INTRODUCTION (Not) Like a Rock

Here's how January 21, 2000 panned out for three different elements of the natural order.

Element 1: A Rock

Here is a day in the life of a small, gray-white rock nestling amidst the ivy in my St. Louis backyard. It stayed put. Some things happened to it: there was rain, and it became wet and shiny; there was wind, and it was subtly eroded; my cat chased a squirrel nearby, and this made the rock sway. That's about it, really. There is no reason to believe the rock had any thoughts, or that any of this felt like anything to the rock. Stuff happened, but that was all.

Element 2: A Cat

Lolo, my cat, had a rather different kind of day. About 80% of it was spent, as usual, asleep. But there were forays into the waking, wider world. Around 7 A.M. some inner stirring led Lolo to exit the house, making straight for the catflap from the warm perch of the living room sofa. Outside, bodily functions doubtless dominated, at least at first. Later, following a brief trip back inside (unerringly routed via the catflap and the food tray), squirrels were chased and dangers avoided. Other cats were dealt with in ways appropriate to their rank, station, girth, and meanness. There was a great deal of further sleeping.

Element 3: Myself

My day was (I think) rather more like Lolo's than like the rock's. We both (Lolo and I) pursued food and warmth. But my day included, I suspect, rather more outright

1

contemplation. The kind of spiraling meta-contemplation, in fact, that has sometimes gotten philosophy a bad name. Martin Amis captured the spirit well:

I experienced thrilling self-pity. "What will that mind of your get up to next?" I said, recognizing the self-congratulation behind this thought and the self-congratulation behind that recognizing that recognition.

Steady on. (Martin Amis, The Rachel Papers, p. 96)

I certainly did some of that. I had thoughts, even "trains of thought" (reasonable sequences of thinkings such as "It's 1 P.M. Time to eat. What's in the fridge?" and so on). But there were also thoughts about thoughts, as I sat back and observed my own trains of thought, alert for colorful examples to import into this text.

What, then, distinguishes cat from rock, and (perhaps) person from cat? What are the mechanisms that make thought and feeling possible? And what further tricks or artifices give my own kind of mindfulness its peculiar self-aware tinge? Such questions seem to focus attention on three different types of phenomena:

- 1. The feelings that characterize daily experience (hunger, sadness, desire, and so on)
- 2. The flow of thoughts and reasons
- 3. The meta-flow of thoughts about thoughts (and thoughts about feelings), of reflection on reasons, and so on.

Most of the research programs covered in this text have concentrated on the middle option. They have tried to explain how my thought that it is 1 P.M. could lead to my thought about lunch, and how it could cause my subsequent lunchseeking actions. All three types of phenomena are, however, the subject of what philosophers call "mentalistic discourse." A typical example of mentalistic discourse is the appeal to beliefs (and desires) to explain actions. The more technical phrase "propositional attitude psychology" highlights the standard shape of such explanations: such explanations pair mental attitudes (believing, hoping, fearing, etc.) with specific propositions ("that it is raining," "that the coffee is in the kitchen," "that the squirrel is up the tree," etc.) so as to explain intelligent action. Thus in a sentence such as "Pepa hopes that the wine is chilled," the that-construction introduces a proposition ("the wine is chilled") toward which the agent is supposed to exhibit some attitude (in this case, hoping). Other attitudes (such as believing, desiring, fearing, and so on) may, of course, be taken to the same proposition. Our everyday understandings of each other's behavior involve hefty doses of propositional attitude ascription: for example, I may explain Pepa's reluctance to open the wine by saying "Pepa believes that the wine is not yet chilled and desires that it remain in the fridge for a few more minutes."

Such ways of speaking (and thinking) pay huge dividends. They support a surprising degree of predictive success, and are the common currency of many of our social and practical projects. In this vein, the philosopher Jerry Fodor suggests that commonsense psychology is *ubiquitous*, almost *invisible* (because it works so well), and practically *indispensable*. For example, it enables us to make precise plans on the basis of someone's 2-month-old statement that they will arrive on flight 594 on Friday, November 20, 1999. Such plans often work out—a truly amazing fact given the number of physical variables involved. They work out (when they do) because the statement reflects an intention (to arrive that day, on that flight) that is somehow an active shaper of my behavior. I desire that I should arrive on time. You know that I so desire. And on that basis, with a little cooperation from the world at large, miracles of coordination can occur. Or as Fodor more colorfully puts it:

If you want to know where my physical body will be next Thursday, mechanics—our best science of middle-sized objects after all, and reputed to be pretty good in its field—is no use to you at all. Far the best way to find out (usually in practice, the only way to find out) is: ask me! (Fodor, 1987, p. 6, original emphasis)

Commonsense psychology thus works, and with a vengeance. But why? Why is it that treating each other as having beliefs, hopes, intentions, and the like allows us successfully to explain, predict, and understand so much daily behavior? Beliefs, desires, and so on are, after all, invisible. We see (what we take to be) their effects. But no one has ever actually seen a belief. Such things are (currently? permanently?) unobservable. Commonsense psychology posits these unobservables, and looks to be committed to a body of law-like relations involving them. For example, we explain Fred's jumping up and down by saying that he is happy because his sister just won the Nobel Prize. Behind this explanation lurks an implicit belief in a law-like regularity, viz. "if someone desires x, and x occurs, then (all other things being equal) they feel happy." All this makes commonsense psychology look like a theory about the invisible, but causally potent, roots of intelligent behavior. What, then, can be making the theory true (assuming that it is)? What is a belief (or a hope, or a fear) such that it can cause a human being (or perhaps a cat, dog, etc.) to act in an appropriate way?

Once upon a time, perhaps, it would have been reasonable to respond to the challenge by citing a special kind of spirit-substance: the immaterial but causally empowered seat of the mental [for some critical discussion, see Churchland (1984), pp. 7–22, and Appendix I of the present text]. Our concerns, however, lie squarely with attempts that posit nothing extra—nothing beyond the properties and organization of the material brain, body, and world. The goal is a fully materialistic story in which mindware emerges as *nothing but* the playing out of ordinary physical states and processes in the familiar physical world. Insofar as the mental is in any way *special*, according to these views, it is special because it depends on some

particular and unusual ways in which ordinary physical stuff can be built, arranged, and organized.

Views of this latter kind are broadly speaking *monistic*: that is to say, they posit only one basic kind of stuff (the material stuff) and attempt to explain the distinctive properties of mental phenomena in terms that are continuous with, or at least appropriately grounded in, our best understanding of the workings of the nonmental universe. A common, but still informative, comparison is with the oncelively (sic) debate between vitalists and nonvitalists. The vitalist held that living things were quite fundamentally different from the rest of inanimate nature, courtesy of a special extra force or ingredient (the "vital spark"), that was missing elsewhere. This is itself a kind of dualism. The demonstration of the fundamental unity of organic and inorganic chemistry (and the absence, in that fundament, of anything resembling a vital spark) was thus a victory—as far as we can tell—for a kind of monism. The animate world, it seems, is the result of nothing but the fancy combination of the same kinds of ingredients and forces responsible for inanimate nature. As it was with the animate, so materialists (which is to say, nearly all those working in contemporary cognitive science, the present author included) believe it must be with the mental. The mental world, it is anticipated, must prove to depend on nothing but the fancy combination and organization of ordinary physical states and processes.

Notice, then, the problem. The mental certainly seems special, unusual, and different. Indeed, as we saw, it is special, unusual, and different: thoughts give way to other thoughts and actions in a way that respects reasons: the thought that the forecast was sun (to adapt the famous but less upbeat example) causes me to apply sunscreen, to don a Panama hat, and to think "just another day in paradise." And there is a qualitative feel, a "something it is like" to have a certain kind of mental life: I experience the stabbings of pain, the stirrings of desire, the variety of tastes, colors, and sounds. It is the burden of materialism to somehow get to grips with these various special features in a way that is continuous with, or appropriately grounded in, the way we get to grips with the rest of the physical world—by some understanding of material structure, organization, and causal flow. This is a tall order, indeed. But, as Jerry Fodor is especially fond of pointing out, there is at least one good idea floating around—albeit one that targets just one of the two special properties just mentioned: reason-respecting flow.

The idea, in a supercompressed nutshell, is that the power of a thought (e.g., that the forecast is sun) to cause further thoughts and actions (to apply sunscreen, to think "another day in paradise") is fully explained by what are broadly speaking *structural* properties of the system in which the thought occurs. By a structural property I here mean simply a physical or organizational property: something whose nature is explicable *without* invoking the specific thought-content involved. An example will help. Consider the way a pocket calculator outputs the sum of two numbers given a sequence of button pushings that we interpret as inputting "2"

"+" "2." The calculator need not (and does not) understand anything about numbers for this trick to work. It is simply structured so that those button pushings will typically lead to the output "4" as surely as a river will typically find the path of least resistance down a mountain. It is just that in the former case, but not the latter, there has been a process of design such that the physical stuff became organized so as its physical unfoldings would reflect the arithmetical constraints governing sensible (arithmetic-respecting) transitions in number space. Natural selection and lifetime learning, to complete the (supercompressed) picture, are then imagined to have sculpted our brains so that certain structure-based physical unfoldings respect the constraints on sensible sequences of thoughts and sensible thought-action transitions. Recognition of the predator thus causes running, hiding, and thoughts of escape, whereas recognition of the food causes eating, vigilance, and thoughts of where to find more. Our whole reason-respecting mental life, so the story goes, is just the unfolding of what is, at bottom, a physical and structural story. Mindfulness is just matter, nicely orchestrated.

(As to that *other* distinctive property, "qualitative feel," let's just say—and see Appendix II—that it's a problem. Maybe that too is just a property of matter, nicely orchestrated. But how the orchestration *yields* the property is in this case much less clear, even in outline. So we'll be looking where the light is.)

In the next eight chapters, I shall expand and pursue that simple idea of mindware (selected aspects!) as matter, nicely orchestrated. The chase begins with a notion of mind as a kind of souped-up pocket calculator (mind as a familiar kind of computer, but built out of meat rather than silicon). It proceeds to the vision of mind as dependent on the operation of a radically different *kind* of computational device (the kind known as artificial neural networks). And it culminates in the contemporary (and contentious) research programs that highlight the complex interactions among brains, bodies, and environmental surroundings (work on robotics, artificial life, dynamics, and situated cognition).

The narrative is, let it be said, biased. It reflects my own view of what we have learned in the past 30 or 40 years of cognitive scientific research. What we have learned, I suggest, is that there are many deeply different ways to put flesh onto that broad, materialistic framework, and that some once-promising incarnations face deep and unexpected difficulties. In particular, the simple notion of the brain as a kind of symbol-crunching computer is probably too simple, and too far removed from the neural and ecological realities of complex, time-critical interaction that sculpted animal minds. The story I tell is thus a story of (a kind of) inner symbol flight. But it is a story of progress, refinement, and renewal, not one of abandonment and decay. The sciences of the mind are, in fact, in a state of rude health, of exuberant flux. Time, then, to start the story, to seek the origins of mind in the whirr and buzz of well-orchestrated matter.

APPENDIX I

Some Backdrop

Dualism, Behaviorism, Functionalism, and Beyond

The present text begins quite close to where most philosophical treatments end: with recent attempts to understand mindfulness using the tools of neuroscience, cognitive psychology, and artificial intelligence. In these brief notes I offer some rough-and-ready background, in the form of a few cameos of a few historically important positions.

1. Dualism

When we introspect, or reflect on our own thoughts, feelings, and beliefs, we do not find anything much like physical objects. Beliefs may be important or trivial, feelings strong or weak, but not literally big, or colored, or heavy, and so on. On the evidence of introspection alone, then, we might be inclined to conclude that the mind is something quite separate from, and deeply distinct from, the physical world. This perfectly natural viewpoint is known as dualism.

Considered as a philosophical theory of the nature of mind, Dualism is somewhat uninformative. It tells us what the mind is not; it is not a normal physical item like a body, brain, table, or chair. But it is embarrassingly silent about what it might actually be. But still, knowing that the moon is not made of green cheese is quite handy, even if you do not know what it is actually made of instead. So let us begin by giving the dualists' claim—that the mind is not a physical item—the benefit of the doubt. The question then arises: What is the relationship between this nonphysical item and the physical body that accompanies it around the world?

When dualism was in its heyday, around the time of the seventeenth century, there were three major contenders as an account of this relation:

1. Parallelism

Some Backdrop

- 2. Epiphenomenalism
- 3. Interactionism
- 1. According to the parallelist, the mind and the body are distinct and causally isolated. Neither is capable of affecting the other. How, then, are we to account for the appearance of causal linkage; the impression we have of wishes causing action and blows to the head causing hallucinatory experiences? Synchronization was to be the key. God, or some other force or agency, had arranged matters so that the two causal orders—the mental and the physical—would run along in harmony, like two ideally accurate clocks set to the same initial time and left to run for eternity; neither sustaining or consulting the other, but the two in perfect accord nonetheless.

The trouble with parallelism is who set the clocks? And why, if it was God, did God resort to such a clumsy piece of trickery?

- 2. Epiphenomenalism is like parallelism in asserting the causal isolation of the physical from the mental. But it relaxes the requirement in the other direction. The epiphenomenalist allows that the physical can cause the mental, but denies that the mental can affect the physical. The mind, on this account, is somewhat (though only somewhat) like the exhaust fumes from a car. The fumes accompany and are caused by the activity of the engine. But they do not (typically) power the car. Just so, the epiphenomenalist holds that beliefs and thought and other mental experiences accompany and are caused by brain activity. But they do not actually cause the body to act. They are just the icing on the cognitive cake. This is a counterintuitive prospect indeed; it certainly feels as if it is my desire for a Pete's Wicked Ale that prompts the trek to the local hostelry. Insofar as the whole impetus for accounts that reserve a special place for mental phenomena comes from a desire to respect the introspective evidence, this seems an odd conclusion to have to accept.
- 3. Interactionism is the most immediately appealing of the dualist positions. It treats the mental and the physical as distinct but causally integrated items, thus avoiding some of the metaphysical excesses and introspective implausibility of parallelism and epiphenomenalism. The most famous form of interactionism is Cartesian dualism. On Descartes' famous model, the mind is a totally nonphysical substance that acts on the body by influencing the pineal gland at the base of the neck. The body, by the same route, influences the mind.

The problem most commonly urged against Cartesian dualism is: How do two such distinct items—the body and the mind—manage to be parts of a single causal network? We understand, we think, how the physical can affect the physical; but how can the nonphysical do so?

¹These notes are based on some of my longstanding classroom teaching materials, and in one or two places I wonder whether something might have been unwittingly borrowed from some other source. My best efforts at checking this reveal no such unacknowledged borrowings. But should something have slipped the net of appropriate citation, I hereby apologize: and do let me know!

Some Backdrop

The argument has some force. Cartesian dualism would certainly gain in plausibility if we had some such account. Still, we allow that many things that are not at all *like* physical objects may still act on them. Witness (to take a classic case) the iron filings acted on by a magnetic field. So it is not obviously the case that Cartesian interactionism is *conceptually* impossible.

So why give up dualism?

Dualist doctrines of the kind outlined above have been largely abandoned by science and philosophy. The mind is now taken to be grounded in the physical body in such a way that the problem of interaction need not arise. Many factors have contributed to dualism's downfall. Probably the most important of these are the following.

- 1. The obvious dependence of the mental on the physical. Drugs (such as Prozac, or ecstasy), which affect the physical constitution of the brain in moderately well understood ways, systematically affect our moods and emotions. Brain damage—for example, an iron spike through the prefrontal cortex—is likewise disruptive. The evolution of intelligent creatures is correlated with changes in brain structure. All this suggests (as presented in Churchland, 1984) that we must at least look for a systematic correlation of brain activity and mental activity. Why, then, assume that there are two items here, in need of correlation, instead of one item exhibiting a variety of properties? Materialism—the thesis that we are dealing with just one kind of item or substance, viz. physical matter—seems to win out on grounds of simplicity.
- 2. The *positive* arguments in favor of dualism are unconvincing. These are (a) the "how could . . . ?" argument, and (b) the argument from introspection.
 - a. The "how could . . . ?" argument relies on finding properties of human beings and asking "Now how could any mere *physical* system do *that*?" Descartes suggested that *reasoning* and *calculation* were beyond any mere physical system. But today, with our intuitions molded by shops full of Palm Pilots, G4s and even modest pocket calculators, we are unlikely to choose calculation to fill in the blank. Now people are more likely to choose some ability like "falling in love," "appreciating a symphony," or "being creative." But work in neuroscience and artificial intelligence is steadfastly eroding our faith that there are some things that no mere physical system could ever do. As such, the fact that we do X, Y, or Z no longer cuts much ice as an argument to the effect that we *cannot possibly* be "mere" physical systems.
 - b. The argument from introspection is a harder nut to crack. The idea is that we *just know* that a belief is not a state of brain or body. We can tell just by looking "inside ourselves" and seeing what a feeling is *like*. The trouble here is that introspection is a weak kind of evidence. Granted, we know that our feelings do not *strike us* as being brain states. But so what? I may have a feeling in my stomach that does not strike me as being a mild case

of salmonella. But it might still *be* a mild case of salmonella for all that. This oversimplifies the issue, but the general point is clear. Unless someone can show that what introspection reveals cannot be the *very same thing* as a bodily state, albeit under a different description, we need not accept introspection as decisive evidence in favor of dualism.

Dualism, then, lacks explanatory force and independent positive evidence in its favor. How else might we conceive the mind?

2. Behaviorism

Probably the first major philosophical reaction against Dualism came not as a result of the explanatory inadequacies just described, but instead grew out of a movement within philosophy that is sometimes referred to as the linguistic turn. The leading idea was that philosophical puzzles were at root puzzles about language. Gilbert Ryle, in The Concept of Mind, published in 1949, accuses dualism and the whole body-mind debate of a failure to understand the role of mental talk in our language. Philosophy of mind, according to Ryle, was captivated by Descartes' myth. And Descartes' myth was, in effect, the idea of mind as an inner sanctum known only by introspection. The myth inclined philosophers to seek some account of the relation of this inner sanctum to the public world of people, objects, and actions. But the task was thought to be misconceived. Philosophers, Ryle claimed, were failing to see the significance of mental talk, in much the same way as someone fails to see the significance of talk about a university who, on being shown the library and colleges and playing fields and accommodation, goes on to complain, "Yes. I see all that. But where is the university?" The answer is that the university is not something extra, beyond all the colleges, accommodation, and so on. It is just the organization of those very items. Just so, Ryle argued, the mind is not something beyond all its public behavioral manifestations—mindtalk is just a way of talking about the organization of the behavior itself. When we say that Mary loves teaching, we do not mean that inside Mary there is a ghostly loving that accompanies her professional acts. Rather we mean only that Mary's actual and potential behavior will follow a certain pattern. That pattern might be expressed as a very long conjunction of claims about what Mary would do in certain situations, e.g.,

if she is offered a new textbook she will take it; if someone asks her if she likes teaching, she will say yes; if she sees a good teacher in action, she will try to emulate them and so on.

The idea, in short, is that mental talk picks out *behavioral dispositions*. It isolates what so and so is likely to do in such and such circumstances. It does not pick out a state of an inner mental sanctum. The classic analogy is with chemical dis-

Reasons to doubt that it does include

- 1. Leibniz' law problems
- 2. species-chauvinism objections.

Leibniz' law states that if two descriptions pick out the same object, then whatever is true of the object under one description must be true of it under the other. Thus, if Spiderman really is Peter Parker, then whatever is true of Spiderman must be true of Peter Parker, and vice versa. If Aunt May is Peter Parker's ailing relative, then she must be Spiderman's ailing relative also. If Spiderman clings to ceilings, then Peter Parker must cling to ceilings also. Formally,

167

$$(X)$$
 (Y) $[(X = Y) \rightarrow (F) (FX \leftrightarrow FY)]$

Whatever their opinion about Spiderman, many philosophers were unable to see how the mind-brain identity thesis could live up to the Leibniz' law requirement. For consider

- [Spatial location] A brain state may be located in space, say 10 cm behind my eyeball. But it surely won't be true of any mental state—say, my belief that Mark McGuire plays for the Cardinals—that it is 10 cm behind my eyeball.
- [Truth value] A belief may be true or false. But how can a brain state be true or false?
- [Sensational content] A pain may be sharp or tingly. But could a brain state be sharp or tingly?
- [Authority] I seem to have some authority over my mental states. If I sincerely believe I am in agony, it looks as if I must be right. But I do not seem to have any authority over my brain states; a neurophysiologist could surely correct me with regard to those.

One way of responding to these objections is simply to grasp the nettle we are offered and say, "It may not *seem* as if brain states can be true or false, or mental states located in space, but they *are*." It does not seem as if a flash of lightning is an electrical discharge, but it is. And if you have some authority when it comes to spotting flashes of lightning, then you have it when it comes to spotting some kinds of electrical discharge whether you know it or not. The idea behind this kind of response is that Leibniz' law is unreliable in contexts that involve people's *beliefs* about properties of objects, rather than just the *actual* properties of the objects. To once again adapt a strategy used by Paul Churchland (1984), we can display the problem by constructing the following clearly fallacious argument:

- 1. Mary Jane Watson believes that Spiderman is a hero.
- 2. Mary Jane Watson does not believe that Peter Parker is a hero.

so,

3. By Leibniz' law—Peter Parker is not identical with Spiderman.

positions such as solubility. To say that X is soluble is not to say that X contains some hidden spirit of solubility. It is just to say that if you put X in water, X would dissolve. Mental talk picks on more complex dispositions [what Paul Churchland (1984) calls "multi-tracked dispositions"]; but dispositions is still all they are.

Three worries afflict behaviorism in the form I have presented it.

- 1. The dispositional analysis looks either *infinite* or *circular*. It will be infinite if we have to list what a given belief will dispose an agent to do in *every possible situation* they could be in. And it will be circular if our list of dispositions makes irreducible reference to other mental states, e.g., Mary will try to teach well as long as she is happy and does not believe teaching is ruining her life.
- 2. The dispositional account seems to want to rule out the inner sanctum completely. But isn't there some truth in the idea? Don't we have inner feelings, pains, images, and the like?
- 3. It is explanatorily shallow. It tells us, at best, something about how we use mental concepts. But this need not be the end of the story of mind. Even if "soluble" just means "would dissolve in water," we can ask after the grounds of the disposition to dissolve. We can ask how it is possible for something to dissolve in water. So too we may ask how it is possible for someone to love teaching. And the explanation should appeal to a range of facts beyond the surface behavior of the teacher. Indeed, taken at face value, behaviorism seems to commit a kind of "method actors fallacy" (see Putnam, 1980), attributing genuine neural states (of, say, pain) to anyone exhibiting appropriate behavior, and denying pain to anyone able to suppress all the behavioral and verbal expressions of pain.

3. Identity Theory

In the mid to late 1950s philosophers began to realize—or rediscover—that there was more to philosophical life than the analysis of the concepts of ordinary language. Philosophy could, for example, contribute to the study of mind and mental mechanisms by examining the conceptual coherence of scientific theory schemas. By this I mean, not examining a particular, well worked out scientific theory in say, neurophysiology, but by considering the intelligibility and implications of general types of scientific account of the mind. One such account—the topic of this section—was the so-called Mind—Brain identity theory. The schema here in brief was mental states are brain processes.

This schema was advocated, discussed, and refined by philosophers such as U. T. Place, J. J. C. Smart, and D. Armstrong [see the collection edited by V. C. Chappell (1962) for some of the classic contributions]. The philosophical task, then, is not to decide whether or not mental states are brain processes. That is a job for ordinary science. Rather, it is to consider whether this general theory schema is one that is even possibly true. Does it even make sense to suppose that thoughts, beliefs, and sensations could be identical with brain processes?

Identity theory thus survives the Leibniz' law crisis. Historically, it succumbed (although sophisticated revivals are increasingly popular today) to a very different kind of objection [first raised by Hilary Putnam (1960) in a series of papers beginning with "Minds and machines"]. The objection is one of species-chauvinism. On a strong reading of the identity theorists' claims it looks as if types of mental state (e.g., being happy, angry, seeing blue, believing that Reagan is dangerous) are now being identified with types of brain state (e.g., the firing of a certain group of neurons, or C-fibers, or whatever). But this claim, on closer examination, looks distinctly implausible. For consider one example.

Suppose we type-identify, say, being in pain with having C-fibers 1-9 firing. Then it follows that no being without C-fibers can be in pain. But this seems a very rash, even imperialistic, claim. Might we not encounter extraterrestrial beings who look clearly capable of feeling pain (they wince and groan and so on) yet lack Cfibers? Maybe many animals to which we happily ascribe psychological properties such as feeling hungry or angry lack C-fibers, too. Maybe we will soon build intelligent computer systems that have neuromorphic VSLI chips instead of neurons. Must we simply rule out the possibility that all these different kinds of physical systems may share some of our psychological states? Surely not. Suppose we discovered that various human beings had different kinds of brain structure, such that when Fred felt pain C-fibers 1-9 fired, but when Andy felt pain D-fibers 1-7 fired. Psychological ascriptions seem almost designed to class together different brain states in virtue of their common role in determining types of behavior. Strong type-type identity theory does no justice to this capacity for generalization, and can seem species-chauvinistic as a result.

One way out is for the identity theorist to claim that each individual occurrence of a mental state is identical with some brain state. This is the "token" version of identity theory, so named because it associates tokens (individual occurrences) of mental events with brain events, without making claims about the identity of types of mental event with types of brain event. One trouble with this as it stands is that it is explanatorily weak; it leaves us unenlightened as to why any particular physical state should be identical with the particular mental event with which it is. One way to remedy this is to build on the idea that psychological ascriptions are in part designed to group together physically disparate brain states in virtue of their common role in determining behavior, but to build on it in such a way as to avoid the behaviorist's mistake of identifying the psychological state with the outward behavior. This is exactly what Putnam did and the result was another philosophical schema for a scientific theory of mind, viz. functionalism.

4. Machine Functionalism

The first wave identity theorist faced a hopeless task, akin, as Daniel Dennett has pointed out, to finding a purely physical account of what all clocks, say, have in common. We would find no useful description, in the language of physics, of the

commonality in virtue of which a sundial, a clockwork alarm, and a quartz digital alarm are all said to be clocks. What unites these disparate physical objects is the purpose, function, or use that we assign to them. Just so, it seems, there need be no useful physical description that captures what my anger, the dog's anger, the Martian's anger, and the robot's anger all have in common. In some sense it looked to be the functionality of the different physical states that realize our several angers that unites the states as angers. Hence, functionalism is a schema for a scientific theory of mind.

One way of understanding the functionalist approach is by analogy with computer programs. A program is just a recipe for getting a job done, and can be specified, at a very abstract level, as a set of operations to be performed on an input and yielding a certain output—maybe a number or sentence. Defined at such an abstract level the same program can be written in different high-level languages (BASIC, PASCAL, LISP, JAVA, or whatever) and run on machines with very different kinds of hardware. The abstract idea of a program (its input-inner operations-output profile) is captured in its specification as a Turing machine (see Chapter 1), which is, in effect, just a description of a fixed set of operations to be performed on whatever strings of symbols it is given as input. The point is that this abstract notion of a program is not "hardware-chauvinist"; the same program, so defined, may run on lots of different physical machines. The functionalist claim, in effect, is that the mind is to the body/brain as the program is to the physical machine.

The analogy is so satisfying, indeed, that the original functionalists went further and claimed not just

- C1 The mind is to the brain as the program is to the machine, but
- C2 The mind is a program, run (in humans) with the brain as its supporting hardware.

C2 is often called machine functionalism. Since much of the present text is concerned with versions of machine functionalism, I shall not pursue this position any further here.

4. Eliminativism

Some Backdrop

The task so far has been to see what general kind of schema for a scientific theory could make sense of the relation between our talk of the mind and some kind of description (functional, behavioral, or whatever) of the physical world. The question was thus:

What kind of scientific theory could possibly count as a theory of the mind?

Some would regard this as a mistaken goal. For it seems to assume that our commonsense ideas about mental phenomena, which together make up our commonsense idea of mind, are (at least largely) correct. It assumes, in effect, that there really are such things as hopes, desires, fears, beliefs, and so on, and that the job of science is to explain them. But, after all, people once thought that there were ghosts and vampires and that apparently empty space was filled by mysterious ether and much else that science has shown to be misguided. Imagine, then, a discipline devoted to investigating what kind of scientific theory could possibly account for the existence of the ether. What a waste of time! What science shows is that there is no ether and so the task of accounting for its existence never arises. Could the commonsense notion of mind meet a similar fate? Those who think so call themselves eliminative materialists (e.g., Churchland, 1981). The task of philosophy, as they see it, is not to prejudge the issue by simply setting out to discover what scientific schema explains the commonsense view of mind, but also to critically examine scientific accounts to see whether the commonsense view is sound. Once again, this is a topic treated in the main text and I shall not pursue it far here. Notice, however, that eliminative materialism need not be an all or nothing doctrine. Dennett (1987), for example, allows that some of our common sense ideas about the mental may find a home in some future scientific theory. He just denies that we should demand that any good theory capture all our pretheoretical intuitions.

The most radical versions of eliminative materialism predict that virtually nothing of the commonsense framework will be preserved. Beliefs, desires, hopes, and fears will all be abandoned in some future science of the mind. It is, I suspect, extremely hard to even make sense of this claim *in advance* of the science being developed and offering us alternative concepts to use when we formulate it. From here, it is hard to see how such a future science could *be* a science of the mind at all. But that, of course, may just be predictable conceptual myopia. On the other hand, it does seem as if there is a whole cluster of related concepts involving actions, beliefs, and desires that just *constitute* the idea of mind. We could certainly give some up and revise others. But could we really drop them all? And to what extent does the legitimacy of those concepts depend on their finding a place in some scientific theory anyway? It is a virtue of eliminative materialism that it is radical enough to bring these issues to the fore.

Suggested Readings

Several recent textbooks offer superb introductions to the topics covered in this appendix. I especially recommend J. Kim, *Philosophy of Mind* (Boulder, CO: Westview, 1996) and D. Braddon-Mitchell and F. Jackson's *Philosophy of Mind and Cognition* (Oxford, England: Blackwell, 1996). Other useful treatments include G. Graham, *Philosophy of Mind: An Introduction* (Oxford, England: Blackwell, 1993) and P. Churchland's classic, *Matter and Consciousness* (Cambridge, MA: MIT Press, 1984, and many subsequent and expanded editions). W. Lycan (ed.), *Mind and Cognition: A Reader* (Oxford, England: Blackwell, 1990) offers a fine collection of papers covering functionalism, identity theory, eliminativism, and much else besides.

MEAT MACHINES Mindware as Software

- 1.1 Sketches
- 1.2 Discussion
 - A. Why Treat Thought as Computation?
 - B. Is Software an Autonomous Level in Nature?
 - Mimicking, Modeling, and Behavior
 - D. Consciousness, Information, and Pizza
- 1.3 A Diversion
- 1.4 Suggested Readings

1.1 Sketches

The computer scientist Marvin Minsky once described the human brain as a meat machine—no more no less. It is, to be sure, an ugly phrase. But it is also a striking image, a compact expression of both the genuine scientific excitement and the rather gung-ho materialism that tended to characterize the early years of cognitive scientific research. Mindware—our thoughts, feelings, hopes, fears, beliefs, and intellect—is cast as nothing but the operation of the biological brain, the meat machine in our head. This notion of the brain as a meat machine is interesting, for it immediately in-

vites us to focus not so much on the material (the meat) as on the machine: the way the material is organized and the kinds of operation it supports. The same machine (see Box 1.1) can, after all, often be made of iron, or steel, or tungsten, or whatever. What we confront is thus both a rejection of the idea of mind as immaterial spirit-stuff and an affirmation that mind is best studied from a kind of engineering perspective that reveals the nature of the machine that all that wet, white, gray, and sticky stuff happens to build.

What exactly is meant by casting the brain as a machine, albeit one made out of meat? There exists a historical trend, to be sure, of trying to understand the workings of the brain by analogy with various currently fashionable technologies: the telegraph, the steam engine, and the telephone switchboard are all said to have had their day in the sun. But the "meat machine" phrase is intended, it should now be clear, to do more than hint at some rough analogy. For with regard to the very special class of machines known as computers, the claim is that the brain (and, by

Box 1.1

THE "SAME MACHINE"

In what sense can "the same machine" be made out of iron, or steel, or whatever? Not, obviously, in the strict sense of numerical identity. A set of steel darts and a set of tungsten ones cannot be the very same (numerically identical) set of darts. The relevant sense of sameness is, rather, some sense of functional sameness. You can make a perfectly good set of darts out of either material (though not, I suppose, out of jello), just as you can make a perfectly good corkscrew using a myriad (in this latter case quite radically) different designs and materials. In fact, what makes something a corkscrew is simply that it is designed as, and is capable of acting as, a cork-removing device. The notion of a brain as a meat machine is meant to embody a similar idea: that what matters about the brain is not the stuff it is made of but the way that stuff is organized so as to support thoughts and actions. The idea is that this capability depends on quite abstract properties of the physical device that could very well be duplicated in a device made, say, out of wires and silicon. Sensible versions of this idea need not claim then that any material will do: perhaps, for example, a certain stability over time (a tendency not to rapidly disorganize) is needed. The point is just that given that certain preconditions are met the same functionality can be pressed from multiple different materials and designs. For some famous opposition to this view, see Searle (1980, 1992).

not unproblematic extension, the mind) actually is some such device. It is not that the brain is somehow like a computer: everything is like everything else in some respect or other. It is that neural tissues, synapses, cell assemblies, and all the rest are just nature's rather wet and sticky way of building a hunk of honest-to-God computing machinery. Mindware, it is then claimed, is found "in" the brain in just the way that software is found "in" the computing system that is running it.

The attractions of such a view can hardly be overstated. It makes the mental special without making it ghostly. It makes the mental depend on the physical, but in a rather complex and (as we shall see) liberating way. And it provides a readymade answer to a profound puzzle: how to get sensible, reason-respecting behavior out of a hunk of physical matter. To flesh out this idea of nonmysterious reason-respecting behavior, we next review some crucial developments¹ in the history (and prehistory) of artificial intelligence.

One key development was the appreciation of the power and scope of formal logics. A decent historical account of this development would take us too far afield, touching perhaps on the pioneering efforts in the seventeenth century by Pascal and Leibniz, as well as on the twentieth-century contributions of Boole, Frege, Russell, Whitehead, and others. A useful historical account can be found in Glymour, Ford, and Hayes (1995). The idea that shines through the history, however, is the idea of finding and describing "laws of reason"—an idea whose clearest expression emerged first in the arena of formal logics. Formal logics are systems comprising sets of symbols, ways of joining the symbols so as to express complex propositions, and rules specifying how to legally derive new symbol complexes from old ones. The beauty of formal logics is that the steadfast application of the rules guarantees that you will never legally infer a false conclusion from true premises, even if you have no idea what, if anything, the strings of symbols actually mean. Just follow the rules and truth will be preserved. The situation is thus a little (just a little) like a person, incompetent in practical matters, who is nonetheless able to successfully build a cabinet or bookshelf by following written instructions for the manipulation of a set of preprovided pieces. Such building behavior can look as if it is rooted in a deep appreciation of the principles and laws of woodworking: but in fact, the person is just blindly making the moves allowed or dictated by the instruction set.

Formal logics show us how to preserve at least one kind of semantic (meaning-involving: see Box 1.2) property without relying on anyone's actually appreciating the meanings (if any) of the symbol strings involved. The seemingly ghostly and ephemeral world of meanings and logical implications is respected, and in a certain sense recreated, in a realm whose operating procedures do not rely on meanings at all! It is recreated as a realm of marks or "tokens," recognized by their physical ("syntactic") characteristics alone and manipulated according to rules that refer only to those physical characteristics (characteristics such as the shape of the symbol—see Box 1.2). As Newell and Simon comment:

Logic . . . was a game played with meaningless tokens according to certain purely syntactic rules. Thus progress was first made by walking away from all that seemed relevant to meaning and human symbols. (Newell and Simon, 1976, p. 43)

Or, to put it in the more famous words of the philosopher John Haugeland:

If you take care of the syntax, the semantics will take care of itself. (Haugeland, 1981a, p. 23, original emphasis)

This shift from meaning to form (from semantics to syntax if you will) also begins to suggest an attractive liberalism concerning actual physical structure. For what matters, as far as the identity of these formal systems is concerned, is not, e.g., the precise shape of the symbol for "and." The shape could be "AND" or "and" or "&" or " Λ " or whatever. All that matters is that the shape is used consistently and that the rules are set up so as to specify how to treat strings of symbols joined by that shape: to allow, for example, the derivation of "A" from the string "A and

¹The next few paragraphs draw on Newell and Simon's (1976) discussion of the development of the Physical Symbol Hypothesis (see Chapter 2 following), on John Haugeland's (1981a), and on Glymour, Ford, and Hayes' (1995).

Box 1.2

SYNTAX AND SEMANTICS

Semantic properties are the "meaning-involving" properties of words, sentences, and internal representations. Syntactic properties, at least as philosophers tend to use the term, are nonsemantic properties of, e.g., written or spoken words, or of any kinds of inscriptions of meaningful items (e.g., the physical states that the pocket calculator uses to store a number in memory). Two synonymous written words ("dog" and "chien") are thus semantically identical but syntactically distinct, whereas ambiguous words ("bank" as in river or "bank" as in high street) are syntactically identical but semantically distinct. The idea of a token is the idea of a specific syntactic item (e.g., this occurrence of the word "dog"). A pocket calculator manipulates physical tokens (inner syntactic states) to which the operation of the device is sensitive. It is by being sensitive to the distinct syntactic features of the inner tokens that the calculator manages to behave in an arithmetic-respecting fashion: it is set up precisely so that syntax-driven operations on inner tokens standing for numbers respect meaningful arithmetical relations between the numbers. Taking care of the syntax, in Haugeland's famous phrase, thus allows the semantics to take care of itself.

B." Logics are thus first-rate examples of formal systems in the sense of Haugeland (1981a, 1997). They are systems whose essence lies not in the precise physical details but in the web of legal moves and transitions.

Most games, Haugeland notes, are formal systems in exactly this sense. You can play chess on a board of wood or marble, using pieces shaped like animals, movie stars, or the crew of the star ship Enterprise. You could even, Haugeland suggests, play chess using helicopters as pieces and a grid of helipads on top of tall buildings as the board. All that matters is again the web of legal moves and the physical distinguishability of the tokens.

Thinking about formal systems thus liberates us in two very powerful ways at a single stroke. Semantic relations (such as truth preservation: if "A and B" is true, "A" is true) are seen to be respected in virtue of procedures that make no intrinsic reference to meanings. And the specific physical details of any such system are seen to be unimportant, since what matters is the golden web of moves and transitions. Semantics is thus made unmysterious without making it brute physical. Who says you can't have your cake and eat it?

The next big development was the formalization (Turing, 1936) of the notion of computation itself. Turing's work, which predates the development of the dig-

ital computer, introduced the foundational notion of (what has since come to be known as) the Turing machine. This is an imaginary device consisting of an infinite tape, a simple processor (a "finite state machine"), and a read/write head. The tape acts as data store, using some fixed set of symbols. The read/write head can read a symbol off the tape, move itself one square backward or forward on the tape, and write onto the tape. The finite state machine (a kind of central processor) has enough memory to recall what symbol was just read and what state it (the finite state machine) was in. These two facts together determine the next action, which is carried out by the read/write head, and determine also the next state of the finite state machine. What Turing showed was that some such device, performing a sequence of simple computations governed by the symbols on the tape, could compute the answer to any sufficiently well-specified problem (see Box 1.3).

Meat Machines

We thus confront a quite marvelous confluence of ideas. Turing's work clearly suggested the notion of a physical machine whose syntax-following properties would enable it to solve any well-specified problem. Set alongside the earlier work on logics and formal systems, this amounted to nothing less than

. . . the emergence of a new level of analysis, independent of physics yet mechanistic in spirit . . . a science of structure and function divorced from material substance. (Pylyshyn, 1986, p. 68)

Thus was classical cognitive science conceived. The vision finally became flesh, however, only because of a third (and final) innovation: the actual construction of general purpose electronic computing machinery and the development of flexible, high-level programming techniques. The bedrock machinery (the digital computer) was designed by John von Neumann in the 1940s and with its advent all the pieces seemed to fall finally into place. For it was now clear that once realized in the physical medium of an electronic computer, a formal system could run on its own, without a human being sitting there deciding how and when to apply the rules to initiate the legal transformations. The well-programmed electronic computer, as John Haugeland nicely points out, is really just an automatic ("self-moving") formal system:

It is like a chess set that sits there and plays chess by itself, without any intervention from the players, or an automatic formal system that writes out its own proofs and theorems without any help from the mathematician. (Haugeland, 1981a, p. 10; also Haugeland, 1997, pp. 11-12)

Of course, the machine needs a program. And programs were, in those days (but see Chapter 4), written by good old-fashioned human beings. But once the program was in place, and the power on, the machine took care of the rest. The transitions between legal syntactic states (states that also, under interpretation, meant something) no longer required a human operator. The physical world suddenly included clear, nonevolved, nonorganic examples of what Daniel Dennett would later dub "syntactic engines"—quasiautonomous systems whose sheer physical make-

A TURING MACHINE

To make the idea of Turing machine computation concrete, let us borrow an example from Kim (1996, pp. 80–85). Suppose the goal is to get a Turing machine to add positive numbers. Express the numbers to be added as a sequence of the symbols "#" (marking the beginning and end of numbers) "1" and "+." So the sum 3 + 2 is encoded on the tape as shown in Figure 1.1. A neat program for adding the numbers (where "\Lambda \Lambda" indicates the initial location and initial state of the read/write head) is as follows:

Instruction 1: If read-write head is in machine state A and encounters a "1," it moves one square to the right, and the head stays in state A.

Instruction 2: If the head is in state A and encounters a "+," it replaces it with a "1," stays in state A, and moves one square to the right.

Instruction 3: If the head is in state A and it encounters a "#," move one square left and go into machine state B.

Instruction 4: If the head is in machine state B and encounters a "1," delete it, replace with a "#," and halt.

You should be able to see how this works. Basically, the machine starts "pointed" at the leftmost "1." It scans right seeking a "+," which it replaces with a "1." It continues scanning right until the "#" indicates the end of the sum, at which point it moves one square left, deletes a single "1," and replaces it with a "#." The tape now displays the answer to the addition problem in the same notation used to encode the question, as shown in Figure 1.2.

Similar set-ups (try to imagine how they work) can do subtraction, multiplication, and more (see Kim, 1996, pp. 83-85). But Turing's most strik-

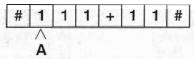


Figure 1.1 (After Kim, 1996, p. 81.)

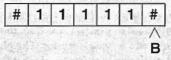


Figure 1.2 (After Kim, 1996, p. 81.)

ing achievement in this area was to show that you could then define a special kind of Turing machine (the aptly-named universal Turing machine) able to imitate any other Turing machine. The symbols on the tape, in this universal case, encode a description of the behavior of the other machine. The universal Turing machine uses this description to mimic the inputoutput function of any other such device and hence is itself capable of carrying out *any* sufficiently well-specified computation. (For detailed accounts see Franklin, 1995; Haugeland, 1985; Turing, 1936, 1950.)

13

The Turing machine affords a fine example of a simple case in which syntax-driven operations support a semantics-respecting (meaning-respecting) process. Notice also that you could *build* a simple Turing machine out of many different materials. It is the formal (syntactic) organization that matters for its semantic success.

up ensured (under interpretation) some kind of ongoing reason-respecting behavior. No wonder the early researchers were jubilant! Newell and Simon nicely capture the mood:

It is not my aim to surprise or shock you. . . . But the simplest way I can summarize is to say that there are now in the world machines that think, that learn and that create. Moreover, their ability to do these things is going to increase rapidly until—in a visible future—the range of problems they can handle will be co-extensive with the range to which the human mind has been applied. (Newell and Simon, 1958, p. 6, quoted in Dreyfus and Dreyfus, 1990, p. 312)

This jubilant mood deepened as advanced programming techniques² brought forth impressive problem-solving displays, while the broader theoretical and philosophical implications (see Box 1.4) of these early successes could hardly have been more striking. The once-mysterious realm of mindware (represented, admittedly, by just two of its many denizens: truth preservation and abstract problem solving) looked ripe for conquest and understanding. Mind was not ghostly stuff, but the operation of a formal, computational system implemented in the meatware of the brain.

Such is the heart of the matter. Mindware, it was claimed, is to the neural meat machine as software is to the computer. The brain may be the standard (local, earthly, biological) implementation—but cognition is a program-level thing. Mind

²For example, list-processing languages, as pioneered in Newell and Simon's Logic Theorist program in 1956 and perfected in McCarthy's LISP around 1960, encouraged the use of more complex "recursive programming" strategies in which symbols point to data structures that contain symbols pointing to further data structures and so on. They also made full use of the fact that the same electronic memory could store both program and data, a feature that allowed programs to be modified and operated on in the same ways as data. LISP even boasted a universal function, EVAL, that made it as powerful, modulo finite memory limitations, as a Universal Turing Machine.

Box 1.4

MACHINE FUNCTIONALISM

The leading philosophical offspring of the developments in artificial intelligence went by the name of machine functionalism, and it was offered as an answer to one of the deepest questions ever asked by humankind, viz. what is the essence (the deep nature) of the mental? What fundamental facts make it the case that some parts of the physical world have mental lives (thoughts, beliefs, feelings, and all the rest) and others do not? Substance dualists, recall, thought that the answer lay in the presence or absence of a special kind of mental stuff. Reacting against this idea (and against so-called philosophical behaviorism—see Appendix I). Mind-brain identity theorists, such as Smart (1959) (and again, see Appendix I), claimed that mental states just are processes going on in the brain. This bald identity claim, however, threatened to make the link between mental states and specific, material brain states a little too intimate. A key worry (e.g., Putnam, 1960, 1967) was that if it was really essential to being in a certain mental state that one be in a specific brain state, it would seem to follow that creatures lacking brains built just like ours (say, Martians or silicon-based robots) could not be in those very same mental states. But surely, the intuition went, creatures with very different brains from ours could, at least in principle, share, e.g., the belief that it is raining. Where, then, should we look for the commonality that could unite the robot, the Martian, and the Bostonian? The work in logic and formal systems, Turing machines, and electronic computation now suggested an answer: look not to the specific physical story (of neurons and wetware), nor to the surface behavior, but to the inner organization, that is to say, to the golden web: to the abstract, formal organization of the system. It is this organization depicted by the machine functionalists as a web of links between possible inputs, inner computational states, and outputs (actions, speech)—that fixes the shape and contents of a mental life. The building materials do not matter: the web of transitions could be realized in flesh, silicon, or cream cheese (Putnam, 1975, p. 291). To be in such and such a mental state is simply to be a physical device, of whatever composition, that satisfies a specific formal description. Mindware, in humans, happens to run on a meat machine. But the very same mindware (as picked out by the web of legal state transitions) might run in some silicon device, or in the alien organic matter of a Martian.

is thus ghostly enough to float fairly free of the gory neuroscientific details. But it is not so ghostly as to escape the nets of more abstract (formal, computational) scientific investigation. This is an appealing story. But is it correct? Let's worry.

1.2 Discussion

(A brief note of reassurance: many of the topics treated below recur again and again in subsequent chapters. At this point, we lack much of the detailed background needed to really do them justice. But it is time to test the waters.)

A. WHY TREAT THOUGHT AS COMPUTATION?

Why treat thought as computation? The principal reason (apart from the fact that it seems to work!) is that thinkers are physical devices whose behavior patterns are reason respecting. Thinkers act in ways that are usefully understood as sensitively guided by reasons, ideas, and beliefs. Electronic computing devices show us one way in which this strange "dual profile" (of physical substance and reason-respecting behavior) can actually come about.

The notion of reason-respecting behavior, however, bears immediate amplification. A nice example of this kind of behavior is given by Zenon Pylyshyn. Pylyshyn (1986) describes the case of the pedestrian who witnesses a car crash, runs to a telephone, and punches out 911. We could, as Pylyshyn notes, try to explain this behavior by telling a purely physical story (maybe involving specific neurons, or even quantum events, whatever). But such a story, Pylyshyn argues, will not help us understand the behavior in its reason-guided aspects. For example, suppose we ask: what would happen if the phone was dead, or if it was a dial phone instead of a touch-tone phone, or if the accident occurred in England instead of the United States? The neural story underlying the behavioral response will differ widely if the agent dials 999 (the emergency code in England) and not 911, or must run to find a working phone. Yet common sense psychological talk makes sense of all these options at a stroke by depicting the agent as seeing a crash and wanting to get help. What we need, Pylyshyn powerfully suggests, is a scientific story that remains in touch with this more abstract and reason-involving characterization. And the simplest way to provide one is to imagine that the agent's brain contains states ("symbols") that represent the event as a car crash and that the computational statetransitions occurring inside the system (realized as physical events in the brain) then lead to new sets of states (more symbols) whose proper interpretation is, e.g., "seek help," "find a telephone," and so on. The interpretations thus glue inner states to sensible real-world behaviors. Cognizers, it is claimed, "instantiate . . . representation physically as cognitive codes and . . . their behavior is a causal consequence of operations carried out on those codes" (Pylyshyn, 1986, p. xiii).

The same argument can be found in, e.g., Fodor (1987), couched as a point about content-determined transitions in trains of thought, as when the thought "it

is raining" leads to the thought "let's go indoors." This, for Fodor (but see Chapters 4 onward), is the essence of human rationality. How is such rationality mechanically possible? A good empirical hypothesis, Fodor suggests, is that there are neural symbols (inner states apt for interpretation) that mean, e.g., "it is raining" and whose physical properties lead in context to the generation of other symbols that mean "let's go indoors." If that is how the brain works then the brain is indeed a computer in exactly the sense displayed earlier. And if such were the case, then the mystery concerning reason-guided (content-determined) transitions in thought is resolved:

If the mind is a sort of computer, we begin to see how . . . there could be nonarbitrary content-relations among causally related thoughts. (Fodor, 1987, p. 19)

Such arguments aim to show that the mind must be understood as a kind of computer implemented in the wetware of the brain, on pain of failing empirically to account for rational transitions among thoughts. Reason-guided action, it seems, makes good scientific sense if we imagine a neural economy organized as a syntaxdriven engine that tracks the shape of semantic space (see, e.g., Fodor, 1987, pp. 19–20).

B. IS SOFTWARE AN AUTONOMOUS LEVEL IN NATURE?

The mindware/software equation is as beguiling as it is, at times, distortive. One immediate concern is that all this emphasis on algorithms, symbols, and programs tends to promote a somewhat misleading vision of crisp level distinctions in nature. The impact of the theoretical independence of algorithms from hardware is an artifact of the long-term neglect of issues concerning real-world action taking and the time course of computations. For an algorithm or program as such is just a sequence of steps with no inbuilt relation to real-world timing. Such timing depends crucially on the particular way in which the algorithm is implemented on a real device. Given this basic fact, the theoretical independence of algorithm from hardware is unlikely to have made much of an impact on Nature. We must expect to find biological computational strategies closely tailored to getting useful real-time results from available, slow, wetware components. In practice, it is thus unlikely that we will be able to fully appreciate the formal organization of natural systems without some quite detailed reference to the nature of the neural hardware that provides the supporting implementation. In general, attention to the nature of real biological hardware looks likely to provide both important clues about and constraints on the kinds of computational strategy used by real brains. This topic is explored in more depth in Chapters 4 through 6.

Furthermore, the claim that mindware is software is—to say the least—merely schematic. For the space of possible types of explanatory story, all broadly computational (but see Box 1.5), is very large indeed. The comments by Fodor and by

Box 1.5

Meat Machines

WHAT IS COMPUTATION?

It is perhaps worth mentioning that the foundational notion of computation is itself still surprisingly ill understood. What do we really mean by calling some phenomenon "computational" in the first place? There is no current consensus at least (in the cognitive scientific community) concerning the answer to this question. It is mostly a case of "we know one when we see one." Nonetheless, there is a reasonable consensus concerning what I'll dub the "basic profile," which is well expressed by the following statement:

we count something as a computer because, and only when, its inputs and outputs can be usefully and systematically interpreted as representing the ordered pairs of some function that interests us. (Churchland and Sejnowski, 1992,

Thus consider a pocket calculator. This physical device computes, on this account, because first, there is a reliable and systematic way of interpreting various states of the device (the marks and numerals on the screen and keyboard) as representing other things (numbers). And second, because the device is set up so that under that interpretation, its physical state changes mirror semantic (meaningful) transitions in the arithmetical domain. Its physical structure thus forces it to respect mathematical constraints so that inputs such as " 4×3 " lead to outputs such as "12" and so on.

A truly robust notion of the conditions under which some actual phenomenon counts as computational would require, however, some rather more objective criterion for determining when an encountered (nondesigned) physical process is actually implementing a computation—some criterion that does not place our interpretive activities and interests so firmly at center stage.

The best such account I know of is due to Dave Chalmers (1996; Chapter 9). Chalmers' goal is to give an "objective criterion for implementing a computation" (p. 319). Intuitively, a physical device 'implements' an abstract, formal computational specification just in case the physical device is set up to undergo state changes that march in step with those detailed in the specification. In this sense a specific word-processing program might, for example, constitute a formal specification that can (appropriately configured) be made to run on various kinds of physical device (MACS, PCs, etc.).

Chalmers' proposal, in essence, is that a physical device implements an abstract formal description (a specification of states and state-transition relations) just in case "the causal structure of the system mirrors the formalstructure of the computation" (1996, p. 317). The notion of mirroring is then cashed out in terms of a fairly fine-grained mapping of states and state changes in the physical device onto the elements and transitions present in the abstract specification. Chalmer's allows that every physical system will implement some computational description. But the appeal to fine-grained mappings is meant to ensure that you cannot interpret every physical system as implementing every computational description. So although the claim that the brain implements some computational description is fairly trivial, the claim that it implements a specific computational description is not. And it is the brain's implementation of a specific computational description that is meant to explain mental properties.

The computational profile of most familiar devices is, of course, the result of the deliberate imposition of a mapping, via some process of intelligent design. But the account is not intrinsically so restricted. Thus suppose some creature has evolved organic inner states that represent matters of adaptive importance such as the size, number, and speed of approach of predators. If that evolutionary process results in a physical system whose causal state transitions, under that interpretation, make semantic sense (e.g., if fewer than two predators detected cause a "stand and fight" inner token leading to aggressive output behavior, whereas three or more yield a "run and hide" response), then Nature has, on this account, evolved a small computer. The brain, if the conjectures scouted earlier prove correct, is just such a natural computer, incorporating inner states that represent external events (such as the presence of predators) and exploiting state-transition routines that make sensible use of the information thus encoded.

Pylyshyn do, it is true, suggest a rather specific kind of computational story (one pursued in detail in the next chapter). But the bare explanatory schema, in which semantic patterns emerge from an underlying syntactic, computational organization, covers a staggeringly wide range of cases. The range includes, for example, standard artificial intelligence (A.I.) approaches involving symbols and rules, "connectionist" approaches that mimic something of the behavior of neural assemblies (see Chapter 4), and even Heath Robinsonesque devices involving liquids, pulleys, and analog computations. Taken very liberally, the commitment to understanding mind as the operation of a syntactic engine can amount to little more than a bare assertion of physicalism—the denial of spirit-stuff.³

To make matters worse, a variety of different computational stories may be told about one and the same physical device. Depending on the grain of analysis

³Given our notion of computation (see Box 1.5), the claim is just a little stronger, since it also requires the presence of systematically interpretable inner states, i.e., internal representations.

used, a single device may be depicted as carrying out a complex parallel search or as serially transforming an input x into an output y. Clearly, what grain we choose will be determined by what questions we hope to answer. Seeing the transition as involving a nested episode of parallel search may help explain specific error profiles or why certain problems take longer to solve than others, yet treating the process as a simple unstructured transformation of x to y may be the best choice for understanding the larger scale organization of the system. There will thus be a constant interaction between our choice of explanatory targets and our choice of grain and level of computational description. In general, there seems little reason to expect a single type or level of description to do all the work we require. Explaining the relative speed at which we solve different problems, and the kinds of interference effects we experience when trying to solve several problems at once (e.g., remembering two closely similar telephone numbers), may well require explanations that involve very specific details about how inner representations are stored and structured, whereas merely accounting for, e.g., the bare facts about rational transitions between content-related thoughts may require only a coarser grained computational gloss. [It is for precisely this reason that connectionists (see Chapter 4) describe themselves as exploring the microstructure of cognition.] The explanatory aspirations of psychology and cognitive science, it seems clear, are sufficiently wide and various as to require the provision of explanations at a variety of different levels of grain and type.

In sum, the image of mindware as software gains its most fundamental appeal from the need to accommodate reason-guided transitions in a world of merely physical flux. At the most schematic level, this equation of mindware and software is useful and revealing. But we should not be misled into believing either (1) that "software" names a single, clearly understood level of neural organization or (2) that the equation of mindware and software provides any deep warrant for cognitive science to ignore facts about the biological brain.

C. MIMICKING, MODELING, AND BEHAVIOR

Computer programs, it often seems, offer only shallow and brittle simulacrums of the kind of understanding that humans (and other animals) manage to display. Are these just teething troubles, or do the repeated shortfalls indicate some fundamental problem with the computational approach itself? The worry is a good one. There are, alas, all too many ways in which a given computer program may merely mimic, but not illuminate, various aspects of our mental life. There is, for example, a symbolic A.I. program that does a very fine job of mimicking the verbal responses of a paranoid schizophrenic. The program ("PARRY," Colby, 1975; Boden, 1977, Chapter 5) uses tricks such as scanning input sentences for key words (such as "mother") and responding with canned, defensive outbursts. It is capable, at times, of fooling experienced psychoanalysts. But no one would claim that

it is a useful psychological model of paranoid schizophrenia, still less that it is (when up and running on a computer) a paranoid schizophrenic itself!

Or consider a chess computer such as Deep Blue. Deep Blue, although capable of outstanding play, relies heavily on the brute-force technique of using its superfast computing resources to examine all potential outcomes for up to seven moves ahead. This strategy differs markedly from that of human grandmasters, who seem to rely much more on stored knowledge and skilled pattern recognition (see Chapter 4). Yet, viewed from a certain height, Deep Blue is not a bad simulation of human chess competence. Deep Blue and the human grandmaster are, after all, more likely to agree on a particular move (as a response to a given board state) than are the human grandmaster and the human novice! At the level of gross input-output profiles, the human grandmaster and Deep Blue are thus clearly similar (not identical, as the difference in underlying strategy—brute force versus pattern recognition—sometimes shines through). Yet once again, it is hard to avoid the impression that all that the machine is achieving is top-level mimicking: that there is something amiss with the underlying strategy that either renders it unfit as a substrate for a real intelligence, or else reveals it as a kind of intelligence very alien to our own.

This last caveat is important. For we must be careful to distinguish the question of whether such and such a program constitutes a good model of *human* intelligence from the question of whether the program (when up and running) displays some kind of *real*, *but perhaps nonhuman* form of intelligence and understanding. PARRY and Deep Blue, one feels, fail on both counts. Clearly, neither constitutes a faithful psychological model of the inner states that underlie human performance. And something about the basic style of these two computational solutions (canned sentences activated by key words, and brute-force look-ahead) even makes us uneasy with the (otherwise charitable) thought that they might nonetheless display real, albeit alien, kinds of intelligence and awareness.

How, though, are we to decide what kinds of computational substructure *might* be appropriate? Lacking, as we must, first-person knowledge of what (if anything) it is like to be PARRY or Deep Blue, we have only a few options. We could insist that all real thinkers must solve problems using exactly the same kinds of computational strategy as human brains (too anthropocentric, surely). We could hope, optimistically, for some future scientific understanding of the *fundamentals* of cognition that will allow us to recognize (on broad theoretical grounds) the shape of alternative, but genuine, ways in which various computational organizations might support cognition. Or we could look to the gross behavior of the systems in question, insisting, for example, on a broad and flexible range of responses to a multiplicity of environmental demands and situations. Deep Blue and PARRY would then fail to make the grade not merely because their inner organizations looked alien to us (an ethically dangerous move) but because the behavioral repertoire they support is too limited. Deep Blue cannot recognize a mate (well, only a check-

mate!), nor cook an omelette. PARRY cannot decide to become a hermit or take up the harmonica, and so on.

This move to behavior is not without its own problems and dangers, as we will see in Chapter 3. But it should now be clearer why some influential theorists (especially Turing, 1950) argued that a sufficient degree of behavioral success should be allowed to settle the issue and to establish once and for all that a candidate system is a genuine thinker (albeit one whose inner workings may differ greatly from our own). Turing proposed a test (now known as the Turing Test) that involved a human interrogator trying to spot (from verbal responses) whether a hidden conversant was a human or a machine. Any system capable of fooling the interrogator in ongoing, open-ended conversation, Turing proposed, should be counted as an intelligent agent. Sustained, top-level verbal behavior, if this is right, is a sufficient test for the presence of real intelligence. The Turing Test invites consideration of a wealth of issues that we cannot dwell on here (several surface in Chapter 3). It may be, for example, that Turing's original restriction to a verbal test leaves too much scope for "tricks and cheats" and that a better test would focus more heavily on real-world activity (see Harnad, 1994).

It thus remains unclear whether we should allow that surface behaviors (however complex) are sufficient to distinguish (beyond all theoretical doubt) real thinking from mere mimicry. Practically speaking, however, it seems less morally dangerous to allow behavioral profiles to lead the way (imagine that it is discovered that you and you alone have a mutant brain that uses brute-force, Deep Blue-like strategies where others use quite different techniques: has science discovered that you are not a conscious, thinking, reasoning being after all?).

D. CONSCIOUSNESS, INFORMATION, AND PIZZA

"If one had to describe the deepest motivation for materialism, one might say that it is simply a terror of consciousness" (Searle, 1992, p. 55). Oh dear. If I had my way, I would give in to the terror and just not mention consciousness at all. But it is worth a word or two now (and see Appendix II) for two reasons. One is because it is all too easy to see the facts about conscious experience (the "second aspect of the problem of mindfulness" described in the Introduction) as constituting a knock-down refutation of the strongest version of the computationalist hypothesis. The other is because consideration of these issues helps to highlight important differences between informational and "merely physical" phenomena. So here goes.

How could a device made of silicon be conscious? How could it feel pain, joy, fear, pleasure, and foreboding? It certainly seems unlikely that such exotic capacities should flourish in such an unusual (silicon) setting. But a moment's reflection should convince you that it is equally amazing that such capacities should show up in, of all things, meat (for a sustained reflection on this theme, see the skit in Section 1.3). It is true, of course, that the only known cases of conscious

Matters are complicated by the fact that the term "conscious awareness" is something of a weasel word, covering a variety of different phenomena. Some use it to mean the high-level capacity to reflect on the contents of one's own thoughts. Others have no more in mind that the distinction between being awake and being asleep! But the relevant sense for the present discussion (see Block, 1997; Chalmers, 1996) is the one in which to be conscious is to be a subject of experience—to feel the toothache, to taste the bananas, to smell the croissant, and so on. To experience some x is thus to do more than just register, recognize, or respond to x. Electronic detectors can register the presence of semtex and other plastic explosives. But, I hope, they have no experiences of so doing. A sniffer dog, however, may be a different kettle of fish. Perhaps the dog, like us, is a subject of experience; a haven of what philosophers call "qualia"—the qualitative sensations that make life rich, interesting, or intolerable. Some theorists (notably John Searle) believe that computational accounts fall down at precisely this point, and that as far as we can tell it is the implementation, not the program, that explains the presence of such qualitative awareness. Searle's direct attack on computationalism is treated in the next chapter. For now, let us just look at two popular, but flawed, reasons for endorsing such a skeptical conclusion.

ther false or (depending on the details) severely compromised.

The first is the observation that "simulation is not the same as instantation." A rainstorm, simulated in a computational medium, does not make anything actually wet. Likewise, it may seem obvious that a simulation, in a computational medium, of the brain states involved in a bout of black depression will not add one single iota (thank heaven) to the sum of real sadness in the world.

Meat Machines

The second worry (related to, but not identical to the first) is that many feelings and emotions look to have a clear chemical or hormonal basis and hence (hence?) may be resistant to reproduction in any merely electronic medium. Sure, a silicon-based agent can play chess and stack crates, but can it get drunk, get an adrenaline high, experience the effects of ecstasy and acid, and so on?

The (genuine) intuitive appeal of these considerations notwithstanding, they by no means constitute the knock-down arguments they may at first appear. For everything here depends on what kind of phenomenon consciousness turns out to be. Thus suppose the skeptic argues as follows: "even if you get the overall inner computational profile just right, and the system behaves just like you and I, it will still be lacking the inner baths of chemicals, hormones, and neurotransmitters, etc. that flood our brains and bodies. Maybe without these all is darkness within-it just looks like the "agent" has feelings, emotions, etc., but really it is just [what Haugeland (1981a) terms] a "hollow shell." This possibility is vividly expressed in John Searle's example of the person who, hoping to cure a degenerative brain disease, allows parts of her brain to be gradually replaced by silicon chips. The chips preserve the input-output functions of the real brain components. One logical possibility here, Searle suggests, is that "as the silicon is progressively implanted into your dwindling brain, you find that the area of your conscious experience is shrinking, but that this shows no effect on your external behavior" (Searle, 1992, p. 66). In this scenario (which is merely one of several that Searle considers), your actions and words continue to be generated as usual. Your loved ones are glad that the operation is a success! But from the inside, you experience a growing darkness until, one day, nothing is left. There is no consciousness there. You are a zombie.

The imaginary case is problematic, to say the least. It is not even clear that we here confront a genuine logical possibility. [For detailed discussion see Chalmers (1996) and Dennett (1991a)—just look up zombies in the indexes!] Certainly the alternative scenario in which you continue your conscious mental life with no ill effects from the silicon surgery strikes many cognitive scientists (myself included) as the more plausible outcome. But the "shrinking consciousness" nightmare does help to focus our attention on the right question. The question is, just what is the role of all the hormones, chemicals, and organic matter that build normal human brains? There are two very different possibilities here and, so far, no one knows which is correct. One is that the chemicals, etc. affect our conscious experiences only by affecting the way information flows and is processed in the brain. If that were the case, the same kinds of modulation may be achieved in other media by other means. Simplistically, if some chemical's effect is, e.g., to speed up the processing in some areas, slow it down in others, and allow more information leakage between adjacent sites, then perhaps the same effect may be achieved in a purely electronic medium, by some series of modulations and modifications of current

flow. Mind-altering "drugs," for silicon-based thinkers, may thus take the form of black-market software packages—packages that temporary induce a new pattern of flow and functionality in the old hardware.

There remains, however, a second possibility: perhaps the experienced nature of our mental life is not (or is not just) a function of the flow of information. Perhaps it is to some degree a direct effect of some still-to-be-discovered physical cause or even a kind of basic property of some types of matter (for extended discussion of these and other possibilities, see Chalmers, 1996). If this were true, then getting the information-processing profile exactly right would still fail to guarantee the presence of conscious experience.

The frog at the bottom of the beer glass is thus revealed. The bedrock, unsolved problem is whether conscious awareness is an informational phenomenon. Consider the difference. A lunch order is certainly an informational phenomenon. You can phone it, fax it, E-mail it—whatever the medium, it is the same lunch order. But no one ever faxes you your lunch. There is, of course, the infamous Internet Pizza Server. You specify size, consistency, and toppings and await the onscreen arrival of the feast. But as James Gleick recently commented, "By the time a heavily engineered software engine delivers the final product, you begin to suspect that they've actually forgotten the difference between a pizza and a picture of a pizza" (Gleick, 1995, p. 44). This, indeed, is Searle's accusation in a nutshell. Searle believes that the conscious mind, like pizza, just ain't an informational phenomenon. The stuff, like the topping, really counts. This could be the case, notice, even if many of the other central characteristics of mindware reward an understanding that is indeed more informational than physical. Fodor's focus on reason-guided state-transitions, for example, is especially well designed to focus attention away from qualitative experience and onto capacities (such as deciding to stay indoors when it is raining) that can be visibly guaranteed once a suitable formal, functional profile is fixed.

We are now eyeball to eyeball with the frog. To the extent that mind is an informational phenomenon, we may be confident that a good enough computational simulation will yield an actual instance of mindfulness. A good simulation of a calculator is an instance of a calculator. It adds, subtracts, does all the things we expect a calculator to do. Maybe it even follows the same hidden procedures as the original calculator, in which case we have what Pylyshyn (1986) terms "strong equivalence"—equivalence at the level of an underlying program. If a phenomenon is informational, strong equivalence is surely sufficient to guarantee that we confront not just a model (simulation) of something, but a new exemplar (in-

stantiation) of that very thing. For noninformational phenomena, such as "being a pizza," the rules are different, and the flesh comes into its own. Is consciousness like calculation, or is it more like pizza? The jury is still out.

1.3 A Diversion

[This is extracted from a story by Terry Bisson called "Alien/Nation" first published in *Omni* (1991). Reproduced by kind permission of the author.]

"They're made out of meat."

"Meat?"

"Meat. They're made out of meat."

"Meat?"

"There's no doubt about it. We picked several from different parts of the planet, took them aboard our recon vessels, probed them all the way through. They're completely meat."

"That's impossible. What about the radio signals? The messages to the stars."

"They use the radio waves to talk, but the signals don't come from them. The signals come from machines."

"So who made the machines? That's who we want to contact."

"They made the machines. That's what I'm trying to tell you. Meat made the machines."

"That's ridiculous. How can meat make a machine? You're asking me to believe in sentient meat."

"I'm not asking you, I'm telling you. These creatures are the only sentient race in the sector and they're made out of meat."

"Maybe they're like the Orfolei. You know, a carbon-based intelligence that goes through a meat stage."

"Nope. They're born meat and they die meat. We studied them for several of their life spans, which didn't take too long. Do you have any idea of the life span of meat?"

"Spare me. Okay, maybe they're only part meat. You know, like the Weddilei. A meat head with an electron plasma brain inside."

"Nope. We thought of that, since they do have meat heads like the Weddilei. But I told you, we probed them. They're meat all the way through."

"No brain?"

"Oh, there is a brain all right. It's just that the brain is made out of meat!"

"So . . . what does the thinking?"

"You're not understanding, are you? The brain does the thinking. The meat."

"Thinking meat! You're asking me to believe in thinking meat!"

"Yes, thinking meat! Conscious meat! Loving meat. Dreaming meat. The meat is the whole deal! Are you getting the picture?"

"Omigod. You're serious then. They're made out of meat."

⁴Sufficient, but probably not necessary. x is sufficient for y if when x obtains, y always follows. Being a banana is thus a sufficient condition for being a fruit. x is necessary for y if, should x fail to obtain, y cannot be the case. Being a banana is thus not a necessary condition for being a fruit—being an apple will do just as well.

"Finally, Yes. They are indeed made out of meat. And they've been trying to get in touch with us for almost a hundred of their years."

"So what does the meat have in mind?"

"First it wants to talk to us. Then I imagine it wants to explore the universe, contact other sentients, swap ideas and information. The usual."

"We're supposed to talk to meat?"

"That's the idea. That's the message they're sending out by radio. Hello. Anyone out there? Anyone home? That sort of thing."

"They actually do talk, then. They use words, ideas, concepts?"

"Oh, yes. Except they do it with meat."

"I thought you just told me they used radio."

"They do, but what do you think is on the radio? Meat sounds. You know how when you slap or flap meat it makes a noise? They talk by flapping their meat at each other. They can even sing by squirting air through their meat."

"Omigod. Singing meat. This is altogether too much. So what do you advise?"

"Officially or unofficially?"

"Both."

"Officially, we are required to contact, welcome, and log in any and all sentient races or multi beings in the quadrant, without prejudice, fear, or favor. Unofficially, I advise that we erase the records and forget the whole thing."

"I was hoping you would say that."

"It seems harsh, but there is a limit. Do we really want to make contact with meat?"

"I agree one hundred percent. What's there to say?" 'Hello, meat. How's it going?' But will this work? How many planets are we dealing with here?"

"Just one. They can travel to other planets in special meat containers, but they can't live on them. And being meat, they only travel through C space. Which limits them to the speed of light and makes the possibility of their ever making contact pretty slim. Infinitesimal, in fact." "So we just pretend there's no one home in the universe."

"That's it."

"Cruel. But you said it yourself, who wants to meet meat? And the ones who have been aboard our vessels, the ones you have probed? You're sure they won't remember?"

"They'll be considered crackpots if they do. We went into their heads and smoothed out their meat so that we're just a dream to them."

"A dream to meat! How strangely appropriate, that we should be meat's dream."

"And we can mark this sector unoccupied."

"Good. Agreed, officially and unofficially. Case closed. Any others? Anyone interesting on that side of the galaxy?"

"Yes, a rather shy but sweet hydrogen core cluster intelligence in a class nine star in G445 zone. Was in contact two galactic rotations ago, wants to be friendly again."

"They always come around."

"And why not? Imagine how unbearably, how unutterably cold the universe would be if one were all alone."

1.4 Suggested Readings

For an up-to-date, and indeed somewhat sympathetic, account of the varieties of dualism, see D. Chalmers, *The Conscious Mind* (New York: Oxford University Press, 1996, Chapter 4).

For general philosophical background (identity theory, behaviorism, machine functionalism) a good place to start is Appendix I of this text and then P. M. Churchland, Matter & Consciousness (Cambridge, MA: MIT Press, 1984, and subsequent expanded editions). Another excellent resource is D. Braddon-Mitchell and F. Jackson, Philosophy of Mind and Cognition (Oxford, England: Blackwell, 1996, Chapters 1, 2, 3, 5, 6, and 7).

For the broad notion of a computational view of mind, try the Introductions to J. Haugeland, Mind Design, 1st ed. (Cambridge, MA: MIT Press, 1981) and Mind Design II (Cambridge, MA: MIT Press, 1997). The former ("Semantic engines: An introduction to mind design") is especially good on the syntax/semantics distinction, and the latter ("What is mind design?") adds useful discussion of recent developments.

For more on *Turing machines*, see J. Kim, "Mind as a computer," [Chapter 4 of his excellent book, *Philosophy of Mind* (Boulder, CO: Westview Press, 1996)]. Chapters 1–3 cover dualism, behaviorism, and identity theory and are also highly recommended. Chapter 4 focuses on the advent of machine functionalism and includes detailed discussion of the antireductionist themes that surface as the "structure not stuff" claim discussed in our text.

For philosophical accounts of machine functionalism, and critiques, see H. Putnam, "The nature of mental states." In H. Putnam (ed.), Mind, Language & Reality: Philosophical Papers, Vol. 2 (Cambridge, England: Cambridge University Press, 1975) (a classic and very readable account of machine functionalism) and N. Block, "Introduction: What is functionalism?" and "Troubles with functionalism." Both in his Readings in Philosophy of Psychology, Vol. 1 (Cambridge, MA: Harvard University Press, 1980). (Clean and critical expositions that nicely reflect the flavor of the original debates.)

J. Searle, "The critique of cognitive reason," Chapter 9 of his book, The Rediscovery of the Mind (Cambridge, MA: MIT Press, 1992) is a characteristically direct critique of the basic computationalistic claims and assumptions.

A useful, up-to-date introduction to the empirical issues is S. Franklin, Artificial Minds (Cambridge, MA: MIT Press, 1995), and an excellent general collection of papers may be found in J. Haugeland, Mind Design II (Cambridge, MA: MIT Press, 1997).