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Abstract 13 

Causal effects of biodiversity on ecosystem functions can be estimated using experimental or 14 

observational designs — designs that pose a tradeoff between drawing credible causal inferences 15 

from correlations and drawing generalizable inferences. Here, we develop a design that reduces 16 

this tradeoff and revisits the question of how plant species diversity affects productivity. Our 17 

design leverages longitudinal data from 43 grasslands in 11 countries and approaches borrowed 18 

from fields outside of ecology to draw causal inferences from observational data. Contrary to 19 

many prior studies, we estimate that increases in plot-level species richness caused productivity 20 

to decline: a 10% increase in richness decreased productivity by 2.4%, 95% CI [-4.1, -0.74]. This 21 

contradiction stems from two sources. First, prior observational studies incompletely control for 22 

confounding factors. Second, most experiments plant fewer rare and non-native species than 23 

exist in nature. Although increases in native, dominant species increased productivity, increases 24 

in rare and non-native species decreased productivity, making the average effect negative in our 25 

study. By reducing the tradeoff between experimental and observational designs, our study 26 

demonstrates how observational studies can complement prior ecological experiments and 27 

inform future ones.  28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 
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Introduction 37 

Motivated by global changes in biodiversity, ecologists have advanced our understanding of the 38 

consequences of biodiversity change for ecosystem functioning1–4,6–12. One particularly active 39 

area of this research has focused on how plant species diversity affects ecosystem productivity1–40 

5. To shed light on this causal relationship, studies have used both experimental and non-41 

experimental designs, each of which presents distinct advantages and disadvantages for 42 

elucidating causal relationships in natural ecosystems. 43 

Experimentalists that manipulate plant species richness often infer that increases in richness 44 

cause increases in biomass1,2,8,13. Although experimental manipulations facilitate causal 45 

inferences, most experiments that manipulate richness are designed to test theory14,15 rather than 46 

to simulate how species richness changes in natural ecosystems16–18. If the effect of richness on 47 

productivity depends on the specific species gained and lost, and how they are gained and lost, 48 

inferences from experiments may not generalize to natural ecosystems (Figure 1A)16,17,19. For 49 

example, many biodiversity experiments simulate random gains and losses of species (but see20–50 

22), which may not mimic changes in species richness in nature. Moreover, most experiments 51 

plant common, native species (but see 16,19–21,23). However, in diverse natural ecosystems, most 52 

species are rare24 and non-native species are increasingly prevalent25. 53 

Observational studies can capture the consequences of changes in species richness that occur in 54 

nature. However, determining the causal effect of richness on productivity in observational 55 

studies requires strong assumptions26,27. Confounding variables associated with both richness and 56 

productivity15 can mask or mimic a causal relationship between them (Figure 1B). For example, 57 

unobserved differences in soil nitrogen across locations can mask a positive relationship between 58 

richness and productivity if more nitrogen reduces richness and increases productivity28. To 59 
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eliminate confounding effects, common study designs in ecology require identifying, measuring, 60 

and statistically controlling for all confounding variables29. This task is daunting in natural 61 

ecosystems given myriad confounding variables that could influence both richness and 62 

productivity (e.g., land-use history, herbivory, disturbance). Yet, failure to control for all 63 

confounding variables can lead to inferences of the wrong sign or magnitude (i.e., due to  64 

statistical bias)26,30. Consequently, the mixed evidence on the effect of species richness on 65 

productivity in observational studies3,4,13,31–33 may reflect differences in the degree of control for 66 

confounding factors across studies. 67 

To isolate and quantify causal relationships between biodiversity and ecosystem function, the 68 

ideal study design would combine the strength of experiments in enabling causal inferences from 69 

correlations with the strength of observational designs in facilitating generalizable inferences 70 

about natural ecological processes. Experimental designs with more realistic extinction processes 71 

are one step in that direction (e.g.,16,20,21).  72 

Here, we develop a complementary approach by leveraging a global grassland dataset34 and 73 

methods designed for inferring causality from observational data26,27,35,36. This suite of methods 74 

now comprises the dominant approach to causal inference in fields outside of ecology, such as 75 

economics, medicine, and public health. When combined with our global longitudinal dataset, 76 

they allow us to account for the ecological complexity of grasslands without making strong 77 

assumptions about our ability to measure all confounding variables37, and they allow us to isolate 78 

the effect of biodiversity on productivity separate from the reverse relationship36,38.  79 

Applying traditional methods to our data, we would conclude that, on average, an increase in 80 

biodiversity increases productivity in grasslands, a result found in many prior studies. However, 81 
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applying the suite of methods that control for a broader set of confounding variables, we come to 82 

the opposite conclusion: an increase in biodiversity reduces productivity in grasslands, on 83 

average.  84 

Results and Discussion  85 

Study Context and Design  86 

We use repeated observations between 2007-2017 from 151 unmanipulated plots in 43 grassland 87 

sites in 11 countries34 from the Nutrient Network (https://nutnet.org), including mesic grasslands 88 

and prairies, savanna, desert grasslands, montane meadows, old fields, and alpine tundra (Table 89 

S1 in Supplementary Information (SI); SI Section 3). We define “productivity” as aboveground 90 

live biomass per year per 1m2 (following3,10,31). Each 1m2 plot has between 1 and 37 species in a 91 

year, with an average of 11.3 (SD = 5.7) and median of 10. We use plots with five or more years 92 

of data, in contrast to most observational studies of biodiversity effects on productivity, which 93 

use a single year3,10,31,33,39. Data from multiple years offer three advantages: 1) an opportunity to 94 

study natural changes in richness; 2) enhanced generalizability; and 3) ways to control for a 95 

broad set of confounding variables, including unobserved ones (see Methods).  96 

Our study differs from prior ecology publications by combining three features: 1) causal 97 

diagrams to inform the design and transparently communicate the assumptions required for 98 

inferring a causal relationship from a correlation3,40; 2) regression models that leverage repeated 99 

observations on the same plots and sites to control for confounding variables (see Figure 1B), 100 

both observable and unobservable26,37,41,42; and 3) rigorous assessments of the robustness of our 101 

inferences to violations of the assumptions required for inferring causal relationships from the 102 

data (these assumptions are described in more detail in Figures 2 and 3, Results, and Methods). 103 
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The SI offers a primer on these ideas and compares them to approaches widely used in ecology 104 

(Sections S2, S4, S7 and S9). 105 

In prior observational studies of how richness affects productivity, controlling for the wide range 106 

of potential confounding variables in multilevel or structural equation models has posed 107 

challenges (e.g.,3,9,10,31,43). In those studies, researchers who wanted to interpret an estimated 108 

effect as a causal effect had to assume that no confounding variables were left out of the models 109 

44,45. In complex ecological systems, however, it is unlikely that one can measure all possible 110 

confounding variables. Moreover, when these confounding variables are measured with error, 111 

statistically controlling for them can introduce other biases 44. In other words, prior studies 112 

require a strong assumption for interpreting the correlation between richness and productivity as 113 

causal: any site or plot attributes not included in the statistical estimation model are assumed to 114 

be uncorrelated with species richness and therefore not a source of statistical bias. Our design 115 

relaxes this strong assumption. 116 

We improve upon prior observational studies by controlling for a broader suite of confounding 117 

variables without needing to directly measure them as covariates (see Methods and 37,41). To 118 

understand the intuition for how this control is possible, recall that, in contrast to most prior 119 

observational studies on this topic (e.g.,3,9,10,31,37), our multi-site data is longitudinal (‘panel 120 

data’) and thus includes variation in species richness in both time and space. Confounding 121 

variables that affect both richness and productivity could arise from conditions at the plot or the 122 

site. The values of these variables may be essentially invariant during the study period (e.g., soil 123 

texture, topography, land-use history) or they may vary through time (e.g., surrounding land-use 124 

change, drought conditions that differ by both site and year). With our multi-site panel data, we 125 

can directly control for time-varying, site-level conditions, whether they are observable or not, 126 
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via a regression estimator that includes a simple interaction of binary variables for each site and 127 

year (see Methods, Equation 2). Further, we can eliminate the confounding effects of time-128 

invariant plot and site conditions by taking deviations from mean conditions, after which 129 

variables that do not change over time no longer have any explanatory role and thus are 130 

eliminated as a source of bias (Methods). Using alternative designs, we can also quantify the 131 

potential threat of additional sources of bias from unobserved, time-varying plot-level 132 

confounders and from reverse causality (by bias from reverse causality, we mean bias that could 133 

arise when a causal effect also runs from productivity to richness; see Methods). In contrast to 134 

our approach, virtually all observational analyses reviewed in 4 omit important confounding 135 

variables (e.g., from human activities and land management) and ignore the potential for reverse 136 

causality (reviewed in 46).   137 

To demonstrate how our study design builds on and advances prior research, we first apply two 138 

study designs that have been used in prior studies and then contrast them to our design. 139 

Specifically, we estimate a simple bivariate correlation of richness and productivity (like 31) and 140 

then we estimate the relationship between richness and productivity using a multivariate design 141 

that mirrors advanced statistical designs that aim to control for confounding variables by directly 142 

measuring and including them as covariates in regression models (a “conditioning on 143 

observables” analysis, like 7). The multivariate design, which we label “Common Design in 144 

Ecology,” controls for over 60 variables (far more than prior studies), including attributes of the 145 

soil, habitat, historical management, and weather (Table S10). More details are provided in 146 

Methods section.  147 

 148 
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Main Results  149 

We first report the bivariate correlation between plot richness and productivity. Consistent with 150 

prior studies31, we find a statistically weak, positive relationship between richness and 151 

productivity when we do not control for any confounding variables: a 10% increase in richness is 152 

associated with a 1.4% increase in productivity, 95% CI [-0.6, 3.4]. To give that estimated 153 

correlation a causal interpretation requires an implausible assumption that there are no 154 

confounding variables in the system (or that they perfectly cancel each other out). 155 

Consistent with prior multivariate studies3, the Common Design in Ecology yields a statistically 156 

significant, positive relationship: a 10% increase in plot richness increased productivity by 3.8% 157 

on average, 95% CI [2.0, 5.6] (Figure 2B). To give that estimated effect a causal interpretation, 158 

however, requires a strong assumption: all possible confounding variables are measured 159 

accurately and are included in the model. 160 

In contrast to prior analyses, our Main Design controls for a much broader set of potential 161 

confounders and comes to the opposite conclusion (Figure 2A; Tables S2-S3; SI sections S4, S7 162 

and S9). We find a 10% increase in plot richness decreased plot productivity by 2.4% on 163 

average, 95% CI [-4.1, -0.74]. The estimate is similar if we measure biodiversity using 164 

Simpson’s Diversity (Table S2), control for concomitant changes in species evenness (Figure 165 

2A), or measure species richness and productivity as untransformed variables in linear or non-166 

linear specifications (Table S3). In extended analyses (Tables S4-S6), we find no evidence that 167 

the effect of species richness on productivity is moderated by the site’s productivity or total 168 

number of species (as in 39). 169 
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Switching from the Common Design to our Main Design flips the estimated effect of richness on 170 

productivity from positive to negative (Figure 2). This sign-switching likely occurs for two 171 

reasons. First, on average, many of the observed site and plot variables at these 43 sites are 172 

negatively associated with richness and positively associated with productivity (or vice-versa). 173 

Controlling for them in the Common Design moves the estimated effect in the positive direction 174 

from the bivariate correlation. Second, unobserved site and plot variables (Us, Up, Ust in Figure 175 

1B) are, on average, positively associated with both richness and productivity. We can infer the 176 

sign of these associations by observing how the estimated effect changes with and without the 177 

controls for unobserved time-varying, site-level conditions and time-invariant plot and site 178 

conditions (Figure 2A versus Figure 2B; see Methods). Failing to control for the time-varying 179 

confounders is a particular problem in the Common Design. In other words, the Nutrient 180 

Network sites experience site-specific “shocks” that vary each year (e.g., weather shocks, like a 181 

particularly dry April, or herbivory shocks, like higher herbivore pressure than the prior year) 182 

and failing to control for them creates statistical biases in the positive direction. We cannot 183 

observe the exact components of these shocks, but because we observe the same sites over many 184 

years, we can control for them. The Main Design, with its greater set of controls, is thus less 185 

biased37. More details are available in SI sections S7 and S9. Future research could elucidate 186 

what shocks are most relevant, thereby providing a way for researchers without longitudinal data 187 

to potentially control for the confounding effects of these shocks. 188 

Results are Robust to Alternative Assumptions for Inferring Causality 189 

A hallmark of modern approaches to causal inference is to probe the robustness of results to 190 

potential violations in the assumptions used to infer causality from correlation.36 Using four 191 

additional approaches, we use assumptions different from those made in our Main Design 192 
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(Figure 2A) and assess how our conclusions change (see Methods). In all four approaches, the 193 

estimated effect of richness on productivity is negative (Figure 3; Tables S7-S8).  194 

Based on the first two approaches,  we conclude that we are not mistaking the effect of 195 

productivity on richness3,15 for the effect of richness on productivity (“reverse causality”). The 196 

first approach employs an instrumental variable design, which uses an observable source of 197 

variation in richness (Z in Figure 1B) that is assumed to have no connection to productivity after 198 

conditioning on the site and plot variables addressed in the Main Design (see Methods). When 199 

this assumption is valid, the design addresses both reverse causality and all forms of confounding 200 

in Figure 1B, at the cost of drawing inferences from only a subset of the data, which can 201 

dramatically decrease the precision of the estimate. Our second approach assumes, based on 3, 202 

that a negative effect of productivity on richness would be mediated (M in Figure 1B), at least in 203 

part, by shading or factors for which shading is a proxy (e.g., overcrowding). To block the effect 204 

of this mechanism, we add a shading variable to the Main Design (see Methods). If the estimated 205 

effect changes, reverse causality may be a source of bias. In both approaches, the estimated 206 

effect remains negative, suggesting that, if either of the approaches’ assumptions are valid, 207 

reverse causality is not driving our results. This conclusion does not mean productivity cannot 208 

affect richness, only that such a relationship is not a likely source of bias in our Main Design. 209 

Based on the final two approaches, we conclude that the estimated negative effect in the Main 210 

Design is robust to potential biases from unobserved confounding variables at the plot level that 211 

vary over time (Upt in Figure 1B). First, in a dynamic panel design, we address bias that would 212 

arise if the prior year’s productivity affects richness and productivity in the current year (e.g., via 213 

soil fertility47). The estimated effect is similar to the estimate from the Main Design. Second, in a 214 

sensitivity analysis35, we assess how the Main Design estimate would change if there were a 215 
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strong, unobserved confounding variable that is negatively associated with species richness and 216 

positively associated with productivity (e.g., measurement error or plot-level drivers of 217 

disturbance). If such a confounding variable were to exist, it could create a spurious negative 218 

correlation between richness and productivity. The analysis implies that, even in the presence of 219 

a such an unobserved confounder, we would still infer that there is a negative relationship 220 

between richness and productivity. 221 

The role of rare species and non-native species 222 

In contrast to our study, many experimental studies report positive effects of richness on 223 

productivity1,2,8,13. One difference between experimental and natural systems is that most species 224 

in natural ecosystems are rare, whereas most species planted in experiments are not rare (Figure 225 

S11-12). Rare and dominant species can affect productivity differently48. Thus, the effect on 226 

productivity from an increase in richness (e.g., from 4 to 8 species) could differ when the 227 

additional species are rare versus not rare. In the jargon of the causal inference literature, 228 

richness is a compound treatment with multiple versions, or a “heterogenous treatment.”49 229 

(Figure 4A). Another difference between experimental and natural systems is the number of non-230 

native species, which are absent in many experiments but increasingly prevalent in real 231 

ecosystems25. If non-native are more competitive but less productive, as in 50, this could also 232 

explain the divergence between our results and those of experimental studies. 233 

Rare and non-native species could reduce productivity through multiple channels (Figure 4B, 234 

left). For example, these species may compete with more productive species (e.g., via allelopathy 235 

of rare invaders51). Further, they may produce less aboveground biomass than common, native 236 

species48 and so when they enter a plot, they may take space formerly occupied by more 237 
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productive species. These productivity-reducing effects would be strengthened if, as richness 238 

increases in a plot, rare and non-native species are more likely to be the incrementally added 239 

species (Figure 4B, right). In experimental systems, species enter plots with equal probability. In 240 

contrast, as richness increases in our 43 grassland sites, the probability that the incremental 241 

species is a rare or non-native species also increases (Figures S11-12).  242 

Given differences in the species pools studied in our natural systems versus many experimental 243 

systems, we explore whether changes in rare species and non-native species richness affect 244 

productivity differently from changes in native, non-rare species richness. We classify species 245 

into four categories: 1) rare, native species; 2) non-rare, native species; 3) non-rare, non-native 246 

species; and 4) rare, non-native species (see Methods). We then estimate the effect of each 247 

category’s richness on productivity using our Main Design. 248 

Our results imply that the negative average effect of richness on productivity in Figure 2 is 249 

driven by changes in the numbers of rare, native species and non-native, non-rare species (Figure 250 

5).  Consistent with results from experimental studies, an increase in species richness that came 251 

from a non-rare, native species increased productivity. But increases in richness decreased 252 

productivity when these increases came from non-rare, non-native species or rare, native species 253 

(inferences are similar using different definitions for rarity; Tables S11-S15). We acknowledge 254 

that there could also be positive and negative interactions across these species’ types, but we do 255 

not have sufficient statistical power to explore these potential interactions. 256 

We conjecture that the proposed mechanisms through which richness positively affects 257 

productivity in archetypical experiments – i.e., niche complementarity and positive 258 

selection2,14,15 – may operate primarily among non-rare, native species. Testing this conjecture 259 
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would require experiments that successfully grow representative proportions of rare species (in 260 

experiments that planted rare species, these species failed to consistently emerge, see SI: Section 261 

S9 – Box 2). 262 

Implications for Experimental and Observational Biodiversity Research 263 

Leveraging methodological advances for causal inference in observational designs, our study 264 

uncovers ecological relationships in grasslands that deserve closer attention. In the 43 grassland 265 

sites in our study, an increase in species richness decreases productivity on average (Figure 2). 266 

This effect appears to arise because an increase in rare species and non-rare, non-native species 267 

decreases productivity on average (Figure 5) and these species comprise most species in an 268 

ecosystem (Figure 4). These effects will be missed in observational designs that do not 269 

adequately control for a wide range of confounding factors and in experiments that do not plant a 270 

representative mix of species in diversity patterns that occur in natural systems. Our results also 271 

highlight the challenge of determining the representativeness of experimental systems. For 272 

example, a recent comparison of natural and experimental systems identified many similarities in 273 

attributes but did not assess whether the patterns of rare or non-native species in experimental 274 

systems match the patterns in natural systems 52.   275 

Our results point to promising areas for future research, including studies that experimentally 276 

manipulate rare species and non-native species and seek to identify traits of these species that 277 

drive their effects on productivity. For example, in a recent study22 , researchers experimentally 278 

removed non-dominant species from randomly assembled communities and reported an increase 279 

in biomass one year after the removal; a result consistent with our results. Extensions of their 280 

study can help elucidate the traits of these species that drive their effects on productivity. 281 
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Our results also imply that any estimated effect of changes in species richness on productivity 282 

may not generalize to different spatial or temporal scales, or to other ecosystems, forms of 283 

biodiversity, or ecosystem functions. Multiple ecological mechanisms underlie a relationship 284 

between richness and productivity (e.g., below-ground competition, niche complementarity), and 285 

their strength may vary across places and time depending on which types of species are changing 286 

and how (Figure 4). When the operative mechanisms depend on the version of richness that is 287 

changing, ecologists face what has been called “treatment-variation relevance”53 or 288 

“consequential variation of the treatment”54. In such cases, interpreting and generalizing causal 289 

effects is challenging, whether ecologists use experimental or observational designs. The 290 

challenge is best met by using large observational datasets that capture the types of species 291 

changes that occur in nature and then, using methods like the ones in our study, determine which 292 

changes -- in terms of which species are changing and how (Figure 5) -- are consequential for the 293 

effect of richness on ecosystem function. The results of these observational studies could then 294 

guide experimentalists in selecting experimental designs that can help confirm the results from 295 

observational studies and elucidate the underlying mechanistic processes. 296 

Most importantly, our study extends prior research3 that highlights the importance of study 297 

design in credibly isolating causal relationships in natural ecosystems. Other fields have made 298 

important advances in observational analyses — advances that have not yet permeated into 299 

ecology and other natural sciences. By demonstrating how to apply these advances to an 300 

ecological question and data, our study aims to spur broader adoption of these advances in 301 

ecology. Given the challenges of randomizing all the important elements of ecosystems at larger 302 

spatial and temporal scales, observational designs like ours that leverage these advances offer 303 
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important complements to experimental designs in research to elucidate how natural ecosystems 304 

function. 305 

Methods  306 

To ensure reproducible results, we implemented all analyses in two software programs (R using 307 

the ‘fixest’ package v 0.8.2 and Stata v.16) and multiple researchers confirmed the results. The 308 

code for reproducing all analyses, figures, and tables in this study are available through Zenodo 309 

(10.5281/zenodo.7675340). A RMarkdown tutorial on the main methods can also be found on 310 

our Zenodo release (10.5281/zenodo.7675340) and as Supplementary Data.  311 

Target Causal Effect 312 

To formalize the causal relationship we seek to estimate, we use the potential outcomes 313 

framework 55–57. The causal effect of a change in richness from 𝑅′ to 𝑅′′on productivity P in plot 314 

i is defined as [𝑃𝑖(𝑅′′) − 𝑃𝑖(𝑅′)], where 𝑃𝑖(𝑅′′) is the potential productivity outcome when 𝑅 =315 

 𝑅′′ and 𝑃(𝑅𝑖
′) is the potential productivity outcome when 𝑅 =  𝑅′ (𝑅′ ≠  𝑅′′). The difference in 316 

these two potential productivity outcomes (i.e., productivity under two potential richness 317 

conditions) is the causal effect of a change in richness in a plot. For a specific location and time, 318 

only one of these potential outcomes will be directly observable; the counterfactual values for the 319 

other potential outcomes must be estimated from data. The average causal effect of a change in 320 

biodiversity from 𝑅′ to 𝑅′′ across all plots is 𝐸[𝑃𝑖(𝑅′′) −  𝑃𝑖(𝑅′)], where 𝐸[∙] is the expectation 321 

operator. We seek to estimate the average causal response of an incremental change in 𝑅 across 322 

all plots (i.e., the average effect across all possible one-unit changes). When used for causal 323 

inference, non-experimental studies aim to replicate, conceptually, the idealized experimental 324 

design in which the factor or factors that affect variation in R only affect P via their effects on R. 325 

In other words, to permit credible causal inferences, a non-experimental design seeks, via design 326 
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and statistical methods, to eliminate the confounding effects of Up, Us, Ust, and Upt in Figure 1, as 327 

well as the effects of reverse causality in Figure 3. 328 

Data Description 329 

Study sites include mesic grasslands and prairies, savanna, desert grasslands, montane meadows, 330 

old fields, and alpine tundra from 11 countries. To measure productivity, we use plant above-331 

ground live mass (biomass) (see Figure S1).  Biomass production supports many ecosystem 332 

processes and services and this measure of productivity has been widely used in studying the 333 

relationship between diversity and productivity with both observational (e.g., 3,10,58) and 334 

experimental data (reviewed in 4,59,60). For herbaceous vegetation, above-ground live biomass 335 

provides a reasonable estimate of primary productivity 61. Biodiversity measures are determined 336 

from species cover data from the Nutrient Network (SI Section 3a) 337 

Common Design Estimator 338 

To show how our Main Design differs from more common designs in ecology, we constructed 339 

what we call a “Common Design in Ecology”: a multivariate design that controls for over 60 340 

variables (far more than prior studies), including attributes of the soil, habitat, historical 341 

management, and weather (Table S10). This design captures the strong assumption that is 342 

inherent in prior observational ecological studies that aim to estimate the causal effect of richness 343 

on productivity: there are no variables omitted from the statistical model that are correlated with 344 

both richness and productivity. When this assumption is not met, the design suffers from bias. 345 

We compare this Common Design to our Main Design, which relaxes that strong assumption. 346 

For the Common Design in Ecology, we estimate the effect of richness on productivity using the 347 

following regression equation: 348 
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ln 𝐿𝑖𝑣𝑒𝑀𝑎𝑠𝑠𝑝𝑠𝑡 = 𝛽 ln 𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠𝑝𝑠𝑡 + 𝑋𝑝 + 𝑋𝑠 + 𝑋𝑠𝑡 +  𝜀𝑝𝑠𝑡.                  (1) 349 

We use a ln-ln model specification because the effect of richness on productivity is believed to 350 

be non-linear 62. Recall that observations in our data come from a plot p located within a site s in 351 

a year t. Thus, 𝑋𝑝 is a vector of plot-specific attributes that do not vary over the study period 352 

(e.g., soil type), 𝑋𝑠 is a vector of site attributes that do not vary over the study period (e.g., 353 

habitat, historical management, elevation), and 𝑋𝑠𝑡 is a vector of site attributes that vary by year 354 

(e.g., temperature seasonality, maximum and mean temperatures of the warmest month). 355 

Together, these vectors include over 60 variables, which are directly controlled for in the 356 

regression (see Table S10). In this equation, we can see that the effects of any omitted variables 357 

on productivity (i.e., variables not controlled for in the X vectors in the model) reside in the error 358 

term 𝜀𝑝𝑠𝑡. We can rewrite this error term as a combination of a random error, 𝜎𝑝𝑠𝑡 , which only 359 

affects productivity, and unobserved confounding variables, U, which affect both richness and 360 

productivity at either the plot or site level and either in all years or only some years. Thus the 361 

error term can be rewritten as  𝜀𝑝𝑠𝑡 = 𝑈𝑝 +  𝑈𝑠 + 𝑈𝑠𝑡 + 𝑈𝑝𝑡 +  𝜎𝑝𝑠𝑡, where 𝑈𝑝 and 𝑈𝑠 are vectors 362 

of plot and site-level variables that do not change over the study period, and 𝑈𝑠𝑡 are vectors of 363 

time-varying site-level variables, and 𝑈𝑝𝑡 are vectors of time-varying plot-level variables. If a 364 

study design has any of these omitted U variables, the estimator (𝛽) would be biased – known as 365 

omitted variables bias. In other words, to interpret the estimate of 𝛽 as an estimate of our target 366 

causal effect would require one to assume that the observed covariates in the model capture all 367 

relevant 𝑈𝑝, 𝑈𝑠, and 𝑈𝑠𝑡 and 𝑈𝑝𝑡 does not exist (because no time-varying covariates are measured 368 

at the plot level). 369 

 370 

 371 
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Main Design Estimator  372 

Each observation in our study comes from a plot p located within a site s in a year t. With this 373 

longitudinal data structure, i.e.  with repeated observations of the same plots, one can control for 374 

all dimensions of confounding variables that do not vary over the study period and all 375 

dimensions of time-varying site-level confounding variables without having to observe all of 376 

these dimensions. To achieve this control, we estimate an equation of the following form: 377 

 378 

ln 𝐿𝑖𝑣𝑒𝑀𝑎𝑠𝑠𝑝𝑠𝑡 = 𝛽 ln 𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠𝑝𝑠𝑡 + 𝛿𝑝 +  𝜇𝑠𝑡 +  𝜀𝑝𝑠𝑡      (2) 379 

As noted above, we use a ln-ln model specification because the effect of richness on productivity 380 

is believed to be non-linear62. Given that we have a ln-ln specification, 𝛽 can be interpreted as an 381 

elasticity: the expected percent change in productivity given a one percent change in richness. 382 

We also tested the robustness of results to this modeling decision (see SI: section S5). 383 

The time-invariant plot attributes (𝛿𝑝) are modeled in a fully flexible way that allows each plot to 384 

have its own effect on productivity (details on estimation procedure below). In the Economics 385 

literature, 𝛿𝑝 would be called “plot-level fixed effects.” Note that the phrase “fixed effects” has a 386 

different meaning in economics than in ecology (see S1 Glossary). In economics, including 𝛿𝑝 is 387 

said to control for “unobserved heterogeneity” across plots that can be a potential source of bias. 388 

Note that 𝛿𝑝 is not part of the error term, as it would be in mixed (multi-level) models 63 or in a 389 

Common Design as in Equation 1 (i.e., Up and Us). Rather, it is a parameter to be estimated, just 390 

like 𝛽. In other words, 𝛽 and 𝛿𝑝 are assumed to be fixed and estimable, rather than assumed to 391 

follow a distribution. Time-invariant site attributes are not explicitly included in the equation 392 

because they are subsumed into the time-invariant plot attributes (i.e., plots are nested within 393 

sites and so fixed site attributes are controlled via fixed plot attributes). In other words, this 394 
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variable captures all attributes of a plot at a given site that vary little over the study period. Thus, 395 

𝛿𝑝 captures both Up and Us in the decomposition of the error term from the previous section (i.e., 396 

 𝜀𝑝𝑠𝑡 = 𝑈𝑝 +  𝑈𝑠 + 𝑈𝑠𝑡 + 𝑈𝑝𝑡 +  𝜎𝑝𝑠𝑡, where 𝜎𝑝𝑠𝑡 is a random error that only affects productivity 397 

and U are unobserved confounding variables that affect both richness and productivity). 398 

To show how the estimator in Equation 2 can efficiently control for time-invariant confounders, 399 

we subtract the productivity observation within a plot in one year (𝑡 − 1) from the productivity 400 

observation within the same plot in the next year (𝑡), yielding an equation for the change (∆) in 401 

productivity from one year to the next: 402 

∆ln 𝐿𝑖𝑣𝑒𝑀𝑎𝑠𝑠𝑝𝑠𝑡 = 𝛽 ∆ln 𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠𝑝𝑠𝑡 +  ∆𝜇𝑠𝑡 +  ∆𝜀𝑝𝑠𝑡   (3) 403 

The variable 𝛿𝑝, which captures the effects of time-invariant plot attributes, has been differenced 404 

away, allowing for efficient estimation of 𝛽; in other words, we control for time-invariant plot 405 

attributes without having to estimate them and use up many degrees of freedom. In this 406 

differenced version of Equation 2, one can see that we are estimating the effect of richness on 407 

biomass from changes in richness within plots, where the confounding effects of between-plot 408 

differences are absent. Rather than first-differencing the equations to eliminate 𝛿𝑝, one can 409 

instead take deviations from plot-level means, which is the approach we take to estimating 410 

Equation 2 because it can be more efficient. Thus, we can also describe our estimation strategy 411 

as estimating a correlation between deviations of productivity around its mean and the 412 

corresponding deviations in richness around its mean.  413 

The time-varying site attributes (𝜇𝑠𝑡) are also modeled in a fully flexible way that allows a year-414 

specific effect for each site (in the estimation, an indicator for each year is interacted with an 415 

indicator for each site). Explicitly estimating 𝜇𝑠𝑡 flexibly controls for confounding variation due 416 
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to conditions at a site that change through time, such as weather (e.g., time-varying patterns of 417 

temperature and precipitation), herbivory, and surrounding land management conditions. In other 418 

words, this variable captures all year-specific conditions experienced by every plot at a given 419 

site. Thus 𝜇𝑠𝑡 captures Ust in the decomposition of the error term from the previous section 420 

( 𝜀𝑝𝑠𝑡 = 𝑈𝑝 +  𝑈𝑠 + 𝑈𝑠𝑡 + 𝑈𝑝𝑡 +  𝜎𝑝𝑠𝑡). The estimator in Equation 2 is often called a “two-way 421 

fixed-effects estimator” because, by taking deviations from the means, one controls for time-422 

invariant confounding and, by including the site-by-year effects, one controls for time-varying 423 

confounding. 424 

Thus, in contrast to the Common Design in Ecology, we control for a broad suite of plot-level 425 

and site-level confounders without having to measure them directly. The Main Design also 426 

controls for non-linear relationships between the confounding variables and productivity or 427 

richness, as well as linear and non-linear interactions among those variables. Not having to 428 

measure the confounding variables also yields another benefit: if the observable confounders 429 

were measured with error and that error were correlated with the measure of richness, the 430 

Common Design would have another source of bias. Moreover, because the model specification 431 

comprises only the richness variable and a set of binary indicator variables and their interactions, 432 

the risk of misspecification bias from how confounders are modeled is lower. To better 433 

understand how our design differs from more common designs in Ecology such as mixed-effect 434 

modeling approaches and convergent cross-mapping approaches 64, see SI sections S4c and S7.   435 

The term 𝜀𝑝𝑠𝑡 in Equation 2 is a time-varying random error term at the plot level, assumed to 436 

have mean zero and no correlation with ln Richness, i.e., it corresponds to 𝐼𝑝𝑠𝑡 in Figure 1B. 437 

These plot-level errors may be serially correlated (i.e., temporally dependent even after 438 
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conditioning on richness and site-by-year effects), and thus we cluster the standard errors at the 439 

plot level 65. Our clustered estimation of the variance allows for arbitrary serial correlation within 440 

each plot, as well as heteroskedasticity across plots 66,67. Errors at a given site may also be 441 

correlated (even after conditioning on site-by-year effects) and thus, as a robustness check, we 442 

also estimate standard errors clustered at the site level (Table S2). 443 

Our Main Design has weaker assumptions than the Common Design in Ecology, but both have 444 

one assumption in common: there are no unobserved time-varying plot-level confounders in the 445 

error term (no 𝑈𝑝𝑡). In other words, we assume that, after controlling for time-invariant plot and 446 

site attributes that are correlated with richness and productivity, and time-varying site attributes 447 

that are correlated with richness and productivity, the remaining temporal variation in richness in 448 

a plot is “as if randomly assigned,” independently across time. This assumption is equivalent to 449 

assuming that the remaining variation in richness is driven by variables that have no link to 450 

productivity other than through their effect on richness (i.e., Zpst in Figure 1) and thus there is no 451 

correlation between ∆ln 𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠𝑝𝑠𝑡 and ∆𝜀𝑝𝑠𝑡 in Equation 3. If our assumption is correct, we 452 

can give a causal interpretation to the estimate of 𝛽. Unlike prior ecology studies, however, we 453 

assess the sensitivity of our results to violations of this assumption (see Robustness Checks next).  454 

Robustness Checks: Modifying the Main Design 455 

Robustness checks: Model specifications 456 

In the SI (Table S3), we present the results from variations in the specification of Equation 2: (1) 457 

we include a control for species evenness; (2) we change the measure of diversity from species 458 

richness to Simpson’s Diversity index; (3) we include the lagged effect of species richness in the 459 

prior year (ln SpeciesRichnesst-1); and (4) we vary the functional form by (i) taking the natural 460 
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logarithm of productivity but using the untransformed richness values, (ii) using both 461 

untransformed richness and untransformed productivity values, and (iii) using untransformed 462 

richness and untransformed productivity values in a non-linear, quadratic specification (i.e., we 463 

include ln SpeciesRichnesst and ln SpeciesRichness2
t ). 464 

Robustness Checks: Causal assumptions  465 

As noted above, the key, untestable assumption for drawing a causal inference from the estimator 466 

in our Main Design is the following: after controlling for time-invariant plot confounders and 467 

time-varying site confounders, the remaining factors that drive changes in richness only affect 468 

productivity via their effects on richness. We consider potential violations of this assumption and 469 

the implications for our inferences -- i.e., whether our conclusions could change -- by conducting 470 

a series of analyses that rely on alternative assumptions for causal inference (Figure 3). 471 

Instrumental Variable Design for Unobservable Confounders and Reverse Causality 472 

First, we explore the potential violation of our assumption that the effect we are estimating goes 473 

from richness to productivity, and not the other way around. Richness and biomass measures in 474 

our data are taken simultaneously each year, as they are in most ecological data sets. Thus, we 475 

cannot rely on temporal sequencing of the data to rule out reverse causality.  476 

To assess the potential threat of reverse causality, we adopt a statistical approach that is common 477 

in economics and public health, but rare in ecology: an instrumental variable design 68–72. When 478 

its underlying causal assumptions are valid, this design allows researchers to eliminate not only 479 

the influence of reverse causality but also the influence of unobservable confounders, both static 480 

and dynamic. 481 
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To implement this design, we need to measure an attribute of the system that has a relationship 482 

with richness, but, after conditioning on the other plot and site attributes in Equation 2, has no 483 

relationship with productivity other than through its relationship with richness. Such an attribute 484 

is conceptually illustrated by the variable Z in Figs. 1, S4 and S5. In economics and biostatistics, 485 

Z is called an instrumental variable (IV) or a surrogate variable. An example of a potential IV is 486 

randomization of planted richness by an experimenter. In field experiments, randomization of 487 

richness helps isolate the causal effect of richness on productivity, but only when the 488 

randomization affects productivity in a plot solely through its effect on richness, an assumption 489 

called excludability or the exclusion restriction 73. In other words, one must assume there is no 490 

arrow going from Z directly to P in Fig. 1. 491 

In the absence of randomization, one must use theory and experience to identify a naturally 492 

occurring IV (reviewed in 74). Each of the plots in our sample are unmanipulated plots that are 493 

embedded in blocks of manipulated plots in the Nutrient Network. In other words, each 494 

unmanipulated plot in our sample is surrounded by a set of plots with experimental nutrient 495 

additions (see 75). These manipulated experimental plots received randomized amounts of 496 

nutrient additions, which subsequently affected the experimental plots’ richness76. We assume 497 

that the experimentally manipulated richness in these plots can also affect the richness in 498 

unmanipulated plots in the same block through ecological dispersal channels but does not affect 499 

the productivity of these unmanipulated plots except through the effect on the plots’ richness (an 500 

assumption made more plausible by the randomization of nutrients in the neighboring plots). If 501 

that assumption is correct (called an “excludability assumption”), we can use the average 502 

richness of an unmanipulated plot’s neighboring manipulated plots in the same block as an IV 503 
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for richness in the unmanipulated plot. The SI Section 6bii provides justification and further 504 

discussion of this IV. 505 

The cost of using the IV design is that we can only estimate the average effect on productivity 506 

for the subset of the changes in richness that are affected by the IV. This subset is comprised of 507 

what are called “compliers” – plot-year observations for which the richness value would have 508 

been different had the average richness in surrounding plots been different. Thus, the IV design 509 

has much lower statistical power than our Main Design74,77. 510 

To implement the IV design, we use a two-stage, least squares estimator26 :  511 

First Stage: ln 𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠𝑝𝑠𝑡 =  𝛾𝐼𝑉 + 𝛿𝑝 +  𝜇𝑠𝑡 + 𝜗𝑝𝑠𝑡       (4)  512 

Second Stage: ln 𝐿𝑖𝑣𝑒𝑀𝑎𝑠𝑠𝑝𝑠𝑡 = 𝛽 ln 𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠𝑝𝑠𝑡
̂ +  𝛿𝑝 + 𝜇𝑠𝑡 +  𝜀𝑝𝑠𝑡  (5) 513 

In the first stage (Equation 4), we predict richness, and, in the second stage, we use the predicted 514 

values of richness to estimate the effect of richness on productivity (see Table S8 for the results 515 

from both stages). We can reject the null hypothesis of a weak instrument using the Montiel-516 

Pflueger effective F-statistic, which is a test that is robust to heteroscedasticity, serial correlation, 517 

and clustering; 78). For further discussions of the IV design and its assumptions, see SI Section 518 

6b.ii.  519 

Blocking a Mechanism for Reverse Causality 520 

As an alternative approach to address the potential threat of reverse causality in our design, we 521 

posit a mechanism through which productivity affects richness: shading (based on 79,80). 522 

Although productivity could affect species richness through non-light pathways, such as soil 523 

resource use, the effect of productivity on richness is expected to be, at least in part, mediated by 524 
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reductions in light from increased biomass that, in turn, reduces richness in a plot 80. As an 525 

estimate of shading, we measure the fraction of photosynthetically active radiation (e.g., light 526 

used by plants) that reaches the soil. See SI Section S7b for details. 527 

If the estimated negative relationship between richness and productivity in Figure 2 were an 528 

artifact of reverse causality, then putting our shading variable in Equation 2 as a covariate would 529 

block the effect of productivity on richness that arises via shading. The sign of the coefficient on 530 

richness (β) would then become positive (or small and statistically insignificant if the true 531 

relationship between richness and productivity were zero). Yet the estimated effect remains 532 

unchanged (Figure 3). If shading were not an important mechanism through which productivity 533 

would affect richness in our sample, or if our measure of shading is a poor measure of the 534 

shading mechanism, our mechanism-blocking design would fail to quantify the potential threat 535 

of reverse causality. For this reason, we also implement an instrumental variables design, 536 

described next, that makes different assumptions to account for reverse causality.  537 

Bracketing the “True Causal Effect”: Accounting for potential bias from dynamics  538 

The IV design not only addresses reverse causality but it also addresses all forms of dynamic, 539 

plot-level confounding variables (e.g., past productivity). However, it relies on untestable 540 

assumptions that may not be satisfied (e.g., excludability assumption). To supplement that 541 

analysis, we also explored a range of potential sources of bias from dynamic confounders. Here, 542 

we report on the methods used for one of these analyses, with results shown in Fig. 3. The other 543 

analyses and methods are reported in the SI Section S6. 544 

In this analysis, we consider the possibility that prior productivity affects both current richness 545 

and productivity. We re-estimate the effect of richness on productivity using a lagged-dependent 546 
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variable (LDV) design 81, which relies on different causal assumptions for identifying a causal 547 

effect.  The Main Design assumes that the relevant confounders are time-invariant over the study 548 

period, or they vary over time at the site level rather than the plot level (e.g., site and plot-level 549 

differences in evolutionary history, age in community assembly, grazing intensity at a site, and 550 

history of disturbances and recovery stage in each plot). Instead, the LDV design considers: 551 

“What if current species richness and productivity were determined by last year’s productivity, in 552 

addition to, or instead of, site-level conditions varying through time (e.g., precipitation)?” The 553 

LDV design, in contrast to the Main Design, assumes that the relevant confounders vary over 554 

time at the site level and, at the plot level, their static and dynamic effects can be controlled by 555 

controlling for past productivity (in other words, the effects of confounders are mediated directly 556 

and indirectly through prior productivity at the plot level). To achieve this control, we estimate 557 

an equation of the following form: 558 

ln 𝐿𝑖𝑣𝑒𝑀𝑎𝑠𝑠𝑝𝑠𝑡 = 𝛽 ln 𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠𝑝𝑠𝑡 +  𝜃 ln 𝐿𝑖𝑣𝑒𝑀𝑎𝑠𝑠𝑝𝑠(𝑡−1) +  𝜇𝑠𝑡 +  𝜀𝑝𝑠𝑡   (6) 559 

Under certain conditions, the estimated effects of richness in our Main Design and in the LDV 560 

design “bracket” the true causal effect26,82. If the assumptions of the Main Design are valid, but 561 

the LDV design are invalid, the estimate from the LDV design provides an upper bound 562 

estimate. If the assumptions of the LDV are valid, but the Main Design are invalid, the estimate 563 

from the Main Design provides a lower bound estimate. As observed in Fig. 3B, this bracketing 564 

exercise implies the true effect is negative. 565 

Sensitivity test: Would unobserved confounding variables change our conclusions?  566 

To further explore the potential effect of violations in our assumption that there are no time-567 

varying plot attributes that are systematically correlated with richness and productivity, we 568 
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explore how our estimated effect would change if there were an unobserved confounder that was 569 

negatively correlated with richness and positively correlated with productivity (i.e., a source of 570 

bias that would yield a spurious negative causal relationship between richness and productivity 571 

in our design). Said another way, this analysis answers the question, “How much correlation 572 

between the unobserved variable and the richness and productivity variables would be sufficient 573 

to change our conclusions?”  574 

We applied a sensitivity test following the method introduced by Altonji et al.83 and further 575 

developed by Oster 35. More details on the method are in SI Section S7a and Table S7. We set π 576 

= -0.10 and Rmax = 1, which would mimic a powerful potential unobserved confounder in our 577 

design: a confounder that is so strongly correlated with productivity and richness that, were we 578 

able to observe it (along with the other variables in the equation), we could predict with near 579 

certainty which of two plots would have higher productivity and which would have higher 580 

richness. Estimating the effect of richness on productivity with those implausible parameter 581 

values yields an upper bound on the impact of this confounder on the estimated effect of richness 582 

on productivity in our Main Design. 583 

The estimated upper bound is still negative: a 10 % increase in richness implies a 2% decrease in 584 

productivity, on average. In other words, in the presence of an unobserved confounder that is 585 

negatively associated with richness and positively associated with productivity relationship (thus 586 

creating some spurious negative correlation between richness and productivity), we would still 587 

infer that there is a negative relationship between richness and productivity. To infer a positive 588 

relationship between the two variables would require an infeasible value for 𝜋: it requires  𝜋>1, 589 

which implies the confounder would have to be more influential in explaining variation of 590 
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productivity than the plot-level, time-invariant attributes and the site-level, time-varying 591 

attributes that are in Equation 2. 592 

For completeness, we also considered an unobservable confounder that was positively associated 593 

with both richness and productivity and thus could be masking some of the negative effect of 594 

richness on productivity (i.e., positive selection bias). In other words, we also calculate a lower 595 

bound on the estimated effect by setting 𝜋 = 0.10 (see SI Section S6b.ii). 596 

Testing hypotheses about moderators of the causal effect  597 

In the SI (Tables S4-S6), we present results from hypothesis tests about moderators of the plot-598 

level richness effect on productivity. The potential moderators are: (1) the average level of 599 

productivity at a site (i.e., does the effect of richness on productivity differ between high versus 600 

low productivity sites, as reported by 39?); and (2) the average level of richness at a site (i.e., 601 

does the effect of richness on productivity differ between high versus low richness sites, as 602 

hypothesized by 84?). 603 

To conduct these tests, we expanded Equation 2 by adding an interaction term between ln 604 

Richnesspst and the moderator variables. We measured site-level productivity in four ways, which 605 

vary by the discreteness of the measure and by the way time is incorporated into the measure. In 606 

terms of discreteness of the measure, we measured productivity both as a continuous variable 607 

and, using classifications from Wang et al.39, as categorical variables for high, medium, and low 608 

productivity. Wang et al.39 used cross-sectional analyses to study this moderator. Because we 609 

have longitudinal data, we can measure the continuous and categorical measures of site-level 610 

productivity in two ways: average productivity per site over the entire time series and site-level 611 
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productivity per year. More details on the motivations for selecting these moderating variables 612 

for analysis can be found in the SI (section S5). 613 

Exploring effect of species richness on biomass conditional on species type  614 

We assign the labels “rare” and “non-rare” based on relative abundance at each site, and species’ 615 

origin was origin was determined by the site coordinators in the Nutrient Network (SI: Section 616 

S8). We define relative abundance based on relative aboveground cover. We use relative cover 617 

as our metric for abundance, because we believe better captures the range of mechanisms 618 

through which rare species may decrease productivity, including taking space formerly occupied 619 

by more productive species. However, we test the sensitivity of our results to this decision by 620 

also using a relative frequency metric to define rarity (see SI Section S8c.ii). In Section S8c.iii, 621 

we also test the sensitivity of our conclusions to different cutoff values for assigning a species to 622 

the “rare” and “non-rare” categories. We modify and use the Main Design for each way of 623 

defining the four species groups. Finally, using Chi Squared tests, we tested the null hypothesis 624 

that the species richness of the groups had the same effects on live biomass.  625 

Data Availability 626 

The processed data used in this study have been deposited on Zenodo under DOI 627 

10.5281/zenodo.7675340. The raw data for unmanipulated plots that were not included in the 628 

analyses, because they did not meet the inclusion criteria, are available under restricted access 629 

for which permission can be obtained by contacting the Nutrient Network at https://nutnet.org.  630 

Code Availability 631 

All analysis code and output are available through our GitHub project site 632 

https://github.com/LauraDee/NutNetCausalinf and are released on Zenodo  633 

https://secure-web.cisco.com/1OhVj5ZX6Bed5fGZ_KTVAhOB3lRTrX0u5ZzaAQIK4FLEIuWW9E4pD53Ln1DPd_PdBskHt3MqCJussuX_bqvz50Tzg1lxByFeGnWRMhIrvBVtSXm0P0nxgLVCEOOVpD-zyoTdRrSjlWfm4U1-w0T8_pkoepYOQQRNDCVy0QaMFsF7ap0PH8KSTZD2Ga9QmBM3PdukJvU_vXIwACAfVh7lrWjxfxxBRiqgn12K0a2B5NlPLo9sqO5Up64KQ1ni51Ox9DMkoDSX6BbI1SXlDa1GXLwIoP8AtnZdSp-OXMY5FEUQmuWAJAeU7zo_GG_zYG8R7hPQFxmoC4QdmFRZFDMPM-xyNJxzXzDYT3r37zHvN5WI-Y517TyEMWzOQEUonVQV1kd9pLjvd6LLo8Oxmrc8rAcVpf9lrPivrbEF3PhIdh6RY-q1XJxPgVdlzDmGYks2_/https%3A%2F%2Fnam02.safelinks.protection.outlook.com%2F%3Furl%3Dhttps%253A%252F%252Fnutnet.org%252F%26data%3D05%257C01%257Cpferrar5%2540jhu.edu%257C9686ae1b0fbb41da140b08db006ecbc2%257C9fa4f438b1e6473b803f86f8aedf0dec%257C0%257C0%257C638104248126137919%257CUnknown%257CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%253D%257C3000%257C%257C%257C%26sdata%3DzU%252B1vNIyvXvU%252BLNSY30vT8YtYKn8Z7FA8cGSYxcFWrs%253D%26reserved%3D0
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10.5281/zenodo.7675340. All code for data processing, including of the raw data, main analyses, 634 

and supplemental analyses is available.  635 
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Figure Legends/Captions  861 
 862 
Figure 1. Challenges in Estimating the Causal Effect of Species Richness on Productivity. 863 

A. Experimental designs permit credible causal inferences with few modeling assumptions. Yet 864 

experiments often manipulate richness in random permutations, plant limited sets of species, and 865 

weed out colonizers. Such designs can yield ecological processes that differ from processes in 866 

natural systems. In panel A, when common species are more likely to be planted in experiments 867 

than rare species, the proportion of common species is higher than the proportion of rare species 868 

regardless of the planted richness level. In contrast, in natural communities, higher richness is 869 

associated with more rare species than common species. B. Observational designs include natural 870 

processes but are challenged by confounding variables (U) associated with both richness (R) and 871 

productivity (P); e.g., precipitation can increase both R and P, thereby inducing a positive 872 

correlation between the two, even if the true causal relationship were zero or negative. Some of 873 

these confounding variables, like topography, may be time-invariant (or slow-changing) over the 874 

study period at the level of the plot (Up) or site (Us). Others may be time-varying at the site (Ust), 875 

such as weather, or the plot (Upt), such as micro-climate. To estimate the effect of R on P without 876 

bias does not require data on variables I that only affect P, or Z that only affect R, nor on 877 

mechanisms (M), such as selection or complementarity. However, data on Z and M can help 878 

address unobserved confounders and differentiate the effect of R on P from the effect of P on R. 879 

 880 

Figure 2. The effect of biodiversity on productivity, estimated as the mean % change in 881 

productivity from a 1% increase in richness. The top panel summarizes the assumptions needed 882 

for drawing causal inferences in each design. A red X on an arrow implies that the design blocks 883 

the confounding pathways described in the box with dotted lines. The Common Design, a 884 

multivariate mixed model that is common in ecological analyses of observational data, requires 885 

much stronger assumptions to interpret estimates as a causal effect than our Main Design, 886 

assumptions that are unlikely to be met in these data. The bottom panel shows the estimates with 887 

95% confidence intervals for two designs: A. Our Main Design, a panel data design (see SI 888 

Section S4) with n = 1231 observations; and B. The Common Design, a multivariate mixed 889 

model (see SI: section S7) with n = 675.  The positive estimated effect from the Common Design 890 

is not driven by having to drop sites that did not measure all the covariates (the sites in France, 891 

Portugal, and South Africa did not collect the soil data). If we use only the 675 observations 892 

from the multi-level modeling in our Main Design, we still obtain a negative estimated effect of 893 

richness on productivity, albeit less precisely estimated because of the smaller sample size (see 894 

SI Section 7). 895 

 896 

 897 

 898 

 899 

 900 
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Figure 3. The effect of species richness on productivity (robustness checks), estimated as the 901 

mean % change in productivity from a 1% increase in richness. The bottom left panel shows the 902 

estimates of mean effect with 95% confidence intervals, except for the sensitivity test estimate, 903 

from 1) our Main Study Design (n = 1231), 2) a Dynamic Panel Design (n = 1063), 3) a 904 

Sensitivity Test (n = 1231), 4) a Mechanism Blocking Design (n = 1063), and 5) an Instrumental 905 

Variable Design (n = 1212). The diagrams summarize the assumptions needed for drawing 906 

causal inferences in each design, where a red X on an arrow implies that the confounding 907 

pathway are blocked by the design. Using four approaches that make assumptions that differ 908 

from the assumptions in our Main Design (Figure 2A), we find no evidence for a positive effect 909 

of species richness on productivity.  910 
 911 

Figure 4. Composition and its Role in the Effect of Species Richness on Productivity. This 912 

figure illustrates why results from observational and experimental studies may differ. 913 

Composition, the identities of species that could potentially grow at a site at a given level of 914 

richness, makes species richness a heterogeneous treatment in both experimental and non-915 

experimental systems (Panel A). The way richness changes in nature can thus influence how 916 

changes in richness affect productivity (Panel B). In Panel B (left), Richness has changed from 2 917 

to 3 species in case (i), a case where rare species take space formerly occupied by more 918 

productive dominant species. In case (ii), where Richness also has changed from 2 to 3 species, 919 

rare species have negative effects on dominant species productivity (e.g., via below-ground 920 

competition or allelopathy). Panel B (right) presents a species rank abundance curve that 921 

illustrates that most species in high diversity grasslands are rare. Thus, as diversity changes from 922 

low values to higher values, the way in which rare species affect productivity will become more 923 

influential in affecting productivity levels. For simplicity, Figure 4 focuses on a contrast between 924 

rare and dominant species, but the ideas can also apply to differences between native and non-925 

native species. Plant species images in Panel B are from Tracy Saxby, IAN Image Library 926 

(https://ian.umces.edu/imagelibrary). 927 

 928 

Figure 5. Estimates of the mean effect of species richness on biomass production 929 

conditional on species type. All estimated mean effects are on a log-inverse-hyperbolic-sine 930 

scale and shown with 95% confidence intervals and with n = 1,175 within 42 sites. Given the 931 

inverse hyperbolic sine transformation of the richness variable, the estimated effects cannot be 932 

interpreted as elasticities without further manipulation, but their signs and relative magnitudes 933 

can be compared. We can reject the null hypothesis that the estimated effects of these four types 934 

of species are equal (ChiSq = 9.82, Pr(ChiSq = 0.02)). Dropping observations from one site 935 

without pre-treatment data to define the species types does not change our estimates in Figure 2 936 

and 3.  937 
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confounders at plot or site levels; (ii) no 

unobserved time-varying confounders at 

plot or site levels; (iii) no reverse causality 

Biodiversity Productivity

Controls for observed plot and site 
attributes

Controls for observed and unobserved
time-invariant plot and site attributes 

and time-varying site attributes 

Main Study Design

Assumes: (i) no unobserved, time-varying 

confounders at plot level; (ii) no reverse 

causality

Biodiversity Productivity
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Biodiversityt

Dynamic Panel Design

Productivityt

Sensitivity Test
How would an unobserved, time-varying 
confounding variable at plot level in Our 

Main Design change the estimated effect? 

Controls for lagged productivity effects 
(Productivityt-1)

Assumes: (i) no unobserved, time-invariant confounders at 
plot or site levels; (ii) no unobserved time-varying 
confounders at plot level; (iii) no reverse causality, unless 

(i), (ii), or (iii) are mediated by lagged productivity

Controlling for Reverse Causality

Biodiversity Productivity

Assumes: (i) no unobserved, time-varying 
confounders at plot level; (ii) no reverse 
causality that is not mediated by shading 

mechanism

Shade

Biodiversity 

Controlling for Reverse Causality

Productivity

Controls for observed and unobserved, time-
invariant and time-varying plot and site attributes

Assumes: Z is correlated with biodiversity and 

has no direct effect on productivity, after 
controlling for other plot, site, and year attributes.

Z
Instrumental 
variable

Controls for observed and unobserved time-invariant 

plot and site attributes and time-varying site attributes 

Assumes: (i) no unobserved, time-varying 
confounders at plot level; (ii) no reverse causality

Biodiversity Productivity

Main Study Design
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R=3

Rare

Dominant

Shapes refer to species’ abundances

within communities. Colors refer to species.

p
1
 is the probability of getting Version 1, p

2
 is the probability of getting Version 2

R=4, Version 2

R=4, Version 1p
1

p
2

The effect on productivity (P) when richness (R) changes from one value 
to another value depends on (|) the compositions (C) at the two values.

A. Richness is a heterogeneous treatment: R|C    P
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B. Changes in richness in natural ecosystems

Richness changes in multiple ways
Each way may affect productivity differently 

Richness=2

Richness=3i. Richness=3ii.

-

-

Not all compositions are equally likely in nature  
Higher diversity is associated with more rare species 
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