of Edlin and Karaca-Mandic
(2006), and it is a different externality than the one we estimate in this article.
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yi =xi +pwi into the utility function and take the derivative with respect to wi.. The first-order
condition (FOC) is:

g′
i(w

∗
i )+Ej �=i[ f ′(w∗

i −w∗
j )]=p (2)

Consumer i chooses a vehicle weighing w∗
i pounds, where at w∗

i the expected marginal safety
benefits, Ej �=i[ f ′(w∗

i −w∗
j )], plus the marginal benefits of larger capacity, g′

i(w
∗
i ), equal p.5 The

marginal safety benefits of vehicle weight are averaged over the entire fleet of vehicles that the
consumer may collide with. The consumer’s choice may thus depend on the distribution of vehicle
weight in the existing fleet.

The social planner maximizes the sum of the individual indirect utility functions:

max
w1,..,wN

N∑

i=1

[
yi −pwi +Ej �=i[ f (wi −wj)]+gi(wi)

]
(3)

For simplicity we assume the social planner has a sufficiently long time horizon to view every
vehicle as eligible for replacement.6 Taking the derivative with respect to wi for each consumer
and solving all of the first-order conditions gives an optimal weight of w∗∗

i for consumer i, which
is the weight at which the sum of the marginal benefits from larger capacity and the net safety
benefits (marginal private safety benefits minus the marginal safety costs to other vehicles) equals
p, or:

g′
i(w

∗∗
i )+Ej �=i[ f ′(w∗∗

i −w∗∗
j )−f ′(w∗∗

j −w∗∗
i )]=p (4)

Since f ′ >0 and g is strictly concave, the social planner chooses weight w∗∗
i <w∗

i ; g′
i(w

∗∗
i ) must be

greater than g′
i(w

∗
i ) to satisfy both equations (2) and (4). Complicating the comparison between the

two FOCs is the fact that w∗∗
j <w∗

j , but since f is concave this, if anything, attenuates f ′(w∗∗
i −w∗∗

j )
relative to f ′(w∗

i −w∗
j ). The social planner chooses a lower weight than consumer i′s choice of

weight in the private market equilibrium for two reasons. First, the planner accounts for the
negative effect that vehicle i’s weight has on other vehicles’ safety, captured by −f ′(w∗∗

j −w∗∗
i ).

Second, if f is strictly concave, the marginal safety benefit of vehicle i’s weight, f ′(w∗∗
i −w∗∗

j ),
decreases as the weight of other vehicles in the fleet, w∗∗

j , decreases. This is the “arms race”
dynamic at work.

In two special cases the social planner’s FOC reduces to g′
i(w

∗∗
i )≈p, and she chooses weight

based only on cargo and passenger capacity benefits. One case is if f is approximately linear over
the support of w∗∗

i −w∗∗
j . Another case is if gi does not vary across consumers, so that w∗∗

i =w∗∗
j

for all consumers. In either case the marginal internal safety benefit and external safety cost
of weight are identical for all consumers, and adding weight for safety becomes a zero-sum
game. Beyond establishing the externality, the model yields five results with significant policy
implications:

Result 1. The externality is not caused by consumers failing to coordinate on the same weight.
Suppose there is no heterogeneity in gi, so that all consumers purchase vehicles of identical
weight w∗ in the private market equilibrium. In this equilibrium consumers choose w∗ such

5. For simplicity this stylized model ignores heterogeneity in safety preferences among consumers. We could
account for this heterogeneity by indexing f (.) by i. However, in practice we find that heterogeneity in the value of a
statistical life (which implies heterogeneity in f ) has minimal effect on the distribution of corrective taxes.

6. One potential benefit we ignore is the possibility that the social planner may factor in domestic automaker
profits, which in the United States have historically been increasing in light truck share.
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that g′(w∗)+f ′(0)=p. However, the socially optimal weight is w∗∗ such that g′(w∗∗)=p. Thus
w∗ remains higher than the optimal weight w∗∗ since f ′(0)>0; identical weights alone are not
sufficient to guarantee a socially optimal outcome.

Result 2. Coordinated reductions in fleet weight need not increase total fatalities. If all
consumers reduce weight by some constant wc, then Ej �=i[ f (wi −wj)] remains unchanged
for everyone. This result hinges on the assumption that, at the margin, extra weight does
not independently increase safety (this appears to hold empirically). However, heterogeneous
reductions in fleet weight may affect total fatalities.

Result 3. Fleet heterogeneity can affect total fatalities if f is strictly concave. Suppose consumers
move from a world of equal weight vehicles to one in which they choose heavy vehicles weighing
wh or light vehicles weighing wl, with wh >wl. In any collision between two vehicles of different
weights, the heavy vehicle’s safety gain over colliding with an equal weight vehicle, f (wh −
wl)−f (0), is offset by the light vehicle’s safety loss over colliding with an equal weight vehicle,
f (0)−f (wl −wh). If f is strictly concave, then f (0)−f (wl −wh)> f (wh −wl)−f (0), and the safety
loss to the light vehicle exceeds the safety gain to the heavy vehicle. Fleet heterogeneity can thus
increase total fatalities.

Result 4. Even if f is strictly concave, reducing the weight of light vehicles can be welfare
enhancing. Consider a consumer with low demand for cargo capacity that privately chooses
a vehicle of weight w∗

i < w̄. If the social planner forces consumer i to further reduce wi, the
net change in social welfare is p−g′

i(w
∗
i )+Ej �=i[ f ′(w∗

j −w∗
i )−f ′(w∗

i −w∗
j )]. Since p−g′

i(w
∗
i )−

Ej �=i[f ′(w∗
i −w∗

j )]=0 by equation (2), the net change in social welfare is positive. Due to the
externality, reducing the weight of a light vehicle can increase social welfare even if total
fatalities rise.

Result 5. Whether the externality is a function of the fleet’s weight distribution depends on the
concavity of f . The marginal externality of consumer i’s vehicle weight is Ej �=i[−f ′(wj −wi)]. If f
is approximately linear over the support of the weight distribution, then the marginal externality
reduces to β, where f (u)≈βu. If f is strictly concave, then Ej �=i[−f ′(wj −wi)] may change as the
distribution of fleet weight changes. This implies that the marginal externality under the current
fleet weight distribution may differ from the marginal externality under the optimal fleet weight
distribution.

Empirically, we estimate the effects of vehicle weight on fatalities in two-vehicle collisions.
Our regressions estimate h(wi −wj)=−α ·f (wj −wi). We switch the order of wi and wj because
we focus on the external costs of weight, and we reverse the sign on f because our outcome—
a fatality—represents negative utility. Concavity in f thus corresponds to convexity in our
regression function h. In our main specification we relax the assumption that safety is only a
function of relative weight and allow a more general functional form of h0(wi)−h1(wj). However,
we cannot reject the hypothesis that only relative weight matters. To test for convexity in h
(concavity in f ) we also estimate h(wi −wj) flexibly over the support of weight differences (see
Section 5.2). We apply our estimates to calculate the total external safety costs accruing from the
weight of the current vehicle fleet and to forecast the effects on total fatalities of coordinated and
uncoordinated reductions in fleet weight.

Note that the primary costs of this externality do not accrue in the form of traffic fatalities,
which on net may change little with a reduction in fleet weight (Results 2 and 3). Rather they
accrue in the form of purchases of larger vehicles that are more expensive to operate. In this
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sense it is similar to an arms race, which may not increase the probability of conflict even as both
countries spend more on new weapons. In the notation of our model, the welfare loss arises from
choosing a weight w that does not maximize gi(w)−pw.

In principle, liability rules and insurance regulations could internalize many of the external
costs due to vehicle weight. If drivers of heavy vehicles know that they will be held liable for
deaths in other vehicles, then they should take these risks into account when purchasing their
own vehicles. If insurance companies understand that heavier vehicles pose more danger to other
roadway users, then they should charge higher liability premiums to drivers of heavy vehicles.
In practice, however, liability rules and insurance regulations fail to internalize the fatality risks
generated by heavy vehicles.

Tort liability rules are inadequate to internalize fatality risks for two reasons. First, liability
only applies in cases in which a driver behaves negligently (White, 2004). This implies that the
driver of any given vehicle may not be liable in the event of a multivehicle accident. Second,
even if found liable, few drivers possess assets that are sufficient to cover the cost of a fatality.
The value of a statistical life (VSL) used by the United States Department of Transportation in
cost-benefit analyses is $5.8 million (2008 dollars), but only 7% of families in the United States
had a net worth exceeding $1 million in 2001 (Kennickell, 2003).

Though few drivers can cover the cost of a fatality, liability insurance regulations could force
most drivers to pay the expected liability costs of operating their vehicles. Again, however, the
mandated levels of liability insurance are inadequate to cover the costs of a fatality. Two states
(Florida and New Hampshire) do not require drivers to carry any liability coverage at all for
injuries, and 44 states require drivers to carry $25,000 or less in liability coverage for each
person injured (Insurance Information Institute, 2010). Many drivers remain uninsured despite
the regulations, and few drivers have policies that exceed several hundred thousand dollars of
coverage.

While liability rules and insurance regulations cannot internalize the majority of fatality costs,
they may internalize a significant fraction of incapacitating injury costs. Estimates of the value
of an incapacitating injury are far lower than the value of a statistical life, and it is plausible
that insurance policies carried by many drivers could cover the costs of an incapacitating injury.7

For this reason, our policy analysis focuses on external fatality costs (i.e. costs from fatalities
that occur outside of the driver’s own vehicle) and ignores external incapacitating injury costs.
Accounting for injury costs increases the magnitude of our results, though we cannot accurately
estimate what fraction of injury costs are already internalized. We calculate an upper bound on
external injury costs in Section 7.

To measure the effect of vehicle weight on external fatalities under ideal conditions, we would
randomly assign vehicles of differing weights to drivers and observe external fatality rates by
vehicle type. Such an experiment is infeasible in practice, and even an analogous study using
observational data is impractical due to substantial measurement error in vehicle stocks and
model-level vehicle miles travelled in most states. Instead, we focus on the risk of a fatality
conditional on a collision occurring. A key assumption when we interpret our estimates in a
policy context is that vehicle weight has no causal effect on the probability of a collision. We
discuss this assumption below and conclude that, if it is violated, then the effect of vehicle weight
on the probability of a collision is likely positive. Our estimates thus represent a lower bound on
the effect of weight on external fatalities. In Section 7 we explore how much our estimates might
increase if we relax the assumption.

7. The National Safety Council (2010) estimates the comprehensive cost of an incapacitating injury at $214,000
(2008 dollars). In comparison, the council estimates the comprehensive cost of a fatality at $4.2 million.
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Consider the expected external fatalities for a vehicle of type i during time interval t. For
simplicity, assume that t is short enough that the probability of multiple collisions during t is
effectively zero.

E[fatalitiesit]=E[E[fatalitiesit |collisionit]]=E[fatalitiesit |collisionit =1]·P(collisionit =1)
(5)

Equation (5) must hold via the law of iterated expectations. If weight has no causal effect on the
probability of a collision, then the total effect of weight on external fatalities is proportional to the
effect of weight on external fatalities conditional on a collision occurring. Weight may affect the
probability of a collision in two ways, however. First, from an engineering perspective, heavier
vehicles are less manoeuvrable and have longer braking distances.8 Even if driver behaviour is
unchanged, heavier vehicles may therefore get into more accidents. Second, heavier vehicles may
also affect driver behaviour. On the margin, drivers may respond to the internal safety benefits
of heavy vehicles by increasing their optimal collision rate (Peltzman, 1975). Both the physical
characteristics of heavier vehicles and the potential driver response to heavier vehicles could
therefore generate a positive effect of vehicle weight on collision rates.9

Empirical evidence also suggests that, if anything, heavier vehicles have higher collision rates
than lighter vehicles. Evans (1984) examines the relationship between accident rates and vehicle
weight using accident data and vehicle registration data from North Carolina, New York, and
Michigan. He finds that, after conditioning on driver age, 4000 pound vehicles have accident
rates that are 39% higher than 2000 pound vehicles. More recently, White (2004) and Anderson
(2008) estimate that light trucks are 13% to 45% more likely to experience multivehicle collisions
than passenger cars. Of course, some of the observed differences in crash rates may be due to
driver selection; careless drivers may choose heavier vehicles. Nevertheless, both theory and
empirical evidence suggest that weight may directly increase the probability of experiencing a
collision. We thus interpret our estimates—which are conditional on a collision occurring—as
lower bounds on the causal effect of weight on external fatalities.10

4. DATA

The data set consists of the population of police-reported accidents for eight states: Florida,
Kansas, Kentucky, Maryland, Missouri, Ohio, Washington, and Wyoming. These data come
from the State Data System, maintained by the National Highway Traffic Safety Administration
(NHTSA). We obtained permission from each state’s police force to use the data. The SDS data
include information on injuries and fatalities, geographic location, weather conditions, use of

8. We confirm this relationship using braking and manoeuvrability data from Consumer Reports. Analysing data
from 58 Consumer Reports-tested vehicles of varying weights, we find that an extra 1,000 pounds of curb weight is
associated with 4.5% worse performance in an emergency handling test (t =8.9), 2.2% worse performance in a dry
braking distance test (t =3.8), and 3.8% worse performance in a wet braking distance test (t =5.0).

9. To the best of our knowledge, the only factor that might reduce the probability of a collision for heavier vehicles
is visibility. Larger vehicles provide their drivers with a better view of the road ahead, which may decrease the probability
of an accident. However, they also make it more difficult for drivers behind them to see ahead, which may increase the
probability of an accident. The net impact of these two effects is unclear, but the resulting dynamic is again an example
of an arms race; the visibility benefits are internal while the visibility costs are external. Visibility would thus be another
reason to tax larger vehicles more than smaller vehicles.

10. Note that the concern here is whether weight has a causal effect on collision probabilities. This concern arises
because we consider the policy implications of inducing some drivers to switch to lighter vehicles via a tax. This exogenous
manipulation of vehicle choice will affect collision probabilities only if vehicle weight has a causal effect on collision
probabilities. Weight may also be correlated with the type of driver, which could generate selection bias in our regressions.
We consider this issue separately in Section 6.
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safety equipment, and driver and occupant characteristics. We selected these eight states out of
the 32 states currently participating in the SDS as they report the vehicle identification number
(VIN) for the majority of vehicles in the data set. We purchased data tables from DataOne Software
to match the first 9 digits of the VIN to curb weight data for each vehicle (a vehicle’s curb weight
is its weight with standard equipment and a full tank of fuel, but not loaded with any passengers
or cargo). We therefore observe curb vehicle weight for approximately 64% of the vehicles in our
data set (we confirm in Section 5 that the missing weight data do not appear to bias our estimates).
For analytic purposes, we decompose the data set into three sub-samples, two-vehicle crashes,
three-vehicle crashes, and single-vehicle crashes. The two-vehicle crash data set is the focus of
most of our analyses. It contains 4.8 million vehicles in collisions in which both vehicles have
complete curb weight data.11

One important feature of the SDS data is that accidents only appear in the data set if the police
take an accident report. According to NHTSA documentation, various estimates suggest that only
half of all motor vehicle accidents are police reported. While many of the unreported accidents
are single vehicle accidents, some no doubt involve two vehicles as well. This sampling frame
could affect our estimates if vehicle weight affects the probability of a police report, all other
factors held constant. Serious multivehicle accidents are always reported to the police regardless
of vehicle weight, but vehicle weight could affect the probability that a minor accident is reported
to the police. Unlike the probability of a collision, there is no a priori reason to believe that
vehicle weight must have a positive effect on the probability of a police report. On the one hand,
collisions involving heavier vehicles cause more property damage, all other factors held constant,
because more kinetic energy must be dissipated through deformation of materials. On the other
hand, some heavier vehicles, such as pickup trucks, are more likely to be involved in rugged
work. These trucks may have accumulated more dents, reducing the likelihood that the owners
will report property damage from a minor accident.

If vehicle weight positively affects the reporting probability of minor accidents, then our
estimates will represent a lower bound on the effect of weight on external fatalities. If vehicle
weight negatively affects the reporting probability of minor accidents, however, then our estimates
of the effect of weight on external fatalities could be upwardly biased. To test whether the
“ruggedness” hypothesis affects our results, we estimate our regressions while limiting the sample
to collisions that do not involve any light trucks. This sample restriction does not reduce the
coefficient estimates.12 We also conduct a series of robustness tests in Section 6 that imply that
the sampling frame does not bias our results.

Table 1 presents summary statistics from our two-vehicle collision data set. This data set
contains all collisions involving two light vehicles built after 1980. We define a light vehicle as
any car, pickup truck, SUV, or minivan that weighs between 1500 and 6000 pounds. We exclude
collisions involving heavy trucks. The first two columns report statistics for the entire two-vehicle
collision data set. The mean vehicle weight in this data set is 3076 pounds, and approximately
24.5% of vehicles are light trucks (pickups, SUVs, or minivans). The average model year is 1992,
and the average number of occupants per vehicle is 1.41. The probability of a fatality in each
vehicle is 0.19% (i.e. 0.0019), and the probability of a serious injury in each vehicle is 2.7%.
Alcohol is involved in 8.3% of collisions.

11. The data set contains the population of police-reported accidents for Florida (1989–2005), Kansas (2001–05),
Kentucky (1998–2005), Maryland (1989–99), Missouri (1989–2005), Ohio (1991–2005), Washington (2002–05), and
Wyoming (1998–2005).

12. In the sample that excludes all collisions involving light trucks, the estimated effects are of similar magnitude
to the analogous estimates from the main sample, reported in Table 2. This implies that the “ruggedness” hypothesis is
not upwardly biasing our main results (see Supplementary Appendix Table A1).
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TABLE 1
Summary statistics for two-vehicle collision data set

Base sample Complete covariates sample

Mean Sample size Mean Sample size
(Std dev) (Std dev)

Weight 3,076 lbs 4,849,575 3,113 lbs 2,829,768
(685) (694)

Light truck 24.5% 4,849,575 25.8% 2,829,768
(43.0) (43.8)

Model year 1992 4,849,575 1993 2,829,768
(5.6) (5.7)

Accident year 1998 4,849,575 1999 2,829,768
(4.4) (4.3)

Occupants 1.41 2,608,821 1.45 1,476,441
(0.84) (0.87)

Fatality 0.19% 4,849,575 0.23% 2,829,768
(4.36) (4.83)

Serious injury 2.7% 4,849,575 3.4% 2,829,768
(16.1) (18.0)

Alcohol involved 8.3% 2,753,533 10.0% 1,723,694
(27.6) (30.1)

Notes: Both samples are limited to collisions involving two light vehicles built post-1980. The complete covariates sample
is further limited to collisions in which all covariates in our preferred specification are non-missing

The last two columns of Table 1 report summary statistics for the estimation sample with
complete covariates. This sample is smaller than the overall two-vehicle collision sample because
we drop collisions in which any of the covariates from our preferred specification are missing.
This restriction reduces the sample from 4.8 million observations to 2.8 million. Nevertheless,
the two samples appear similar along most observable measures.

5. SPECIFICATION AND RESULTS

Consider a collision involving two vehicles, Vehicle 1 and Vehicle 2. Suppose that we label
Vehicle 1 as the “striking vehicle” and Vehicle 2 as the “struck vehicle”. These labels are for
expositional purposes only—they do not signify which vehicle may be at fault in the collision.13

The external effects of vehicle weight are given by the effect of striking vehicle weight on the
probability of fatalities in the struck vehicle. The internal effects of vehicle weight are given by
the effect of struck vehicle weight on the probability of fatalities in the struck vehicle. The former
is the quantity of policy interest, but we report results for the latter as well to calculate the effect
of changes in fleet weight on fatalities.

We estimate the conditional expectation of a fatality in the struck vehicle as a function of
striking vehicle weight, struck vehicle weight, and a rich set of covariates. We estimate the
conditional expectation function (CEF) using either a linear probability model (LPM) or a probit.
For robustness, we report estimates for both models.

We specify the linear probability model as follows:

E
[
struck veh fatalityi | striking veh weighti,struck veh weighti, X1i, X2i, Wi,

]
(6)

=β1striking veh weighti +β2struck veh weighti +X1iδ1 +X2iδ2 +Wiδ3

13. The labels are symmetric in that each vehicle enters our data set twice, once as the striking vehicle and once as
the struck vehicle.
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In equation (6), β1 is the coefficient of interest, X1i represents a set of characteristics pertaining
to the striking vehicle in collision i, X2i represents a set of characteristics pertaining to the struck
vehicle in collision i, and Wi represents a set of collision-specific characteristics. The probit model
modifies equation (6) to include the link function �, the normal CDF. The marginal effect of
striking vehicle weight then varies with striking vehicle weight. For comparability with the LPM
results, for each probit regression we report the average marginal effect across all observations
included in that regression.14

5.1. Effects of vehicle weight on fatalities and serious injuries

Table 2 presents results from estimating the LPM and probit on the two-vehicle collision data
set. The sample includes all accidents for which there is complete vehicle weight data for both
vehicles; analyses restricted to states with low rates of missing weight data suggest that this
constraint does not bias our results.15 Each vehicle appears in the two-vehicle collision data
set twice, once as the struck vehicle and once as the striking vehicle. We therefore cluster the
standard errors at the collision level to account for correlation between observations pertaining
to the same collision. Alternatively, clustering at the vehicle model level for both the striking and
struck vehicles does not affect our conclusions.

The first and second columns in Table 2 include the following covariates: vehicle curb weight,
light truck indicators, and year fixed effects. A striking vehicle and struck vehicle version of each
of the first two variables is included. The first column implies that a 1000 pound increase in weight
in the striking vehicle is associated with a statistically significant 0.09 percentage point increase
in the probability of a fatality in the struck vehicle (t =22.0). This coefficient represents a 46%
increase over the average probability of a fatality in a struck vehicle in this sample (0.19%). In
comparison, a 1000 pound increase in weight in the struck vehicle is associated with a smaller
0.05 percentage point decrease in the probability of a fatality in the struck vehicle (t =−11.8).
Striking light trucks increase the probability of a fatality in the struck vehicle by 0.12 percentage
points (62% of the sample mean), even after controlling for striking vehicle weight (t =19.5). The
results from the probit model in column (2) display z-statistics that are similar to the t-statistics in
column (1), and the average marginal effect generated by the probit model is of similar magnitude
to the LPM coefficient (0.08 percentage points versus 0.09 percentage points).

Subsequent columns in Table 2 add additional covariates to the regressions. Columns (3) and
(4) add controls for rain, darkness, day of week (weekday versus weekend), interstate highway, a
quadratic in model year for each vehicle, and year, hour, and county fixed effects. The estimated
effect of striking vehicle weight changes little in both the LPM and probit models. Columns (5)
and (6) add controls for any seat belt usage, a quadratic in driver age, indicators for drivers under
21 or over 60, and indicators for male drivers or young male drivers. A striking vehicle and struck

14. Some of our probit regressions include fixed effects, raising the possibility of inconsistency due to the incidental
parameters problem. However, in most cases we have many observations for each fixed effect, and as shown in Fernandez-
Val (2009), the incidental parameters problem generates a trivial degree of bias in the probit model when estimating
marginal effects (which are our quantities of interest).

15. Weight data are missing for vehicles for which we do not have VINs. The percentage of vehicles with missing
weight data ranges from 17.4% (Ohio) to 54.5% (Maryland). When estimating our main statistical models on the four
states with the lowest rates of missing weight data (Kentucky, Ohio, Washington, and Wyoming), we find that an additional
1,000 pounds of striking vehicle weight increases the probability of a fatality in the struck vehicle by 46–51%. When
estimating the same models on the four states with highest rates of missing weight data (Florida, Kansas, Maryland,
and Missouri), we find that an additional 1,000 pounds of striking vehicle weight increases the probability of a fatality
in the struck vehicle by 44%. The rate of missing weight data thus appears to have little impact on our estimates (see
Supplementary Appendix Table A2).
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vehicle version of each of these variables is included. The inclusion of these driver characteristics
has minimal impact on the primary coefficient of interest (striking vehicle weight). They do,
however, increase the magnitude of the struck vehicle weight coefficient to −0.10 percentage
points (t =−20.2). It is now identical in magnitude to the striking vehicle weight coefficient.

Column (7) of Table 2 adds city fixed effects and is our preferred specification. City fixed
effects should absorb any geographic heterogeneity in fatality rates that could be correlated with
average vehicle weight. This issue would arise if, for example, heavy vehicles clustered in rural
areas and these areas had deadlier accidents due to a prevalence of undivided highways or a
sparseness of hospitals. At this point there are too many regressors to reliably estimate a probit
model, and for many cities the city fixed effect perfectly predicts the fatality indicator, forcing the
city to be dropped. We thus estimate only linear probability models in columns (7) through (10).
The addition of city fixed effects has little impact on the coefficient on striking vehicle weight,
changing it from 0.10 percentage points to 0.11 percentage points (t =18.3). This coefficient
represents a 47% increase over the average probability of a fatality in a struck vehicle in this
sample.16

Comparing the striking vehicle weight coefficient (β1) and struck vehicle weight coefficient
(β2) in columns (5) or (7) suggests that they may be of opposite sign but equal magnitude. Indeed,
we cannot reject the hypothesis that β2 =−β1 in either column (5) or column (7). Column (8)
estimates the same specification as column (7) but restricts β2 to equal −β1. This specification
corresponds to our theoretical model; it imposes the assumption that weight only matters in a
relative sense. Imposing this restriction has little impact on the estimates; a 1000 pound increase
in striking vehicle weight now increases the probability of a fatality in the struck vehicle by 0.10
percentage points (t =26.0).

Column (9) estimates the same specification as column (7) but limits the sample to observations
for which we have data on the number of occupants per vehicle and the seat belt usage of
each occupant (two controls we add in the next column). This restriction shrinks the sample in
half and reduces the coefficient on striking vehicle weight to 0.07 percentage points (t =10.8).
However, the ratio of the coefficient to the average fatality rate in the sample remains stable
(49%). The change in the coefficient simply reflects the fact that the restricted sample contains
states with a lower threshold for reporting accidents, and thus a lower fatality rate per reported
accident. Column (10) adds controls for the number of occupants per vehicle and seat belt
usage rate of these occupants. The coefficient on striking vehicle weight is unchanged from
column (9).17

The results in Table 2 suggest that selection bias has little impact on the striking vehicle weight
coefficient but may affect the struck vehicle weight coefficient. In particular, the addition of driver
characteristics in columns (5) and (6) notably impacts the struck vehicle weight coefficient but
has little impact on the striking vehicle weight coefficient. When adding covariates one at a time,
we find that almost all of the change in the struck vehicle weight coefficient between columns
(4) and (6) can be attributed to the addition of the controls for driver age. The patterns suggest
that older drivers drive heavier vehicles and that older drivers are more susceptible to dying in
crashes. Since there is little correlation between the age of the struck vehicle’s driver and the

16. An alternative question is whether the effect of weight in rural areas differs from its effect in urban areas. When
we separate the Florida sample (which has a rural/urban indicator) into rural and urban areas, we do not find a statistically
significant difference in the proportionate effect of weight across the two areas.

17. We experimented with flexibly controlling for manufacturer’s suggested retail price (MSRP) as a proxy for driver
wealth. This does not affect our coefficient estimates. In the Florida sample we also experimented with adding controls
for drivers’ insurance status, alcohol involvement, and negligent driving. These controls do not affect our coefficient
estimates.
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weight of the striking vehicle, however, the addition of driver age controls has no impact on
the striking vehicle weight coefficient.18 Stated simply, heavy vehicles do not “seek out” elderly
drivers to crash into.19

The results in Table 2 also suggest that the external risk posed by light trucks is not due
solely to their heavy weight. The coefficient on the indicator for whether the striking vehicle is a
light truck is positive and statistically significant in every column. In our preferred specification,
column (7), the coefficient implies that being struck by a light truck increases the probability of a
fatality by 0.09 percentage points (t =10.3), even after conditioning on striking vehicle weight.
This represents a 40% increase over the average fatality rate in the sample. In comparison, if we
do not control for vehicle weight, then the light truck coefficient doubles to 0.18 percentage points
(i.e. 0.0018). This effect is roughly similar in magnitude to the external effects of light trucks
in two-vehicle collisions that White (2004) and Anderson (2008) estimate. The additional risk
posed by light trucks may be due to the stiffness of their frames or their height incompatibility
with other vehicles (Hakim, 2003). However, the robustness tests that we perform in Section 6
for the vehicle weight coefficient do not apply to the light truck coefficient. Thus we cannot rule
out the possibility that some of the light truck coefficient may represent driver selection effects;
i.e., consumers that purchase light trucks may drive in an aggressive manner that generates
particularly severe collisions. For this reason we do not incorporate the light truck coefficient
when calculating the total externality across all vehicles in Section 7. If we were to incorporate
the light truck coefficient, the total externality would be even larger. In the context of CAFE
standards, however, we do consider the potential risks that light trucks pose.

While 90% of multivehicle collisions involve two vehicles, 9% involve three vehicles, and
1% involve four or more vehicles (a three or four vehicle collision is one in which three or four
vehicles are damaged in the same collision, though each vehicle need not have collided with
every other vehicle in the collision). Adding 1000 pounds to a vehicle in a three-vehicle collision
should increase the risk of a fatality in the other two vehicles by less than 47% each (our preferred
estimate from the two-vehicle collision data set). This attenuation occurs because the extra mass
of the first vehicle is, in expectation, now distributed across two other vehicles rather than one
other vehicle. We estimate the relationship between vehicle weight and fatalities in three-vehicle
collisions in Table 3. For expositional purposes, assume that Vehicle 1 is the struck vehicle and
that Vehicles 2 and 3 are the striking vehicles. In Table 3, the striking vehicle weight coefficient
represents the average effect of a 1000 pound increase in the weight of either Vehicle 2 or 3
(but not both) on the probability of a fatality in Vehicle 1. The striking vehicle weight coefficient
is positive and statistically significant in all specifications, and the magnitude of the coefficient
ranges from 28% to 42% of the average probability of a fatality. Our preferred estimate, column
(7), implies that a 1000 pound increase in one vehicle raises the probability of a fatality in either
of the other two vehicles by 35%.

Table 4 presents results from estimating versions of the LPM and probit in which the dependent
variable is the presence of serious injuries in the struck vehicle. The regressions are analogous to
those in Table 2, but the dependent variable has changed from any fatalities to any serious injuries.
The striking vehicle weight coefficients (or marginal effects, for the probit regressions) in Table 4
are approximately 6 times larger than the corresponding coefficients in Table 2. This difference

18. A related question is whether dangerous driver characteristics modify the striking vehicle weight effect. We
tested whether the effect of striking vehicle weight differs when the striking vehicle is driven by a young male or someone
over the age of 60. We did not find statistically significant differences.

19. A related concern is that fatalities may consist disproportionately of elderly drivers with below-average VSLs.
However, in a subsample with the most detailed data, accounting for age-specific VSLs changes our estimates by only
5.5%. Data limitations prevent us from incorporating age-specific VSLs into our main regressions.
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arises because the probability of a serious injury in this sample is roughly 15 times higher than
the probability of a fatality. In the preferred specification, column (7), a 1000 pound increase
in striking vehicle weight raises the probability of serious injuries in the struck vehicle by 0.7
percentage points (t =32.7). This figure represents 20% of the average probability of a serious
injury in this sample.20 Drawing on our discussion of liability insurance above, it is not clear
what proportion of serious injuries that represent external costs is internalized through existing
insurance contracts. We therefore focus on fatalities for the remainder of the article, which is a
conservative approach.

5.2. Non-linear effects of vehicle weight

The linear specifications in Table 2 may obscure significant nonlinearity in the relationship
between vehicle weight and fatalities. As our model in Section 3 establishes, nonlinearity in the
relationship between weight and fatalities can have important implications. First, the marginal
externality may vary with a vehicle’s weight. Second, if weight has nonlinear effects, then the
marginal externality may change if the fleet’s weight distribution changes. Finally, the effect of the
fleet’s weight distribution on total fatalities depends on nonlinearity in the relationship between
weight and fatalities. We focus on the first implication in this section and discuss the latter two
implications in Section 7.

Figure 1 presents the relationship between striking vehicle weight and struck vehicle fatalities
for three specifications. The first specification is linear in striking vehicle weight and corresponds
to column (7) of Table 2. The solid line in Figure 1 plots the predictions from this specification;
they are linear by construction.21 The second specification relaxes the linearity assumption. In
this specification, striking vehicle weight and struck vehicle weight each appear as 5th order
polynomials in the estimating equation, and we include an interaction between striking vehicle
and struck vehicle weight as well. The dashed line in Figure 1 plots the predictions from this
specification; they closely track the predictions from the linear specification but diverge above
4000 pounds. However, the confidence intervals become large at high weights, and we cannot
reject the hypothesis that the two specifications yield similar predictions above 4000 pounds.
The third specification models fatalities in the struck vehicle as a 5th order polynomial of the
difference in vehicle weights:

struck veh fatalityi =
5∑

j=1

βj(striking weighti −struck weighti)
j +X1iδ1 +X2iδ2 +Wiδ3 +εi (7)

The dotted line in Figure 1 plots the predictions from this specification; they closely track the
predictions from the linear specification.22 We find no evidence that struck vehicle weight has a

20. It is notable that weight’s effect on serious injuries (20%) is smaller than weight’s effect on fatalities (47%).
A major finding in the crash-safety literature is that �v—the change in velocity—is the most important determinant
of crash fatalities (Joksch, 1993). This implies that relative weight has a protective effect in multi-vehicle collisions
because the heavier vehicle experiences lower �v; if both vehicles are traveling at similar speeds, the heavier vehicle
continues to travel forward after the initial collision, while the lighter vehicle actually reverses direction. �v is also an
important determinant of injuries. However, �v’s effect on injuries is less than its effect on fatalities. Elvik et al. (2004)
conduct a meta-analysis of studies relating crash velocities, fatalities, and injuries. They find that, on average, fatalities
are proportional to (�v)4.0 while serious injuries are proportional to (�v)2.4. The result that the fatality effect is larger
than the injury effect is thus broadly consistent with the crash–safety literature.

21. In Figures 1 and 2 we set regressors that are not functions of striking vehicle weight to their sample means.
22. At each striking vehicle weight w, we form predictions from equation (7) by computing the average difference

in vehicle weights for collisions in which the striking vehicle weighs w pounds. We do the same for the average square,
cube, quartic, and quintic of difference in vehicle weights.
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Figure 1

Relationship between striking vehicle weight and struck vehicle fatalities

protective effect independent of its effect through relative weight; if we include struck vehicle
weight as a separate regressor in equation (7), it has a coefficient of −0.003 percentage points
(t =−0.4). Overall the results in Figure 1 suggest that the relationship is roughly linear over the
support of striking vehicle weight, though it appears somewhat convex for very light striking
vehicles (sub-2500 pounds).23

Figure 2 presents the relationship between struck vehicle fatalities and the difference in vehicle
weights. The solid line plots the predictions from estimating equation (7) over the support of the
difference in vehicle weights. The marginal effect of striking vehicle weight increases from −2000
pounds to −500 pounds (i.e. when the struck vehicle outweighs the striking vehicle by 500 to
2000 pounds) and is roughly constant thereafter. The convexity in Figure 2 implies concavity
in f , the private safety benefit of relative weight, from our theoretical model. The relationship
does not flatten at high weight differences (e.g. +2000 pounds), implying that adding weight to
the heavier vehicle continues to increase the risk in the lighter vehicle even in cases of severe
mismatch. Nevertheless, the convexity at weight differences below −500 pounds has a modest
impact on the marginal externality for lighter vehicles (see Figure 1) because, even among sub-
2500 pound striking vehicles, the majority of collisions involve a weight difference between
−700 and +2000 pounds.

6. ALTERNATIVE SOURCES OF IDENTIFICATION AND FALSIFICATION TESTS

The results in Section 5 demonstrate a strong relationship between striking vehicle weight and
struck vehicle fatalities. The robustness of this relationship to the inclusion of a rich set of

23. In a previous version of this article we also estimated more flexible versions of the probit model. A probit in
which weight enters the normal CDF linearly fits the data poorly, as it is an inherently non-linear model that forces the
marginal effect of weight to steeply increase in accidents involving heavy striking vehicles. A probit in which weight
enters the normal CDF as a higher order polynomial approximates the LPM specifications we present in this figure.
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Figure 2

Relationship between difference in vehicle weights and struck vehicle fatalities

accident and driver characteristics, as well as very fine geographic fixed effects, suggests that the
striking vehicle weight coefficients represent causal effects of weight on fatality risk. However,
two potential sources of upward bias seem particularly plausible. First, driver selection may
bias the coefficient estimates if heavier vehicles attract aggressive drivers who get into deadlier
accidents. Note, however, that only selection of drivers who get into deadlier accidents, rather
than drivers who get into more accidents, could bias our estimates.24 Second, the sampling
frame might bias the coefficient estimates if minor collisions involving heavier vehicles are less
likely to be reported to the police, all other factors held constant.25 To test whether either of
these factors could bias our results, we conduct three exercises. First, we estimate the effect
of striking vehicle weight on fatalities using within-model changes in vehicle weight that
occur when models are refreshed. Second, we estimate the effect of striking vehicle weight
on fatalities using striking vehicle occupants as an additional source of variation in weight.
Finally, we implement a series of falsification tests that we benchmark against engineering safety
estimates.

24. Because our estimates are conditional on a collision occurring, only specific types of driver selection can
generate bias. Selection of “careless” drivers who simply get into more accidents of the same expected severity would not
bias our results. It would increase the number of times we observe these drivers in the sample, but it would not increase
the probability that someone dies in a collision conditional on the collision occurring. Selection of “aggressive” drivers
who get into more severe accidents could bias our results, however. These drivers could increase the probability that
someone dies in a collision conditional on the collision occurring.

25. Note that, unlike the struck vehicle weight coefficients, striking vehicle weight coefficients are unlikely to be
biased by any correlation between vehicle weight and vehicle safety features. It is plausible that heavier vehicles may
be more or less likely to have safety features such as airbags, side impact protection beams, and unibody construction.
However, these safety features are much more helpful to the striking vehicle’s own occupants than they are to the occupants
of other vehicles that the striking vehicle hits.
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6.1. Vehicle model fixed effects results

To establish the robustness of our results, we explore two alternative sources of identification.
Our first alternative leverages within-model changes in vehicle weight to estimate the effect
of striking vehicle weight on fatalities. To implement this design, we include vehicle model
fixed effects for the striking vehicle in our preferred specification. The effect of striking vehicle
weight on fatalities is thus identified on the basis of changes in vehicle weight that occur when
a vehicle model is refreshed. This design minimizes the impact of driver selection as long as the
composition of customers for a particular vehicle model remains relatively stable when the model
is refreshed.

A key concern with including vehicle model fixed effects is that they may absorb almost
all of the variation in striking vehicle weight, leaving little variation remaining to identify the
effect of interest. However, summary statistics imply that there is sufficient within-model weight
variation to identify an effect. For example, the overall standard deviation in vehicle weight is
520 pounds, while the within-model standard deviation in vehicle weight is 280 pounds.26 We
observe within-model deviations in vehicle weight as large as 1025 pounds in the data (this is
the 99th percentile of within-model deviations in vehicle weight). Substantial variation in vehicle
weight thus remains even after including the vehicle model fixed effects.

Table 5 reports estimates from models that include vehicle model fixed effects (as well as
year fixed effects and all other controls from column (5) of Table 2). Column (1) presents results
from our preferred specification estimated on the sample for which we have complete vehicle
model data. The sample size is substantially smaller than our main analytic sample because
only four states—Kentucky, Maryland, Ohio, and Wyoming—report detailed vehicle model data.
In this subsample, a 1000 pound increase in striking vehicle weight is associated with a 47%
increase in the probability of a fatality in the struck vehicle (0.06 percentage points, t =7.3).
This effect is consistent with the estimates from Section 5. Column (2) presents results from the
same specification with vehicle model fixed effects added. A 1000 pound increase in striking
vehicle weight is now associated with a 58% increase in the probability of a fatality in the
struck vehicle (0.07 percentage points, t =4.5). The correspondence between the two coefficient
estimates suggests that driver selection does not seriously bias our results, and we cannot reject
the hypothesis that both coefficients converge to the same value.

One issue with the vehicle model fixed effects specification is that our sample contains vehicles
constructed from 1981 to 2006. In an extreme case, the fixed effects regression could compare a
1981 Honda Accord to a 2006 Honda Accord. These two model years differ in weight by over
1000 pounds, but it is likely that the owners of 1981 Honda Accords are very different from the
owners of 2006 Honda Accords. To ensure that we only compare vehicles of roughly similar
vintage, we interact the vehicle model fixed effects with four model-year group fixed effects:
1986–90, 1991–95, 1996–2000, and 2000–06 model years (the omitted category is 1981–85). We
include the interacted set of fixed effects as controls.

Column (3) reports results from a specification that controls for the full set of interactions
between the vehicle model fixed effects and the model–year group fixed effects. In this
specification a 1,000 pound increase in vehicle weight is associated with a 57% increase in
the probability of a fatality in the struck vehicle (0.07 percentage points, t =3.9). This estimate is
almost identical to the estimate in column (2), and the standard error is only 13% larger. The drop

26. These figures represent standard deviations of the portion of vehicle weight that is not explained by the
other controls in our regressions. They are thus smaller than the raw standard deviation of vehicle weight reported
in Table 1. It is important to remove the portion of vehicle weight that is explained by the other controls in our regressions
because this variation is not used to identify the effect of vehicle weight regardless of whether we include model fixed
effects.
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TABLE 5
Effect of vehicle weight on fatalities using alternative sources of identification

Dependent variable: presence of fatalities in struck vehicle
(1) (2) (3) (4) (5)

Occupant weight in striking 0.00062
vehicle (1000s of lbs) (0.00026)

Curb weight of striking vehicle 0.00058 0.00072 0.00071 0.00064 0.00063
(1000s of lbs) (0.00008) (0.00016) (0.00018) (0.00006) (0.00006)

Percentage effect of 1000 lb increase 47% 58% 57% 48% 46%
in striking vehicle weight

Specification OLS OLS w/model FEs OLS w/model by OLS OLS
model-year-group FEs

Sample size 1,011,982 1,011,982 1,011,982 1,475,762 1,475,762

Notes: Each column represents a separate regression. The estimation sample is limited to collisions involving two vehicles.
Parentheses contain standard errors clustered at the collision level. All regressions include the following right-hand-side
variables: weight of each vehicle, a quadratic in model year for each vehicle, indicators for whether each vehicle is a light
truck, rain, darkness, day of week (weekday versus weekend), Interstate highway, quadratics in driver age, indicators
for drivers under 21 or over 60, indicators for male drivers and young male drivers, indicators for any seat belt usage
in the vehicle, and year, hour, and county fixed effects. OLS regressions with model fixed effects contain fixed effects
for each vehicle model. OLS regressions with model by model-year-group fixed effects contain fixed effects for each
vehicle model interacted with model year indictors for the 1986–90, 1991–95, 1996–2000, and 2001–09 model years.
Regressions in columns (4) and (5) contain city fixed effects. Occupant weight in the striking vehicle is calculated as the
number of occupants in the striking vehicle times 164 lbs per occupant.

in statistical power from adding the model–year group interactions is modest for two reasons.
First, almost 60% of vehicles in our sample are built between 1989 and 2000. Second, vehicle
model identifiers typically change over long periods of time, so a single vehicle model fixed effect
often does not span two decades. As a result, the average difference in model year between two
randomly selected vehicles is only 3.8 years after controlling for the vehicle model fixed effects.
The specification in column (2) thus primarily compares vehicles of similar vintage even without
including model-year group interactions.

6.2. Occupant weight results

Our second alternate source of identification leverages the number of occupants in the striking
vehicle as an additional source of variation in striking vehicle weight. The number of occupants
in the striking vehicle directly affects the striking vehicle’s weight, so we estimate the regression:

struck veh fatalityi =α1striking veh occupant weighti (8)

+α2striking veh curb weighti +X1iγ1 +X2iγ2 +Wiγ3 +εi

In this regression the striking vehicle’s occupant weight equals the number of occupants in the
striking vehicle multiplied by 164 pounds (the average weight of an additional occupant circa
2000).27 The coefficient α1 represents the effect of additional striking vehicle occupant weight on

27. We calculate this figure as follows. First, for the subset of accidents for which we have detailed occupant
characteristics, we tabulate the share of additional occupants that are male adults, female adults, male children, and
female children. We find that 21.6% of additional occupants are male adults, 39.2% are female adults, 19.2% are male
children, and 20.0% are female children. Using national statistics on body weight by gender and age we then compute
the average weight of an additional occupant as 0.216*190 lbs + 0.392*163 lbs + 0.192*110 lbs + 0.200*114 lbs = 149
lbs (Ogden et al., 2004). Finally, we add 15 lbs per occupant to account for clothing, outerwear, and personal belongings
(149 lbs + 15 lbs = 164 lbs).
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struck vehicle fatalities. It is worth emphasizing that the regression controls for the curb weight
of each vehicle (i.e. each vehicle’s weight absent any passengers or cargo). Identification of α1
thus comes from variation in the number of occupants in the striking vehicle after controlling for
the curb weight of the striking vehicle. This means that the variation used to identify α1 is, by
the properties of linear regression, orthogonal to the variation in curb weight (i.e. the variation
that we use in Section 5).

Nevertheless, it is not obvious that the number of occupants in the striking vehicle is
uncorrelated with any other factors that affect fatalities in the struck vehicle. It is possible that, even
after controlling for vehicle curb weight and other characteristics, drivers who carry additional
occupants in their vehicles drive more aggressively than drivers who do not carry additional
occupants. If this were true, then our estimates of α1 would be biased upward. We thus do not
interpret our estimates of α1 as being more robust than our estimates of α2 (which correspond
to the estimates reported in Section 5). Instead, we recognize that the identifying variation for
α1 is orthogonal to the identifying variation for α2 (a fact guaranteed by the inclusion of curb
weight as a control in the regression). If the regression produces similar estimates of α1 and
α2, this suggests that both coefficients are estimating causal effects. If the regression produces
very different estimates of α1 and α2, this suggests that one (or both) estimates may be biased.
This comparison is similar in spirit to general overidentification tests that test whether different
instruments generate similar coefficient estimates.

The last two columns of Table 5 report coefficients from the sample with occupant data. The
occupant data sample is approximately half the size of our main analytic sample because data
on the number of occupants is not available in every state. Column (4) presents results from
estimating the preferred OLS specification (column (7) of Table 2) on the occupant data sample.
A 1000 pound increase in striking vehicle weight is associated with a statistically significant
0.064 percentage point increase in the probability of a fatality in the struck vehicle (t =10.7).
This coefficient represents a 48% increase over the average probability of a fatality in a struck
vehicle, which is consistent with the results in Section 5. Column (5) presents results from
estimating equation (8). The first reported coefficient is α1, the coefficient on occupant weight
in the striking vehicle. An additional 1000 pounds of occupant weight in the striking vehicle is
associated with a statistically significant 0.062 percentage point increase in the probability of a
fatality in the struck vehicle (t =2.4). This coefficient represents a 46% increase over the average
probability of a fatality in the struck vehicle. It is almost identical to the striking vehicle curb
weight coefficient in column (4). The second reported coefficient is α2, the coefficient on striking
vehicle curb weight. This coefficient is 0.063 percentage points (t =10.5), which is virtually
identical to α1. The correspondence between the two coefficients increases our confidence in
both sources of identifying variation.

6.3. Falsification tests

Suppose that heavier vehicles pose no additional risk to other vehicles, and that the estimates
reported in Section 5 simply reflect the possibility that drivers of heavier vehicles are more
aggressive (regardless of vehicle weight) or that heavier vehicles are less likely to generate police
reports. In that case, there should be a strong positive correlation between vehicle weight and
fatalities or injuries when analysing two-vehicle collisions between vehicles of the same weight.
These accidents therefore provide an opportunity to test whether driver selection bias or sampling
frame bias are generating our results.

It is possible, however, that heavier vehicles are safer than lighter vehicles. In that case, a
positive driver selection effect might be mitigated by a negative weight effect. Put simply, even
if drivers of heavier vehicles drive aggressively, our falsification test might generate a small

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article/81/2/535/1517632 by guest on 25 Septem

ber 2020



[11:54 18/4/2014 rdt035.tex] RESTUD: The Review of Economic Studies Page: 557 535–571

ANDERSON & AUFFHAMMER POUNDS THAT KILL 557

TABLE 6
Relationship between vehicle weight and NHTSA crash test performance

Dependent variable HIC HIC>700 HIC HIC>700
(1) (2) (3) (4)

Weight of vehicle 17.7 0.024 38.2 0.018
(16.1) (0.018) (43.5) (0.040)

Percentage effect of 1000 lb increase 3.0% 8.7% 6.7% 7.2%
Sales share weighted Yes Yes
Sample size 4788 4788 2847 2847

Notes: Each column represents a separate regression. The estimation sample in the first two columns contains all NHTSA
vehicle-to-barrier frontal crash test results. The estimation sample in the last two columns contains only crash tests
involving vehicles for which we have sales share data. Parentheses contain standard errors clustered by vehicle make. All
regressions include the following right-hand-side variables: weight of tested vehicle, a quadratic in model year, a light
truck indicator, and a quadratic in collision speed. Sales share weighted regressions are weighted by the tested vehicle’s
sales share for a given year.

coefficient because the heavier vehicles are fundamentally safer. We therefore benchmark the
results of our falsification tests against the results of NHTSA crash tests. NHTSA crash tests
entail colliding a vehicle with a concrete barrier; they are meant to simulate the results of a
collision with a stationary object or a head-on collision with another vehicle of similar weight.28

The primary outcome in the NHTSA crash test is the Head Injury Criterion (HIC). This variable is
derived from an accelerometer mounted on the crash test dummy’s head and measures the forces
that the head is exposed to. A higher HIC value corresponds to a higher probability of severe or
fatal head injury.

Table 6 presents results from regressions of HIC scores on vehicle weight using the NHTSA
crash test data. All regressions include as controls a light truck indicator, a quadratic in vehicle
model year, and a quadratic in collision speed. The estimation sample in the first two columns
contains all NHTSA vehicle-to-barrier frontal crash tests conducted from 1980 to 2009 (the mean
year is 1997). Column (1) reports regression results when the dependent variable is HIC. The
results indicate that an additional 1000 pounds of vehicle weight is associated with a statistically
insignificant 3% increase in HIC (17.7 points). Column (2) reports regression results when the
dependent variable is an indicator for whether HIC exceeds 700. This threshold is of interest
because it represents the point at which there is a significant (5%) chance of severe brain injury
(Mertz et al., 1997). The results indicate that an additional 1000 pounds of vehicle weight is
associated with a statistically insignificant 8.7% increase in the probability that HIC exceeds 700
(2.4 percentage points). The composition of vehicles that NHTSA tests, however, is not identical
to the composition of vehicles on the roadways. To account for this, we estimate regressions
in which each test result is weighted by the sales share of the tested vehicle (Ward’s Reports
Incorporated, 1994). Columns (3) and (4) report results from these regressions. The sample
size falls because we do not have sales share data for every tested vehicle, but the results are
qualitatively unchanged. An additional 1000 pounds of vehicle weight is associated with small,
statistically insignificant increases in HIC or the probability that HIC exceeds 700. Overall, there
is a weak positive relationship between vehicle weight and HIC values. The point estimates
suggest that an additional 1000 pounds of vehicle weight could raise the fatality rate by 3% to

28. Many real world collisions involve side or rear impacts. In the Florida SDS data, we find that rear impacts are
the safest, with a fatality rate that is 30% of the average, frontal impacts are the next safest, with a fatality rate that is 77%
of the average, and side impacts are the most dangerous, with a fatality rate that is 363% of the average. However, in
all collisions types the effect of adding 1,000 pounds of striking vehicle weight ranges from 37% to 45% of the average
fatality rate for that collision type.
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TABLE 7
Effect of vehicle weight in collisions between two equal weight vehicles

Dependent variable: presence of fatalities in struck vehicle
(1) (2) (3) (4)

Average vehicle weight −0.00004 −0.00110 0.00003 −0.00181
in collision (1000s of lbs) (0.00017) (0.00108) (0.00023) (0.00137)

Percentage effect of 1000 lb –2% –19% 2% –35%
increase in average weight

Max weight difference between vehicles 200 lbs 200 lbs 100 lbs 100 lbs
Frontal collisions only Yes Yes
Sample size 539,350 39,242 288,988 20,488

Notes: Each column represents a separate regression. The estimation sample is limited to collisions in which the difference
in weight between the two vehicles is less than 200 lbs (first two columns) or 100 lbs (last two columns). Parentheses
contain standard errors clustered at the collision level. Effects of a 1000 lb increase in striking vehicle weight are computed
as the average effect of a 1000 lb increase in weight across all observations included in the regression. All regressions
include the following right-hand-side variables: weight of each vehicle, a quadratic in model year for each vehicle,
indicators for whether each vehicle is a light truck, rain, darkness, day of week (weekday versus weekend), Interstate
highway, quadratics in driver age, indicators for drivers under 21 or over 60, indicators for male drivers and young male
drivers, indicators for any seat belt usage in the vehicle, and year, hour, and city fixed effects.

9%, but none of the coefficients are statistically significant. We thus expect a weak relationship
between vehicle weight and fatalities in collisions between two equal weight vehicles if our
research design is sound.

Table 7 presents results from regressions in which the estimation sample consists of collisions
involving two vehicles of similar weight—the difference in vehicle weight cannot exceed 200
pounds. In each regression, an indicator for fatalities in the struck vehicle is regressed on the
average weight of the two vehicles and the set of controls from our preferred specification. Column
(1) indicates that an increase of 1000 pounds in average vehicle weight predicts a statistically
insignificant 2% decrease in the probability of a fatality (0.00 percentage points). Column (2)
restricts the sample to head-on collisions between two vehicles of the same weight, the type of
collision simulated by NHTSA. In this sample, an increase of 1000 pounds in average vehicle
weight predicts a statistically insignificant 19% decrease in the probability of a fatality (0.11
percentage points).29 Columns (3) and (4) replicate columns (1) and (2) but restrict the sample
so that the difference in vehicle weight cannot exceed 100 pounds. The estimates remain small
or negative and statistically insignificant, but are less precisely estimated.

Overall, the estimates in Table 7 indicate that there is a weak relationship between vehicle
weight and fatalities in collisions between two vehicles of equal weight, and we cannot reject the
hypothesis that this relationship is zero. This finding is consistent with NHTSA crash test results
(Table 6) and inconsistent with the hypothesis that driver selection bias or sampling frame bias is
generating the results in Section 5. The most precise estimate in Table 7—column (1)—suggests
that increasing average vehicle weight by 1000 pounds decreases the fatality rate by 2%. This
figure is not statistically different from the coefficients implied by the NHTSA crash test data.
In contrast, if the relationship between striking vehicle weight and struck vehicle fatalities were
generated by driver selection bias or sampling frame bias, then we would expect a large positive
coefficient on average vehicle weight when two vehicles of equal weight collide. The preferred
estimate from Section 5 indicates that a 1000 pound increase in striking vehicle weight raises
the probability of a fatality in the struck vehicle by 47%. If this coefficient represented driver

29. The average probability of a fatality is much higher in column (2) than in column (1) because head-on collisions
are more dangerous than the average collision.
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TABLE 8
Effect of vehicle weight on fatalities in single-vehicle collision

Dependent variable: presence of fatalities in struck vehicle
(1) (2) (3) (4)

Weight of vehicle 0.00044 0.00030 0.00153 0.00434
(1000s of lbs) (0.00026) (0.00048) (0.00655) (0.01330)

Effect of 1000 lb increase in vehicle weight 0.00044 0.00030 0.00005 0.00014
percent increase over sample mean 3% 2% 0% 1%

Collision type 1 vehicle 1 vehicle, frontal 1 vehicle 1 vehicle, frontal
Specification OLS OLS Probit Probit
Sample size 774,790 224,696 916,766 223,236

Notes: Each column represents a separate regression. The estimation sample is limited to collisions involving a single
vehicle. Parentheses contain robust standard errors. Effects of a 1000 lb increase in vehicle weight are computed as the
average effect of a 1000 lb increase in weight across all observations included in the regression. All regressions include
the following right-hand-side variables: weight of vehicle, a quadratic in model year, indicators for whether a vehicle is a
light truck, rain, darkness, day of week (weekday versus weekend), Interstate highway, quadratic in driver age, indicators
for drivers under 21 or over 60, indicators for male drivers and young male drivers, indicators for any seat belt usage in
the vehicle, and year, hour, and either city fixed effects (OLS) or county fixed effects (probit).

selection bias, and if two aggressive drivers were twice as dangerous as one aggressive driver,
then we might expect a 1000 pound increase in both vehicles weights to raise the probability of a
fatality by 94% (2*47 = 94). However, no coefficient in Table 7 is above 2%, and we can reject
any effect above 12% in either column (1) or (2) at the 5% significance level.

As an additional set of falsification tests, we examine the relationship between vehicle weight
and fatalities in collisions involving a single vehicle. If drivers of heavier vehicles are more
aggressive, then we expect a strong positive relationship between vehicle weight and fatalities
in these collisions. Table 8 presents results for single-vehicle collisions. In these collisions, we
regress a fatality indicator on vehicle weight and other controls. The results in column (1) pertain
to all single-vehicle collisions; a 1000 pound increase in vehicle weight is associated with a 3%
increase in the probability of a fatality (0.04 percentage points).30 Column (2) pertains to single-
vehicle frontal collisions, the type of collision simulated by NHTSA. A 1000 pound increase in
vehicle weight is associated with a 2% increase in the probability of a fatality (0.03 percentage
points). Columns (3) and (4) present results that are analogous to columns (1) and (2) but are
estimated using a probit specification instead of a linear probability model.31 In both columns,
a 1000 pound increase in vehicle weight is associated with an increase of less than 1% in the
probability of a fatality. In all columns, the percentage effects fall close to the range implied by
the NHTSA crash test data, further suggesting no substantial bias due to driver selection.

7. POLICY IMPLICATIONS

The econometric evidence demonstrates that the impact of heavier striking vehicles on fatalities in
struck vehicles is statistically significant and robust to the inclusion of an extensive set of vehicle,

30. The raw magnitude of the coefficients is much larger in Table 8 than in Table 7 because the fatality rate
in single-vehicle collisions is approximately 7 times higher than the fatality rate in two-vehicle collisions. This occurs
because observed single-vehicle collisions tend to be more severe; drivers have no incentive to report minor single-vehicle
collisions to their insurers or the police.

31. The sample size increases in column (3) relative to column (1) because (3) includes county fixed effects while
(1) includes city fixed effects (which are missing for some observations). The probit estimator does not reliably converge
with city fixed effects due to the large number of incidental parameters. However, the inclusion of city versus county
fixed effects has little impact on the linear probability model estimates.
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driver and accident covariates, estimation methods and identification strategies. Our estimates
also scale to the national level.32

7.1. External costs and corrective taxes

We now explore whether the estimated causal effect of vehicle weight on fatalities is economically
significant. Consistent with the model from Section 3, we calculate the traffic fatality-related
external cost of adding curb weight to a vehicle weighing wi pounds and aggregate this external
cost across all vehicles on the road. In any given collision this cost is proportional to h′(wi −wj)=
−α ·f ′(wj −wi). This quantity varies depending on wj, the weight of the vehicle that i collides
with. At each striking vehicle weight wi, the slope of the dotted line in Figure 1 represents the
average value of h′(wi −wj). This average, h̄′(wi), is computed across all accidents involving
vehicles of weight wi. The dotted line in Figure 1 plots h̄(wi). Figure 1 indicates that h̄(wi) is
linear over most striking vehicle weights, but it diverges somewhat for vehicles weighing less
than 2400 pounds. Therefore h̄′(wi) for vehicles below 2400 pounds is less than h̄′(wi) for vehicles
weighing over 2400 pounds. In our calculations we use a piecewise linear function for h̄(wi), with
a slope change at 2400 pounds. This piecewise linear function fits the dotted line in Figure 1 very
well, generating an R2 of 0.997. Note that using a linear h̄(wi) or the dashed line would result in
a modestly higher external cost estimate (11% higher). In order to aggregate these external costs
across vehicles, we need to make an assumption about what share of the vehicle fleet weighs less
than 2400 pounds. However, this share is very low in recent years (only 2.5% of 2005 model year
vehicles in our data weigh below 2400 pounds).

To calculate the total external cost of curb weight for a vehicle weighing wi pounds, we
compare its external cost, h̄(wi), to the external cost of the lightest available vehicle, h̄(wcf ). This
calculation requires an assumption about wcf , the weight of the smallest “counterfactual” vehicle
that is available on the market. One could argue that any curb weight over zero pounds increases
the probability of a fatality and that the appropriate value of wcf is zero. However, a “zero
pound” vehicle lies far outside the support of our data. We thus consider two more reasonable
counterfactual vehicles below, and we assume that the only fatality-related externalities imposed
by our smaller counterfactual vehicle (a car weighing 1850 pounds) involve pedestrians and
motorcyclists. We experiment with a “zero pound” counterfactual in Table 9.

The average individual in our baseline scenario chooses a vehicle weighing the same as the
average 2005 model year vehicle in our data (3616 pounds). We calculate the individual external
costs relative to two counterfactual vehicles that the individual could have bought—a slightly
lighter vehicle and the lightest possible vehicle. The slightly lighter counterfactual vehicle is a
proxy for the average 1989 model year vehicle in our data, which weighs 2953 pounds. The
lightest possible counterfactual vehicle is the smallest drivable car in mass production in 2005,
which weighs 1850 pounds.

The external cost of an individual buying vehicle model i weighing wi pounds over a lighter
counterfactual vehicle weighing wcf pounds is given by:

External Costi =[h̄(wi)− h̄(wcf )]·P(accident)·VSL (9)

32. In a previous working paper, we estimated the same models using data from the NHTSA General Estimates
System (GES). The GES is a random subsample of police reported accidents in all states. It thus has fewer observations,
but greater geographic coverage, than our merged state data sets. If we estimate our preferred specification using GES
data, we find that 1,000 pounds of additional vehicle weight increases the probability of a fatality by 40% in the other
vehicle. This estimate is statistically significant (t =4.8) and similar in magnitude to our preferred estimate of 47% from
the state data sets. We cannot reject the hypothesis that both estimates converge to the same value.
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TABLE 9
Accident-related external costs under different assumptions

Total external costs External costs
(billions) per gallon

Fatalities only $135.8 $0.97
Fatalities + injuries $175.5 $1.25
Fatalities + injuries + increased collision rates $235.9 $1.69
Fatalities + injuries + increased collision rates + light trucks $264.6 $1.89
Fatalities + injuries + increased collision rates + light trucks + 0 pound $304.4 $2.17

counterfactual

Notes: This table reports total accident-related external costs under a set of assumptions. For injuries, we apply the vehicle
weight coefficient from Table 3 (column 7) and assume that the value of a statistical injury is 214,000 (as reported by
the National Safety Council). We also assume that serious injury costs are not internalized through existing liability
insurance. For collision rates, we assume that, ceteris paribus, an average weight vehicle (3616 lbs.) is 40% more likely to
have an accident than an 1850 lb. baseline vehicle. This figure is an approximation of the observed relationships between
accident rates and vehicle weight in Evans (1984) and White (2004). For the effects of light truck frames, we apply the
light truck coefficient from Table 2 (column 7) and a light truck market share of 50% (Anderson, 2008). The zero pound
counterfactual assumes that even an 1850 pound vehicle imposes external costs on other vehicles, at a rate of 0.00076
fatalities per collision (this rate comes from our data).

We employ the estimate of the causal effect of curb weight on the probability of a fatality
in an accident as shown by the dotted line in Figure 1 (more precisely, a piecewise linear
function approximating that line). For weights above 2400 pounds we apply the estimated 0.109
percentage points of risk for each additional 1000 lbs in striking weight. For weights below
2400 pounds we apply 0.058 percentage points. Both values are the averages of h̄′(wi) over
the respective curb weight ranges. We set wi to 3616 pounds in all simulations, as discussed
above. As the fatality externality is not a simple linear function of vehicle weight, we need to
determine the share of vehicles in each range. We employ the shares observed in our accident
data, which is 2.5% for 2005 model year vehicles and 15% for the 1989 model year vehicles. We
calculate the probability of a vehicle being involved in a police-reported multivehicle collision
at 3.65% per year (NHTSA, 2007),33 and we apply the DOT value of a statistical life of
$5.8 million.34

Critical in interpreting the expression in equation (9) as an external cost is the assumption
that consumers recognize and value the safety-related internal benefits of weight, f (wi −wj). If
not, then they will not invest additional resources in buying heavier cars (except to gain the non-
safety-related benefits), and no distortion of preferences will occur. However, we are confident
that consumers do recognize and value these internal benefits.An abundance of VSL studies in the
auto safety context demonstrate that consumers value automotive safety (De Blaeij et al, 2003).
Furthermore, a large-scale survey in Hellinga et al. (2007) reveals that 84% of parents believe a
midsize to large vehicle is safer than a small one, with 93% of these specifically citing the larger
size as the feature that enhances safety.35

33. We estimate the probability of being involved in an accident by dividing the total number of vehicles involved
in reported multivehicle collisions by the total number of registered vehicles in 2005 (US DOT BTS, 2010 Table 1–11).

34. This value is consistent with an extensive body of research on consumer valuation of auto safety. For example,
de Blaeij et al. (2003) review a large number of studies analysing willingness to pay for automotive safety. These include
seven studies conducted in the United States post-1980. Across these seven studies the median (mean) VSL is $5.5 million
($8.8 million) in 2008 dollars.

35. Even among the 16% of parents that believe a smaller vehicle is safer, 88% cited the easier handling of the
smaller vehicle as the reason it is safer, suggesting that they too understand that small size itself is not helpful in surviving
a crash except insofar as it allows one to avoid the crash to begin with.
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In the first counterfactual scenario our simulated individual chooses an average vehicle
weighing 3616 lbs (wi) instead of one weighing 2953 lbs (wcf ). The total external costs aggregate
to $33.9 billion per year. One can think of this estimate as the external costs arising from the fleet
weight gain since 1989.

Our second counterfactual scenario assumes the individual purchases an average vehicle
weighing 3616 lb (wi) instead of one weighing 1850 lbs (wcf ), which represents the lightest
automobile in mass production that can transport two adult passengers. This is the approximate
weight of Toyota’s iQ, Mercedes Benz’s Smart Car, or the first generation Honda Insight. The
intuition behind calculating the total external cost using this baseline vehicle is that individuals
privately choose the size of the externality by choosing a heavier vehicle than required to provide
baseline transportation services. This calculation recognizes that a driver of a Smart Car poses
minimal risk to other roadway users (except bicyclists or motorcyclists). The total external costs
from this scenario sum to $78.8 billion per year.

Both scenarios ignore the external fatality risks that vehicles pose to pedestrians and
motorcyclists. In 2005, there were 2659 motorcycle crash fatalities involving light vehicles and
5864 non-motorist fatalities involving light vehicles (NHTSA, 2010). This is equivalent to an
external “baseline” fatality cost of $49.4 billion. Our interpretation of this as a “baseline” cost
that applies across all vehicles assumes that the fatality risk to pedestrians and motorcyclists
is independent of weight and that it can be eliminated by not driving. This appears to be
true empirically.36 The total external cost of “excess” vehicle weight (relative to the 1850 lb.
counterfactual vehicle) and baseline fatality risk from collisions involving pedestrians and
motorcyclists is $128.2 billion ($78.8+$49.4=$128.2).

The above calculations also ignore the impact of higher striking vehicle weight in multivehicle
collisions with more than two vehicles. Almost all of these accidents involve three vehicles. We
repeat the simulation above but add the external costs in three-vehicle collisions. We assume that
striking vehicle weight has half the causal effect (per vehicle struck) in three-vehicle accidents as
compared to its effect in two-vehicle collisions. This assumption is conservative in comparison
to our three-vehicle collision estimates in Table 3. These calculations raise external costs in the
“weight gain since 1989” scenario to $37.2 billion and external costs in the “lightest possible
vehicle” scenario to $86.4 billion. Total external costs rise from $128.2 to $135.8 billion.37

Notably, this figure exceeds central estimates of the social cost of US carbon emissions, which
total $123.7 billion per year.38

The calculations above reveal the fatality-related externality for an average driver. However,
collision rates vary across drivers, and a dangerous driver generates a larger externality than a
safe driver, vehicle weight held constant. In the context of our model a dangerous driver has
a higher value of α in the expression h(wi −wj)=−α ·f (wj −wi). From a policy perspective, it
would be attractive to rescale existing liability insurance rates by vehicle weight, as existing
insurance rates already account for driver heterogeneity and provide discounts to low-mileage
drivers. Liability insurance would then be an increasing function of a driver’s record, miles

36. Not all states reliably report pedestrian data, but we have a sample of 23,280 crashes involving pedestrians
and 6,831 crashes involving motorcyclists. Regressing a pedestrian fatality indicator on vehicle weight (plus control
variables, including a light truck indicator), we find that an additional 1,000 pounds of vehicle weight is associated with a
statistically insignificant 6.5% increase in the probability of a fatality (t =0.9). Regressing a motorcyclist fatality indicator
on vehicle weight (plus control variables, including a light truck indicator), we find that an additional 1,000 pounds of
vehicle weight is associated with a statistically insignificant 0.03% decrease in the probability of a fatality (t =−0.0).

37. A spreadsheet detailing these calculations is available from the authors.
38. In 2008 the US generated 5.89 billion metric tons of CO2 (US EIA, 2009). Using a central estimate of the social

cost of CO2 at $21 per metric ton, the annual social cost of US carbon emissions is $123.7 billion (Greenstone et al.,
2011).

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article/81/2/535/1517632 by guest on 25 Septem

ber 2020



[11:54 18/4/2014 rdt035.tex] RESTUD: The Review of Economic Studies Page: 563 535–571

ANDERSON & AUFFHAMMER POUNDS THAT KILL 563

driven, and the weight of the vehicle that he chooses to buy, and the three factors could
interact with each other. If this approach is not feasible, we discuss below two simpler ways
to distribute the fatality-related external costs across vehicles. These mechanisms are less precise
at distributing external costs in contexts with substantial driver heterogeneity in accident rates,
as they do not allow for an interaction between a driver’s record and his vehicle’s weight. Note
however that allowing for driver heterogeneity in the VSL has little impact on any of the policy
instruments.39

On the one hand, one could incorporate the fatality-related external costs as a per mile charge,
in the spirit of “pay as you drive” (PAYD) insurance proposals. In contrast to existing proposals
for PAYD insurance (e.g. Parry, 2005; Bordoff and Noel, 2008), our results demonstrate that the
per mile charge should vary sharply by weight—a heavier car generates greater expected external
costs per mile than a lighter car. An appropriately set per mile charge should be similar in effect to
a weight-based excise tax on automobiles; the primary difference is whether the tax is collected
at the time of sale or over the life of the vehicle.40 However, to assess a charge that varies per
pound and per mile, one needs accurate information on vehicle miles travelled (VMT) for each
vehicle, which given today’s monitoring technology creates significant but not insurmountable
technical challenges.

A practical alternative is to distribute the total external costs by raising the gasoline tax
assessed per gallon. Taxing gasoline is appealing because it is simple and because gasoline usage
is positively related to both miles driven and vehicle weight. The United States consumed 140
billion gallons of gasoline in 2005 (US EIA, 2010). If we distribute the total external costs
calculated above across 140 billion gallons of gasoline, this translates into 26 cents per gallon
in the “weight gain since 1989” scenario ($37.2 billion/140 billion gallons = 26 cents/gallon).
The total externality due to vehicle fatalities when the baseline vehicle is 1850 pounds translates
into a tax of 61 cents per gallon ($86.4 billion/140 billion gallons = 61 cents/gallon). Including
pedestrian and motorcycle fatalities translates into a tax of $0.97 per gallon ($135.8 billion/140
billion gallons = 97 cents/gallon).

While the per gallon tax does not differ by the weight of the vehicle, it results in a higher
per mile charge for heavier vehicles as these have worse fuel economy. Figure 3 plots a Lowess
smoother of miles per gallon (mpg) against vehicle weight, estimated for model year 2005 cars
using data from Knittel (2011).41 There is a strong negative and slightly nonlinear relationship
between the two variables. A linear regression indicates that an additional 1000 pounds in vehicle
weight decreases fuel economy by 4.5 mpg. A gas tax thus results in heavier vehicles indirectly
paying a higher per mile tax because they get fewer mpg. In this sense, the gas tax approximates
a weight varying mileage charge.

A natural question is how close the gasoline tax comes to achieving the desired weight varying
mileage charge. We perform a back of the envelope calculation using a large set of vehicles for
which we have vehicle weight and fuel efficiency ratings (Knittel, 2011). We examine 8201
model–year combinations built from 1997 to 2006, which includes most cars and light trucks
sold in the United States during this period.42

39. For example, even in an extreme case in which drivers sort into vehicles such that a driver’s VSL is proportional
to her vehicle’s weight, the appropriate value of a weight-based tax or a gas tax changes only 11%.

40. One difference between the two taxes is that under the excise tax owners would have an incentive to drive their
vehicles a few more miles before retiring them, as this would amortize the tax over a larger mileage base.

41. For this comparison we require vehicle weight and EPA fuel economy ratings. The latter are not in our VIN
decoder database, but Chris Knittel graciously shared his model level data on weight and fuel economy ratings.

42. For the analysis we remove boutique vehicles, which have zero market share (e.g. Ferrari, Bentley, etc.), flex
fuel vehicles, which have inflated mpg ratings for accounting reasons, and a few miscoded observations.
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Figure 3

Fuel economy vs. weight for 2005 model year light vehicles

The per mile weight based charge for a given vehicle is equal to ce
i , which is the per mile

weight based external cost for vehicle type i and given by

ce
i = [h̄(wi)− h̄(wcf )]·P(accident)·VSL

VMTi
+

ce
ped−mot

VMTtotal
(10)

where the numerator of the first term is the external cost given in equation (9). Now wi is the curb
weight for each 2005 model–year vehicle in Knittel’s database, wcf is the baseline vehicle’s weight
(in our case 1850 lbs), VSL is the value of a statistical life, and P(accident) is the probability of
being involved in a multivehicle collision. VMTi are set at 11,000 miles per year for each model.
Note that VMT may fall after the tax is implemented.43 In fact, this is desirable, as reducing VMT
is one way to reduce the total externality. As long as prices are set correctly, consumers should
be free to choose whichever vehicles and driving patterns they wish. The parameter ce

ped−mot
is the total number of fatalities in collisions between vehicles and pedestrians, bicyclists and
motorcycles, multiplied by the VSL; it sums to $49.4 billion per year, or 1.65 cents per VMT.44

We calculate ce
i for each model in our database using the piecewise linear function discussed

above. The average value of ce
i across all models is 4.8 cents per mile.

43. VMT may fall less than expected if smaller vehicles require drivers to take more trips. Descriptively, however,
we find a positive relationship between VMT and weight in the National Household Travel Survey.

44. As noted in footnote 36, there is no evidence that heavy cars pose greater risks to pedestrians and motorcyclists
than light cars. The only vehicle characteristic we are aware of that influences pedestrian and motorcyclist fatality risk is
whether a vehicle is a light truck. Anderson (2008) finds that a pedestrian’s or motorcyclist’s fatality risk when struck by
a car is approximately 40% lower than his risk when struck by a light truck. In theory one could charge a lower value of
ce

ped−mot to cars and a higher value to light trucks. In practice, however, this modification makes little difference when
comparing a gasoline tax to the weight varying mileage charge. Without this modification, the average absolute difference
between the weight-based tax and the gas tax is 0.88 cents per mile. With this modification, the average absolute difference
between the weight-based tax and the gas tax becomes 1.00 cents per mile.
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Denote the alternative instrument, the per gallon gas tax, as c̄e, which we calculate at $0.97
above. We translate this per gallon tax into a per mile tax for vehicle i as follows:

cg
i = c̄e

mpgi
(11)

where cg
i is the gasoline tax per mile for vehicle i, c̄e is the $0.97 per gallon external cost and

mpgi is miles per gallon for vehicle i. Here we use the standard 45/55 weighting of the EPA city
and highway fuel economy ratings.45 The gas tax per mile therefore only varies across models
through differences in fuel economy.

Figure 4 presents a scatterplot of the gas tax versus the weight tax for all models from 1997 to
2006 in the cleaned Knittel (2011) data. The difference between the two taxes is small for most
models, but it can be significant at the extremes, ranging between −3.7 cents to 4.7 cents per
mile. A one-cent difference per mile equates to $110 on an annual basis. For 63% of the models
in our data, the absolute value of the difference between the two taxes is less than one cent per
mile, and for 96% of the models the absolute value of the difference is less than 2 cents per mile.
The average difference between the two taxes is 0.88 cents per mile, which represents 18.3% of
the average value of the per mile weight tax. In either case, the revenues could be redistributed
to make the taxes revenue neutral.

Recall that our estimates of accident-related externalities are conservative along several
dimensions. First, we assumed that the effect of weight on serious injuries is internalized by
liability insurance. Second, we assumed that weight has no causal effect on the probability of a
collision. Third, we ignored the external risk that light truck frames appear to pose independent
of weight. Finally, we assumed that the lightest production vehicle (1850 pounds) poses no risk to
other vehicles. Table 9 presents estimates of the total external costs after including these factors.
Accounting for potential injury costs increases the total externality from $135.8 billion to $175.5
billion.46 Accounting for the possibility that weight may have a causal effect on collision rates
increases the externality another $60.4 billion to $235.9 billion. Accounting for the additional
risk from light truck frames increases the total externality to $264.4 billion. Allowing for a “zero
pound” counterfactual vehicle increases our estimate of the total externality to $304.4 billion.47

This is equivalent to a $2.17 per gallon gas tax.
It is worth noting factors held constant in our policy analysis. Chief among these is the accident

rate. Even if weight does not affect the accident rate, it may change over time based on congestion

45. Pre-2008 EPA fuel economy ratings are widely recognized to overstate the actual mileage achieved by the
average driver (Edmunds, 2006). This affects our subsequent analysis because the $0.97 gas tax was derived from actual
fuel economy rather than the EPA’s forecast fuel economy. We thus rescale the EPA ratings so that the average fuel
economy in this sample matches the average fuel economy observed nationwide (17.8 mpg), after adjusting for weight
differences between the two samples. The rescaling factor that achieves this equivalence is 0.73. Our conclusions in the
subsequent analysis are unchanged if we instead leave the EPA ratings untouched and recalculate the gas tax using EPA
mileage ratings—in both cases the per mile gas tax closely tracks the weight based mileage tax.

46. Even injuries within a driver’s own vehicle may represent external costs if medical treatment is paid for by
government or group insurance. Accounting for this potential positive externality (since own vehicle weight is protective)
would decrease total external costs related to fatalities and injuries by 2.6% (Parry, 2004). Other potential injury-related
externalities include emergency response costs and traffic jams at accident sites. Our calculations imply that accounting
for these externalities would change the total externality by less than 1%.

47. In 62,057 collisions in which the striking vehicle weighed less than 2,000 lbs, there was a fatality in the struck
vehicle in only 47 cases (0.076% of cases). This is 65% lower than the average fatality rate. If we assume that a zero pound
car imposes no fatality externality, then an 1,850 pound car would impose a 0.076 percentage point fatality externality
(relative to a zero pound car). Including this risk in our calculations would increase the total fatality-related externality
by $39.8 billion.
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Sunflower scatterplot of gas tax vs. weight tax for cars and trucks

Notes: The graph above displays the joint distribution of the weight tax and gas tax per mile for the sample of cars and

trucks with model years 1997–2006 from the database provided by Knittel (2011). We remove boutique cars, flex fuel

vehicles, and a few outliers with incorrectly recorded fuel ratings. The sunflower plot bunches multiple observations

into single flowers, where the number of petals indicates the total number of observations represented by the flower. The

petals of light flowers represent one observation each and the petals of darker flowers represent 13 observations each.

levels, road design, driver behaviour, or other influences. A policymaker implementing a weight-
based tax would thus do well to recalibrate the tax periodically to reflect changes in accident rates
or overall fatality rates.

The imposition of a high gasoline tax or a weight-based mileage tax should ultimately change
the weight distribution of the vehicle fleet. Our regressions estimate the external effects of vehicle
weight given the current weight distribution of the vehicle fleet, but these effects could change as
the fleet downsizes (Result 5). To simulate how this shift might affect our regression estimates,
we consider three downsizing scenarios. In the first scenario, all vehicles reduce their weight
by 20%. This results in larger absolute weight reductions for heavier vehicles. In the second
scenario, vehicles above the average weight reduce their weight by 10%, and vehicles below the
average weight reduce their weight by 20%. In the third scenario, vehicles above the average
weight remain unchanged, and vehicles below the average weight reduce their weight by 20%.
In all three scenarios h̄(wi), the function relating striking vehicle weight and struck vehicle
fatalities, remains approximately linear and very close to its original values. This suggests that
the appropriate marginal tax on vehicle weight would not change as the vehicle fleet became
lighter. It is also possible that in the long run the relationship between weight and gasoline usage
may break down, particularly if hybrid and electric vehicles become a significant fraction of the
vehicle fleet. In that case the correlation between a gas tax and a weight-based tax would diminish,
and a tax that varies directly with weight could become preferable.

While many countries encourage fuel efficiency through high gasoline taxes, the United States
encourages fuel efficiency through CAFE standards. In principle, fuel economy standards could
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achieve the same downsizing of the vehicle fleet as a gasoline tax—a properly specified fuel
economy standard should act as a de facto tax on heavier vehicles. A primary difference between
the two instruments is that the fuel economy standard “tax” would be collected when purchasing
the vehicle and would be amortized over the vehicle’s lifetime VMT, while the gas tax would
be collected in small increments throughout the life of the vehicle. This difference could be
important if consumers exhibit high discount rates or if salience is important (Finkelstein, 2009).
Furthermore, the gas tax directly incentivizes a reduction in travel, while CAFE standards have
an ambiguous effect on total VMT (on the one hand they increase the cost of purchasing a vehicle,
but on the other hand they reduce operating costs). The gas tax is thus more likely than CAFE
standards to reduce other VMT-related externalities (e.g. congestion). Calculating the exact fuel
economy standards that achieve equivalent weight distribution effects to a $0.97 per gallon gas
tax is beyond the scope of this article, as it requires a variety of supply and demand elasticities.
Nevertheless, we note two important points in the context of CAFE standards.

First, current CAFE standards are insufficient to internalize the externality presented in this
article. Goldberg (1998) estimates that CAFE increases the price of pickup trucks by 0.6% and
reduces the price of subcompacts by 0.5%. This equates to a tax on pickup trucks (relative to
subcompacts) of approximately $200. The gasoline tax discussed above, however, equates to a
tax on pickup trucks (relative to subcompacts) of over $4000 over the life of the vehicle. Second,
the light truck coefficient in Table 2 suggests that removing the historical split in CAFE standards
between cars and light trucks would improve welfare. The results in Table 2 imply that light truck
frames impose significant external risks upon other roadway users but provide little or no safety
benefit to their own occupants. This suggests that light truck purchases should be discouraged, but
historical CAFE standards encourage light truck production by imposing a much lower mileage
standard on trucks than on cars.

7.2. Fleet weight and total fatalities

Our results demonstrate that a tax on vehicle weight, or a high gasoline tax, could be welfare
enhancing. In some cases, however, policymakers may focus only on a policy’s effect on total
traffic fatalities. Considering the net effect of weight on both external and “internal” fatalities
links our results back to the existing safety literature.

Our model implies that total traffic fatalities depend on the distribution of vehicle weight
(Result 3). Estimating h(wi −wj)=−α ·f (wj −wi) flexibly over the support of weight differences
allows us to simulate total traffic fatalities for different vehicle weight distributions. Figure 2
presents estimates of h(wi −wj). There is an inherent symmetry in the distribution of wi −wj
because a +X pound weight difference for one vehicle in a collision implies a −X pound weight
difference for the other vehicle. The total expected fatalities in any given collision can thus be
calculated by adding h(wi −wj) and h(wj −wi). The convexity in Figure 2 indicates that collisions
between vehicles of different weights are on net deadlier than collisions between vehicles of
similar weights; the decreased risk of moving from −500 to −1000 pounds, for example, is
smaller than the increased risk of moving from +500 to +1000 pounds. We apply the relationship
in Figure 2 to simulate changes in total fatalities for three downsizing scenarios.

In our first scenario, all vehicles reduce their weight by 20% (600 pounds on average).48 This
results in larger absolute weight reductions for heavier vehicles, reducing the variance of the
weight distribution. Total traffic fatalities fall by 0.8% (367 fatalities). In our second scenario,

48. To simulate each scenario, we subtract the specified weight reduction from each vehicle in our collision data
set. We then tabulate the counterfactual distribution of weight differences (wj −wi), and use this distribution to calculate
the average value of h(wj −wi) over the set of counterfactual collisions.
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vehicles above the average weight reduce their weight by 10%, and vehicles below the average
weight reduce their weight by 20%. This slightly increases the variance of the weight distribution,
and traffic fatalities increase by 0.3% (134 fatalities). In our third scenario, vehicles above the
average weight remain unchanged, and vehicles below the average weight reduce their weight
by 20%. This significantly increases the variance of the weight distribution, and traffic fatalities
increase by 1.6% (690 fatalities). However, this scenario is somewhat extreme and is inconsistent
with recent evidence in Busse et al. (2013).49 In summary, it takes a large and highly uneven
downsizing of the vehicle fleet to increase total traffic fatalities by 1% or more, and a uniformly
proportionate downsizing of the fleet slightly decreases traffic fatalities. Higher gasoline prices
are thus unlikely to significantly increase traffic fatalities.

Our estimates of h(wi −wj) illuminate the mechanisms underlying other results in the traffic
safety literature. The finding that changes in fleet weight have modest impacts on fatalities is
consistent with the literature discussed in Section 2; our estimates of h(wi −wj) and our simulations
reveal it occurs because changes in fleet weight do not significantly increase fatalities unless
they dramatically increase fleet heterogeneity. Our results are also consistent with recent work by
Jacobsen (2013). Jacobsen finds that a 1 mpg increase in current CAFE standards increases traffic
fatalities by 149 per year, but that tighter standards do not increase fatalities as long as they are
“footprint based” or unified across cars and trucks. Our results clarify the mechanisms underlying
these results. Current CAFE standards are detrimental to safety because they encourage light truck
ownership, and light trucks are unambiguously dangerous. A unified or footprint-based standard,
however, removes the preference for light trucks and encourages a more uniform lightening of
the fleet across different size vehicles. As our simulations reveal, a uniform lightening of the
fleet need not affect fatalities because the distribution of weight differences in crashes remains
unchanged.

8. CONCLUSION

The US vehicle fleet has become significantly heavier over the past two decades. The average car
on the road in 2008 was roughly 530 pounds heavier than the average car on the road in 1988,
representing a 20% increase. This trend and its potential traffic safety implications have been
widely discussed by policymakers when contemplating more stringent fuel economy standards
or greenhouse gas emissions standards. However, it is less widely recognized that an unregulated
vehicle fleet is inefficiently heavy due to the “arms race” nature of vehicle choice. In this article, we
estimate the external effects of choosing a heavier vehicle on fatalities in two-vehicle collisions.
We present robust evidence that increasing striking vehicle weight by 1000 pounds increases
the probability of a fatality in the struck vehicle by 40–50%. This finding is unchanged across
different specifications, estimation methods, and different subsets of the sample. We show that
there are also significant impacts on serious injuries.

The external costs of fatalities are currently not internalized in the form of a first- or second-best
policy. We calculate that a simple gasoline tax that internalizes the fleet weight gain since 1989
is $0.26 per gallon. We further calculate that internalizing the total cost of external fatalities and
injuries due to vehicle weight and operation, including crashes with motorcycles and pedestrians,

49. Busse et al. (2013) estimate the reduced form effect of an increase in gasoline prices on short-run equilibrium
prices and quantities of cars of different fuel economies. They find that the market share of vehicles in the lowest mpg
quartile (i.e. the heaviest vehicles) decreases by 27% with a $1 increase in gas prices. In comparison, the market shares
of the second and third mpg quartiles change by −7% and 0%, respectively. These results suggest that buyers of heavy
vehicles do respond to increases in gasoline prices, making it unlikely that a gasoline or weight tax would have no effect
on purchases of heavy vehicles.

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article/81/2/535/1517632 by guest on 25 Septem

ber 2020



[11:54 18/4/2014 rdt035.tex] RESTUD: The Review of Economic Studies Page: 569 535–571

ANDERSON & AUFFHAMMER POUNDS THAT KILL 569

requires a tax of at least $0.97 per gallon, and as much as $2.17 per gallon. Parry and Small (2005),
applying a lower VSL to monetize other external costs and not accounting for the vehicle weight
externality, calculate an optimal value of $1.01 per gallon for the US gas tax (approximately
$0.60 above its current level) and $1.34 per gallon for the UK gas tax (approximately $2 below
its current level). Internalizing the vehicle weight externality could increase this optimal value
by approximately $2, implying that European gas taxes may be much closer to optimal levels
than the US gas tax.

The primary social costs of the vehicle weight “arms race” accrue in the form of higher
operating costs rather than changes in total fatalities. While our calculation of external fatality
costs provides the information that a policymaker needs for setting the correct prices, a calculation
of the potential cost savings is also useful. We find that the 2005 model year fleet consumes $92.8
billion more gasoline annually than the lightest possible fleet, which exceeds the comparable
external fatality cost of $86.4 billion.50 This is consistent with our model and empirical estimates,
which imply that consumers are willing to pay approximately $86 billion for the internal
safety benefits of added weight (recall that internal safety benefits and external safety costs
are approximately equal), plus an additional amount for the other private benefits of weight. The
$92.8 billion figure should not be interpreted as a welfare calculation, as we do not know the
valuation of the other private benefits or the costs of manufacturing heavier cars.51 Nevertheless,
it indicates the potential magnitudes at stake.
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