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262  PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

Chapter 7

Section 7.1 discusses the aspects of English syntax that cannot be captured by 
SL but are mirrored in PL. In Section 7.2 we present the formal syntax of PL. 
In Section 7.3 we symbolize a wide range of English sentences in PL. In Sec-
tion 7.4 we explore a variety of issues bearing on how we symbolize sentences 
in PL. In Section 7.5 we present PLE, an extension of PL that includes identity 
and functors.

PREDICATE LOGIC: 
SYNTAX AND SYMBOLIZATION

 7.1 PREDICATES, SINGULAR TERMS, AND QUANTITY EXPRESSIONS 
OF ENGLISH

As we noted in Chapter 2, the syntax of English (and every natural language) 
is much more complicated than is the syntax of SL. SL is a language for sen-
tential logic and uses sentence letters to symbolize whole sentences of English. 
Consequently, subsentential components of English sentences have no coun-
terparts in SL. Among the subsentential components of English sentences are 
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7.1 PREDICATES, SINGULAR TERMS, AND QUANTITY EXPRESSIONS OF ENGLISH  263

singular terms, predicates, and quantity expressions. Consider the following 
fairly simple argument:

None of David’s friends supports Republicans. Sarah supports Breitlow 
and Breitlow is a Republican. So Sarah is no friend of David’s.

This is a valid argument. Although we can symbolize this argument in SL 
using the following symbolization key:

 N: None of David’s friends supports Republicans.
 S: Sarah supports Breitlow
 B: Breitlow is a Republican
 F: Sarah is a friend of David’s

the resulting argument is not valid in SL:

N
S & B
∼ F

The problem is that the atomic sentences of SL are logically independent of 
each other—the truth-value of an atomic sentence on a truth-value assignment 
has no bearing on the truth-value of other atomic sentences on that truth-value 
assignment. But the English sentences we are symbolizing are not logically inde-
pendent of each other. If the sentences symbolized by ‘S’ and ‘B’ are true, then 
it is also true that Sarah supports a Republican. And if that is so, and the fi rst 
premise of our English argument is true, it follows that Sarah is not a friend 
of David’s. That is, it is the interconnections between the predicates ‘supports 
Republicans’, ‘supports Breitlow’, ‘is a Republican’, and ‘is a friend of David’s’, 
the singular terms ‘Sarah’, ‘David’, and ‘Breitlow’, and the quantity expression 
‘None’ that make the English language argument valid.

The sentence

Each citizen will vote or will not vote

provides another illustration of the limitations of SL. This sentence is not pre-
senting two alternatives, that every citizen votes or that no citizen votes. Rather 
it is expressing the logical truth that the predicate ‘will vote or will not vote’ is 
true of each citizen. This generalization about citizens applies to each citizen 
individually, not to citizens as a collective group. For example, it applies to 
Cynthia (presuming she is a citizen) and says of Cynthia that she will either 
vote or not vote. This claim about Cynthia, or any other specifi ed citizen, can 
readily be symbolized as a truth-functional truth of SL. Where ‘C’ abbreviates 
‘Cynthia will vote’, ‘C ∨ ∼ C’ says of Cynthia what the general claim says of each 
citizen. But there is, barring heroic measures, no symbolization of the general 
claim in SL that is truth-functionally true.1

1Since there are presumably only fi nitely many citizens, we could construct a very long iterated conjunction with as 
many conjuncts of the sort ‘C ∨ ∼ C’ as there are citizens. But even such heroic measures fail when the items about 
which we wish to talk (for example, the positive integers) constitute an infi nite, and not just an exceedingly large, set.
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264  PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

What we need is a symbolic language whose syntax does mirror the 
use of singular terms, predicates, and quantity expressions in English. PL is 
such a language. However, before introducing PL we will explore how singu-
lar terms, predicates, and quantity expressions function in English. A singular 
term is any word or phrase that designates or purports to designate (or denote 
or refer to) some one thing. Singular terms are of three sorts: proper names, 
defi nite descriptions, and pronouns used in place of proper names or defi nite 
descriptions, that is, pronouns that make pronominal cross-reference to proper 
names or defi nite descriptions. Examples of proper names include ‘George 
 Washington’, ‘Marie Curie’, ‘Sir Arthur Conon Doyle’, ‘Rhoda’, and ‘Henry’. 
Generally speaking, proper names are attached to the things they name by 
simple convention. On the other hand, defi nite descriptions—for example, ‘the 
discoverer of radium’, ‘the person Henry is talking to’, ‘Mary’s best friend’, and 
‘James’ only brother’—pick out or purport to pick out a thing by providing a 
unique description of that thing.2 A defi nite description is a description that, 
by its grammatical structure, describes or specifi es at most one thing. Thus 
‘James’ only brother’ is a defi nite description whereas ‘James’ brother’ is not—
the  latter could accurately apply to more than one person because James may 
have many brothers, whereas the former can apply to at most one. Pronouns 
that bear pronominal cross-reference to singular terms refer to the things those 
singular terms designate.

The sentence ‘If Sue has read Darwin’s works, she’s no creationist’ 
contains three singular terms, the proper name ‘Sue’, the defi nite descrip-
tion ‘Darwin’s works’, and the pronoun ‘she’. Each of these singular terms 
does refer to something. ‘Sue’ refers to Sue because, by convention, it is her 
name. ‘Darwin’s works’ refers to the works of Darwin because it is a defi nite 
description of those works. And the pronoun ‘she’ refers to Sue because in this 
sentence ‘she’ is going proxy for ‘Sue’ (it bears pronominal cross-reference to 
‘Sue’ and hence refers to the same entity as does ‘Sue’).

Predicates, such as ‘supports Republicans’, can be thought of as incom-
plete sentences that contain gaps or holes such that when those gaps are fi lled 
with singular terms the result is a complete sentence. However, writing predi-
cates as we have just done does not visibly display the gap into which a singular 
term can be placed, and it is not suitable for displaying predicates containing 
more than one gap or hole. We could display predicates by indicating the gaps 
with underscores, as in

___ supports Republicans
___ is located between ___ and ___

2As these examples illustrate, defi nite descriptions can themselves contain singular terms. But we are here con-
cerned only with singular terms that do not occur as constituents of other singular terms. For example, we here 
take ‘The Roman general who defeated Pompey invaded both Gaul and Germany’ to contain just three singu-
lar terms: ‘The Roman general who defeated Pompey’, ‘Gaul’, and ‘Germany’. In Section 7.5 we shall introduce 
techniques that allow us to recognize and symbolize singular terms that are themselves constituents of singular 
terms—including ‘Pompey’ as it occurs in ‘The Roman general who defeated Pompey’.
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7.1 PREDICATES, SINGULAR TERMS, AND QUANTITY EXPRESSIONS OF ENGLISH  265

But for reasons that will emerge, it is useful to use the lowercase letters ‘w’, 
‘x’, ‘y’, and ‘z’ (called ‘variables’ for reasons to be subsequently explained) to 
mark the places in predicates where singular terms can be placed. Using this 
convention we can specify the two predicates displayed above as ‘x supports 
Republicans’ and ‘x is located between y and z’. A predicate with one gap is a 
one-place predicate, a predicate containing two gaps is a two-place predicate, 
and in general a predicate containing n gaps is an n-place predicate.

One way of generating a predicate is to start with a complete sentence 
of English containing one or more singular terms and delete one or more of 
those terms. And one way of generating a sentence from a predicate is to fi ll 
all the holes that are marked by variables with singular terms.

Because the gaps in predicates that are marked by variables can be fi lled 
with referring expressions—proper names, defi nite descriptions, and some uses of 
pronouns—we will say that these gaps are ‘referential positions’ and that expres-
sions occurring in these positions, including variables, ‘occur in referential posi-
tion’. But not all expressions that occur in referential positions do refer. Consider

If you play with fi re you are likely to get burned.

In most contexts this sentence is used to comment about what is likely 
to happen to one, anyone, who plays with fi re. Hence it would be a mistake to 
ask whom ‘you’, in either occurrence in the sentence, refers to. The sentence is 
a warning to all persons but does not refer to any particular person. Similarly, 
though ‘Nobody’ is a pronoun and does occur in referential position in

Nobody knows where Tom is

it does not make reference to anyone. There is no one whose name is ‘nobody’, 
nor does ‘nobody’ describe someone. We shall shortly discuss at length the 
use of pronouns that occur in referential position but do not in fact refer to 
anyone or anything.

It is not the case that all the singular terms of natural languages do 
refer or denote some one thing. For example, the only singular term in

Sherlock Holmes was a great detective

does not refer to a nineteenth-century English detective named ‘Sherlock 
 Holmes’ who lived at 221B Baker Street, because there was no such detective. 
There are also defi nite descriptions that occur in referential positions but do not 
refer. Two examples are ‘the present prime minister of the United States’ and 
‘the largest prime number’. There is no prime minister of the United States and 
there is no largest prime number. This is a matter of some importance because 
by stipulation all of the individual constants of PL, the analogues of proper 
names and defi nite descriptions of English, do refer. Various strategies have 
been advanced for dealing with singular terms that do not refer, and we will 
explore one of them later in this chapter. But for the present we stipulate that 
all the singular terms we use in examples and exercises should be taken to refer.
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266  PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

Of course, what a singular term refers to is often context dependent. 
In its most familiar use ‘George Washington’ refers to the fi rst president of the 
United States. But the U.S. Navy has an aircraft carrier named after the fi rst 
president and so there are contexts in which ‘George Washington’ refers to a 
ship, not a man. Similarly, at a cocktail party where there is only one Henry, 
‘the person Henry is talking to’ may refer to different persons at different times. 
Hereafter, when we use a sentence of English as an example or in an exercise 
set, we are assuming that sentence is being used in a context such that it is 
clear who or what the singular terms in that sentence refer to. We also note that 
when we are working with a group of sentences, the context that is assumed 
must be the same for all the sentences in the group. That is, we assume that a 
singular term that occurs several times in the piece of English discourse under 
discussion designates the same thing in each of its occurrences.

Predicates may contain multiple singular terms; in generating a predi-
cate from a sentence containing multiple singular terms we may, but need not, 
delete all the singular terms. For example, ‘New York City is north of Philadel-
phia’ contains two singular terms, ‘New York City’ and ‘Philadelphia’, and we can 
obtain three distinct predicates by deleting one or both of these singular terms:

x is north of Philadelphia
New York City is north of x
x is north of y

As far as grammar is concerned, any singular term can be used to replace 
a variable in a predicate. Hence among the sentences we can generate from 
the two-place predicate ‘x is north of y’ and the singular terms ‘Minneapolis’, 
‘Chicago’, and ‘3’ are

Minneapolis is north of Chicago.
Chicago is north of Minneapolis.
Chicago is north of Chicago.
Chicago is north of 3.

The semantics we will adopt will assign a truth-value to each of these sentences.3

Given a stock of predicates, singular terms, and the sentential connec-
tives ‘. . . and . . .’, ‘. . . or . . .’, ‘if . . . then . . .’, ‘. . . if and only if . . .’, 
and ‘it is not the case that . . .’, we can generate a wide variety of sentences 
of  English. For example, from these sentential connectives, the singular terms 
‘Henry’, ‘Sue’, ‘Rita’, and ‘Michael’, and the predicates

x is easygoing
x likes y
x is taller than y

3It may be suggested that the fourth sentence is neither true nor false, as it “makes no sense”. Numbers do not 
have location, so 3 is not located anywhere. But the semantics we will provide in Chapter 8 does allow for such 
sentences and counts them as false. Precisely because numbers do not have location it is false that any given 
number is spatially related to anything.
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7.1 PREDICATES, SINGULAR TERMS, AND QUANTITY EXPRESSIONS OF ENGLISH  267

we can generate the following sentences

Michael is easygoing.
Sue is easygoing.
Michael is taller than Sue and Sue is taller than Henry.
Sue likes Henry and Michael likes Rita.
If Rita likes Henry, then Rita is taller than Henry.
Michael is easygoing if and only if it is not the case that Rita is easygoing.

If we allow the use of quantity expressions as well as singular terms to generate 
sentences from predicates, that is expressions such as ‘everything’, ‘something’, 
‘nothing’, ‘everyone’, someone’, and ‘no one’, we can also generate the follow-
ing sentences from these same predicates:

Everyone is easygoing.
No one is easygoing.
Someone is easygoing.
Michael likes everyone.
Someone likes Sue.
No one is taller than her- or himself.

Note that the quantity expressions we used to generate these sentences, ‘eve-
ryone’, ‘no one’, and ‘someone’, all occur in referential positions, in positions 
where singular terms can occur. But these and other quantity expressions are 
not singular terms. ‘No one’ obviously does not refer to anyone. And neither 
does ‘someone’. Consider ‘Someone will win tonight’s lottery’. We can all agree 
that this is true—there will be a winner. Suppose the winner turns out to be 
Henry Jacobson. It is not the case that when we asserted, in the morning, 
that someone would win the lottery we were referring to Henry Jacobson. All 
‘Someone will win tonight’s lottery’ asserts is that there is a person, identity 
presumably unknown, who will win tonight’s lottery.

Similarly, ‘Everyone’ in ‘Everyone is easygoing’ does not refer to the 
totality of people or the set of all people, for it is individuals, not collections 
or sets of individuals, that are claimed to be easygoing. Rather, the force of 
‘Everyone is easygoing’ is just that ‘is easygoing’ can be truly predicated of each 
and every individual.

 7.1 EXERCISES

 1. Identify the singular terms in the following sentences, and then specify all the 
predicates that can be obtained from each sentence by deleting one or more 
singular terms.

 a. The president is a Democrat.
 *b. The speaker of the house is a Republican
 c. Sarah attends Smith College.
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268  PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

 *d. Bob fl unked out of U Mass.
 e. Charles and Rita are siblings.
 *f. 2 is greater than 1 and less than 4.

 7.2 THE FORMAL SYNTAX OF PL

The language PL is far more powerful than the language SL because it includes 
constituents whose functions largely mirror the functions of n-place predicates, 
singular terms, and quantity terms (‘every’, ‘some’, ‘no’, . . .) in English.4 In 
this section we present the formal syntax of PL, which is somewhat complicated 
(though not as complicated as the syntax of English).

The vocabulary of PL consists of:

Sentence Letters: The capital Roman letters ‘A’ 
through ‘Z’, with or without positive-integer 
subscripts

A, B, C, . . . , Z,
A1, B1, C1, . . . , Z1, . . .

Predicates: The capital Roman letters ‘A’ 
through ‘Z’, with or without positive-integer 
subscripts, followed by one or more primes

A�, B�, C�, . . . , Z�,
A1�, B1�, C1�, . . . , Z1�, . . .

Individual terms:
  Individual constants: The lowercase Roman 

letters ‘a’ through ‘v’, with or without 
positive-integer subscripts

a, b, c, . . . , v,
a1, b1, c1, . . . , v1, . . .

 Individual variables: The lowercase Roman 
  letters ‘w’ through ‘z’, with or without 

positive-integer subscripts

w, x, y, z,
w1, x1, y1, z1, . . .

Truth-functional connectives: ∼, &, ∨, ⊃, ≡

Quantifi er symbols: ∀, ∃

Punctuation marks: ( )

The sentence letters of PL are just the sentence letters of SL. This makes 
every sentence of SL a sentence of PL. Offi cially, that a predicate of PL is an 
n-place predicate is indicated by the presence of n primes. So ‘A�’ is a one-place 
predicate and ‘B��’ is a two-place predicate of PL. But we also adopt the infor-
mal convention of allowing the omission of primes when the context makes 
it clear whether the predicate in question is a 1-place, 2-place, 3-place, . . . 
predicate, as when we write an n-place predicate with n distinct variables 

4PL does not mirror all the subsentential relations present in English and other natural languages. Consequently, 
there are, as one might expect, English language arguments that are deductively valid but whose symbolizations 
in PL are not valid, English sentences that are logically true but whose symbolizations in PL do not refl ect this, 
and so on. To deal with natural language discourse that cannot be adequately represented in PL, even more 
powerful formal systems are available—for example, tense logic and modal logic. A discussion of these systems 
is beyond the scope of this text.
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7.2 THE FORMAL SYNTAX OF PL  269

 following the predicate. So we will often write ‘Ax’ (or ‘Ay’ or ‘Az’ . . .) rather 
than ‘A�’, ‘Bxy’ rather than ‘B��’, and so on.

An expression of PL is a sequence of not necessarily distinct elements 
of the vocabulary of PL. All of the following are expressions of PL:

Lab
(∀∃xy
(∀w)(∃y)Fwy
((a ⊃ B)

In each case every character in the expression is an element of the vocabulary 
of PL. But the following are not expressions of PL:

{AbcB
(A ⊃ π)
(∀x/W

Each of these expressions contains a character that is not part of the vocabulary 
of PL. These are, respectively, ‘{’, ‘π’ (the Greek letter pi), and ‘/’.

In what follows we will use the boldface capital letters ‘P’, ‘Q’, ‘R’, and 
‘S’ as metavariables ranging over expressions of PL. We will also use boldface 
‘a’ as a metavariable ranging over individual constants of PL and boldface ‘x’ 
as a metavariable ranging over individual variables of PL.

Quantifi er of PL: An expression of PL of the form (∀x) or (∃x). An ex-
pression of the fi rst form is a universal quantifi er, and one of the second 
form is an existential quantifi er.

We will say that a quantifi er contains a variable. Thus ‘(∀y)’ and ‘(∃y)’ 
both contain the variable ‘y’ (and are ‘y-quantifi ers’); ‘(∀z)’ and ‘(∃z)’ both 
contain the variable ‘z’ (and are ‘z-quantifi ers’).

Atomic formulas of PL: Every expression of PL that is either a sentence 
letter of PL or an n-place predicate of PL followed by n individual terms 
of PL.

We are now able to recursively defi ne ‘formula of PL’:

1. Every atomic formula of PL is a formula of PL.
2. If P is a formula of PL, so is ∼ P.
3. If P and Q are formulas of PL, so are (P & Q), (P ∨ Q), (P ⊃ Q), and 

(P ≡ Q).
4. If P is a formula of PL that contains at least one occurrence of x and 

no x-quantifi er, then (∀x)P and (∃x)P are both formulas of PL.
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270  PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

5. Nothing is a formula of PL unless it can be formed by repeated appli-
cations of clauses 1–4.

Lastly, we specify the logical operators of PL:

An expression of PL that is either a quantifi er or a truth-functional con-
nective is a logical operator of PL.

It will emerge that not every formula of PL is a sentence of PL. How-
ever, before we can specify which formulas of PL are sentences of PL we need 
to defi ne the terms ‘subformula’ and ‘main logical operator’:

1. Every formula is a subformula of itself.
2. If P is an atomic formula of PL, then P contains no logical operator, and 

hence no main logical operator, and P has no immediate subformula.
3. If P is a formula of PL of the form ∼ Q, then the tilde (‘∼’) that pre-

cedes Q is the main logical operator of P, and Q is the immediate 
subformula of P.

4. If P is a formula of PL of the form (Q & R), (Q ∨ R), (Q ⊃ R), or (Q ≡ R), 
then the binary connective between Q and R is the main logical operator 
of P, and Q and R are the immediate subformulas of P.

5. If P is a formula of PL of the form (∀x)Q or of the form (∃x)Q, then 
the quantifi er that occurs before Q is the main logical operator of P, 
and Q is the immediate subformula of P.

The subformulas of a formula P of PL are 

• P itself,
• The immediate subformulas of P,
• The subformulas of P’s immediate subformulas.

We can classify formulas of PL (and later sentences) by their main 
logical operator. Atomic formulas have no main logical operator. Quantifi ed 
formulas have a quantifi er as their main logical operator. Formulas whose main 
logical operator is a sentential connective are truth-functional formulas. Below 
we display several formulas and all of their subformulas. Remember that every 
formula is a subformula of itself.

 Main Logical Formula
Formula Operator Type

1. Rabz None Atomic

2. ∼ (Rabz & Hxy) ∼ Truth-functional
 (Rabz & Hxy) & Truth-functional
 Rabz None Atomic
 Hxy None Atomic
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7.2 THE FORMAL SYNTAX OF PL  271

3. (Hab ≡ (∀z)(Fz ⊃ Gza)) ≡ Truth-functional
 Hab None Atomic
 (∀z)(Fz ⊃ Gza) (∀x) Quantifi ed
 (Fz ⊃ Gza) ⊃ Truth-functional
 Fz None Atomic
 Gza None Atomic

4. (∀y)(Hay ∨ (Fy ⊃ Gya)) (∀y) Quantifi ed
 (Hay ∨ (Fy ⊃ Gya)) ∨ Truth-functional
 Hay None Atomic
 (Fy ⊃ Gya) ⊃ Truth-functional
 Fy None Atomic
 Gya None Atomic

Quantifi ers interpret the variables that fall within their scope.

Scope of a quantifi er: The scope of a quantifi er in a formula P of PL is the quan-
tifi er itself and the subformula Q that immediately follows the quantifi er.

In other words, the scope of a quantifi er is all of the formula of which 
the quantifi er is the main logical operator, including the quantifi er itself. Some 
examples will be helpful here. In the formula ‘(∃y)(Fyz & Gzy)’ the subformula 
that immediately follows the quantifi er ‘(∃y)’ is ‘(Fyz & Gzy)’ and accordingly the 
scope of that quantifi er is all of ‘(∃y)(Fyz & Gzy)’, and all of the variables in that 
formula, including the ‘y’ following ‘∃’, fall within the scope of that quantifi er. But 
in the formula ‘Hx ⊃ (∀y)Fxy’ the formula immediately following the quantifi er 
‘(∀y)’ is ‘Fxy’ and the scope of that quantifi er is therefore all of ‘(∀y)Fxy’. The 
fi rst occurrence of ‘x’ (in ‘Hx’) does not fall within the scope of ‘(∀y)’. Similarly 
in ‘(∃w)(Gwa ⊃ Fa) ≡ Hw’ the scope of ‘(∃w)’ does not include the whole formula, 
for the formula that immediately follows that quantifi er is ‘Gwa ⊃ Fa’. Hence the 
fi rst and second occurrences of ‘w’ in ‘((∃w)(Gwa ⊃ Fa) ≡ Hw)’ fall within the 
scope of ‘(∃w)’ but the third, in ‘Hw’, does not.

The fi nal concepts we need to introduce before we defi ne ‘sentence 
of PL’ are those of free and bound variables.

Bound variable: An occurrence of a variable x in a formula P of PL that is 
within the scope of an x-quantifi er.
Free variable: An occurrence of a variable x in a formula P of PL that is 
not bound.

At long last we are ready to formally introduce the notion of a sentence of PL:

Sentence of PL: A formula P of PL is a sentence of PL if and only if no 
 occurrence of a variable in P is free.

The formula ‘(Hx ⊃ (∀y)Fxy)’ is not a sentence of PL because it con-
tains a free variable. In fact, both occurrences of ‘x’ in this formula are free. 
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272  PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

The fi rst occurrence of ‘x’ does not fall within the scope of any quantifi er and 
is therefore free, and the second occurrence of ‘x’, while falling within the 
scope of a quantifi er, does not fall within the scope of an x-quantifi er and is 
therefore free. The formula ‘(∀z)Gz ⊃ ∼ Hz’ is not a sentence of PL because 
the third occurrence of ‘z’ does not fall within the scope of a z-quantifi er. The 
scope of ‘(∀z)’ is limited to the subformula of which it is the main logical 
operator—that is, to ‘(∀z)Gz’.

Earlier we considered the following four formulas of PL:

Rabz
∼ (Rabz & Hxy)
(Hab ≡ (∀z)(Fz ⊃ Ga))
(∀y)(Hay ∨ (Fy ⊃ Gya))

The fi rst formula is not a sentence of PL because it contains ‘z’ as a 
free variable. We can construct a sentence from this formula by prefacing it 
with a z-quantifi er; both ‘(∃z)Rabz’ and ‘(∀z)Rabz’ are sentences of PL. The 
second formula in our list is not a sentence of PL because ‘z’, ‘x’, and ‘y’ 
all occur free in that formula. This formula can be converted to a sentence 
by prefacing it with three distinct quantifi ers, as in ‘(∃z)(∃x)(∃y) ∼ (Rabz & 
Hxy)’. The third formula in our list is a sentence of PL. The only variable in 
‘(Hab ≡ (∀z)(Fz ⊃ Ga))’ is ‘z’ and its two occurrences both fall within the 
scope of the quantifi er ‘(∀z)’. The fourth formula is also a sentence of PL. 
The formula of which ‘(∀y)’ is the main logical operator is the entire formula, 
and hence all four occurrences of ‘y’ fall within the scope of that quantifi er.

There are formulas of PL that cannot be transformed into sentences of 
PL by adding quantifi ers within whose scope the entire original formula falls. 
Consider ‘(Fy ⊃ (∃y)Gy)’. The fi rst occurrence of ‘y’ in this formula is free 
as it does not fall within the scope of any quantifi er. The result of attaching 
a universal quantifi er to this entire formula is ‘(∀y)(Fy ⊃ (∃y)Gy)’. But this 
expression is neither a formula nor a sentence of SL. The only way quantifi ers 
become attached to formulas is in accordance with the fourth clause of the 
recursive defi nition of ‘formula of PL’, which is

4. If P is a formula of PL that contains at least one occurrence of x and 
no x-quantifi er, then (∀x)P and (∃x)P are both formulas of PL.

This clause does not allow attaching ‘(∀y)’ to ‘(Fy ⊃ (∃y)Gy)’ because the latter 
already contains a y-quantifi er, ‘(∃y)’.

We have been omitting the primes that, by the formal requirements 
of PL, are parts of the predicates of PL, and we will continue to do so. We 
will also frequently omit the outermost parentheses of a formula of PL, as we 
did with SL. In our usage outermost parentheses are a pair of left and right 
parentheses that are added, as a pair, when a binary connective is inserted 
between two formulas of PL.
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The omission of outermost parentheses should cause no confusion. 
Note, however, that when outermost parentheses are customarily dropped, it is 
not safe to assume that every sentence that begins with a quantifi er is a quanti-
fi ed sentence. Consider

(∀x)(Fx ⊃ Ga)

and

(∀x)Fx ⊃ Ga

Both begin with quantifi ers, but only the fi rst is a quantifi ed sentence. The 
scope of the x-quantifi er in this sentence is the whole formula. The second 
sentence is a truth-functional compound; the scope of the x-quantifi er is just 
‘(∀x)Fx’. It turns out that these two sentences say very different things.

To make complicated formulas of PL easier to read, we also allow the 
use of square brackets, ‘[’ and ‘]’, in place of the parentheses required by 
clause 3 of the recursive defi nition of ‘formula of PL’. (But we will not allow 
square brackets in place of parentheses in quantifi ers.) So, instead of

∼ (∀y)((∃z)Fzy ⊃ (∃x)Gxy)

we can write

∼(∀y)[(∃z)Fzy ⊃ (∃x)Gxy]

In later chapters we shall require one further syntactic concept, that of a 
substitution instance of a quantifi ed sentence. We use the notation P(a/x) to 
specify the formula of PL that is like P except that it contains the individual 
constant a wherever P contains the individual variable x. Thus if P is

(Fza ∨ ∼ Gz)

then P(c/z) is

(Fca ∨ ∼ Gc)

Substitution instance of P: If P is a sentence of PL of the form (∀x)Q or 
(∃x)Q, and a is an individual constant, then Q(a/x) is a substitution 
 instance of P. The constant a is the instantiating constant.

For example, ‘Ga’, ‘Gb’, and ‘Gc’ are all substitution instances of 
‘(∃z)Gz’. And ‘Fab’, ‘Fbb’, and ‘Fcb’ are all substitution instances of ‘(∀z)Fzb’. 
‘Fab’ is the result of substituting ‘a’ for ‘z’ in ‘Fzb’, ‘Fbb’ is the result of substitut-
ing ‘b’ for ‘z’ in ‘Fzb’, and ‘Fcb’ is the result of substituting ‘c’ for ‘z’ in ‘Fzb’. 
In forming a substitution instance of a quantifi ed sentence, we drop the initial 
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quantifi er and replace all remaining occurrences of the now free variable with 
some one constant. Thus ‘(∃y)Hay’ and ‘(∃y)Hgy’ are both substitution instances 
of ‘(∀x)(∃y)Hxy’, but ‘Hab’ is not. (In forming substitution instances only the 
initial quantifi er is dropped, and every occurrence of the variable that becomes 
free when that quantifi er is dropped is replaced by the same constant.) All the 
following are substitution instances of ‘(∃w)[Fw ⊃ (∀y)(∼ Dwy ≡ Ry)]’:

Fd ⊃ (∀y)(∼ Ddy ≡ Ry)
Fa ⊃ (∀y)(∼ Day ≡ Ry)
Fn ⊃ (∀y)(∼ Dny ≡ Ry)

but

Fd ⊃ (∀y)(∼ Dny ≡ Ry)

is not—for here we have used one constant to replace the fi rst occurrence of ‘w’ 
and a different constant to replace the second occurrence of ‘w’. Again, in gen-
erating substitution instances, each occurrence of the variable being replaced 
must be replaced by the same individual constant.

Only quantifi ed sentences have substitution instances, and the substitu-
tion instances are formed by dropping the initial quantifi er. Thus ‘∼ Fa’ is not 
a substitution instance of ‘∼ (∀x)Fx’. ‘∼ (∀x)Fx’ is a negation, not a quantifi ed 
sentence, and hence has no substitution instances. ‘(∀x)Fxb’ is not a substitu-
tion instance of ‘(∀x)(∀y)Fxy’ because, while the latter is a quantifi ed sentence, 
only the initial quantifi er can be dropped in forming substitution instances, and 
here the initial quantifi er is ‘(∀x)’, not ‘(∀y)’.

 7.2E EXERCISES

 1. Determine, for each of the following, whether it is a formula of PL, and if it 
is, whether it is a sentence of PL. If it is not a formula, explain why not. If it is 
a formula but not a sentence, explain why it is not a sentence. Then, if it is a 
formula of PL, list all of its components and identify the main logical operator, 
if any, of each by circling it, and for each subformula indicate whether it is 
an atomic, truth-functionally compound, or quantifi ed formula. We here allow 
the deletion of outer parentheses and the use of square brackets in place of 
parentheses around binary compounds.

For example, a correct answer for the expression ‘∼ (∃z)Fz & Hz’ would be 
Formula but not a sentence. The ‘z’ in ‘Hz’ is free.

∼ (∃z)Fz & Hz Truth-functional
∼ (∃z)Fz Truth-functional
Hz Atomic
(∃z)Fz Quantifi ed
Fz Atomic
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 a. Ba & Hc
 *b. (∃x)(Fx & Gx)
 c. ∼ (∀y)Fya
 *d. Fz ⊃ (∀z)Fz
 e. (∃a)Ga
 *f. Hxx ≡ (∃w)Fw
 g. (∀x)(∀y) ∼ Hxy
 *h. (∃y) ∼ Hyy & Ga
 i. (∀y) ∼ Fy ≡ ∼ (∃w)Fw
 *j. (∀x)Faa
 k. (∃z)(Fz & ∼ Baz)
 *l. (∃x)[Fx & (∀x)(Fx ⊃ Gx)]
 m. (∃x)Fx ∨ ∼ (∃x)Fx
 *n. ∼ (∀x)(Gx ≡ Fx)
 o. (∃x)(∃y)Lxx
 *p. (∀x)[(∃y)Fyx ⊃ (∃y)Fxy]
 q. Fa ⊃ (∃x)Fx
 *r. Fa ≡ (∀x)Fa
 s. ∼ Fw ⊃ ∼ (∃w)Gww

 2. Indicate, for each of the following sentences of PL, whether it is an atomic 
sentence, a truth-functionally compound sentence, or a quantifi ed sentence. 
Circle the main logical operator, if any.

 a. (∀x) (Fx ⊃ Ga)
 *b. (∀x) ∼ (Fx ⊃ Ga)
 c. ∼ (∀x)(Fx ⊃ Ga)
 *d. (∃w)Raw ∨ (∃w)Rwa
 e. ∼ (∃x)Hx
 *f. Habc
 g. (∀x)(Fx ≡ (∃w)Gw)
 *h. (∀x)Fx ≡ (∃w)Gw
 i. (∃w)(Pw ⊃ (∀y)(Hy ≡ ∼ Kyw))
 *j. ∼ (∃w)( Jw ∨ Nw) ∨ (∃w)(Mw ∨ Lw)
 k. ∼ [(∃w)( Jw ∨ Nw) ∨ (∃w)(Mw ∨ Lw)]
 *l. Da
 m. (∀z)Gza ⊃ (∃z)Fz
 *n. ∼ (∃x)(Fx & ∼ Gxa)
 o. (∃z) ∼ Hza
 *p. (∀w)(∼ Hw ⊃ (∃y)Gwy)
 q. (∀x) ∼ Fx ≡ (∀z) ∼ Hza

 3. Give a substitution instance of each of the following sentences in which ‘a’ is 
the instantiating term.

 a. (∀w)(Mww & Fw)
 *b. (∃y)(Mby ⊃ Mya)
 c. (∃z) ∼ (Cz ∼ Cz)
 *d. (∀x)[(Laa & Lab) ⊃ Lax]
 e. (∃z)[Fz & ∼ Gb) ⊃ (Bzb ∨ Bbz)]
 *f. (∃w)[Fw & (∀y)(Cyw ⊃ Cwa)]
 g. (∀y)[∼ (∃z)Nyz ≡ (∀w)(Mww & Nyw)]
 *h. (∀y)[(Fy & Hy) ⊃ [(∃z)(Fz & Gz) ⊃ Gy]]
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 i. (∃x)(Fxb ≡ Gbx)
 *j. (∀x)(∀y)[(∃z)Hzx ⊃ (∃z)Hzy]
 k. (∀x) ∼ (∃y)(Hxy & Hyx)
 *l. (∀z)[Fz ⊃ (∃w)(∼ Fw & Gwaz)]
 m. (∀w)(∀y)[(Hwy & Hyw) ⊃ (∃z)Gzw]
 *n. (∃z)(∃w)(∃y)[(Fzwy ≡ Fwzy) ≡ Fyzw]

 4. Which of the following examples are substitution instances of the sentence 
‘(∃w)(∀y)(Rwy ⊃ Byy)’?

 a. (∀y)Ray ⊃ Byy
 *b. (∀y)(Ray ⊃ Byy)
 c. (∀y)(Rwy ⊃ Byy)
 *d. (∀y)(Rcy ⊃ Byy)
 e. (∀y)(Ryy ⊃ Byy)
 *f. (∃y)(Ray ⊃ Byy)
 g. (Ray ⊃ Byy)
 *h. (∀y)(Ray ⊃ Baa)

 7.3 INTRODUCTION TO SYMBOLIZATION

Recall the sentences about Michael and his co-workers that we discussed in 
Section 7.1:

Michael is easygoing.
Sue is easygoing.
Michael is taller than Sue and Sue is taller than Henry.
Sue likes Henry and Michael likes Rita.
If Rita likes Henry, then Rita is taller than Henry.
Michael is easygoing if and only if it is not the case that Rita is easygoing.

We can now symbolize these sentences in PL. Here, as will frequently 
be the case throughout the rest of this chapter, we will use a symbolization 
key. A symbolization key specifi es the universe of discourse (‘UD’ for short) or 
set of things we are talking about. Every UD is a nonempty set. A symbolization 
key also gives the English readings of the predicates of PL we will use in our 
symbolizations and assigns members of the UD to the individual constants we 
will use. Our symbolization keys will also assign truth-values to any sentence 
letters of PL that we will use in our symbolizations. We will specify the set we 
are using as the UD either as we do below, by listing the members inside curly 
brackets, or by using a description of the set, for example ‘The set of positive 
integers’. In symbolizing our sentences about Michael, Sue, Henry, and Rita 
we will use the following symbolization key:

 UD: The set {Michael, Sue, Henry, Rita}
 Ex: x is easygoing
 Txy: x is taller than y
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 Lxy: x likes y
 m: Michael
 s: Sue
 h: Henry
 r: Rita

The English sentences we are symbolizing and our symbolizations of them in 
PL are as follows:

Michael is easygoing. Em
Sue is easygoing. Es
Michael is taller than Sue and Sue is taller than Henry. Tms & Tsh
Sue likes Henry and Michael likes Rita. Lsh & Lmr
If Rita likes Henry, then Rita is taller than Henry. Lrh ⊃ Trh
Michael is easygoing if and only if it is not the 
case that Rita is easygoing.

Em ≡ ∼ Er

In constructing our symbolization key we selected predicate letters and indi-
vidual constants that may help us remember what English predicates and singu-
lar terms they symbolize. We will follow this practice throughout this chapter, 
but we note that a strong mnemonic connection between the predicates and 
singular terms of PL and the expressions of English they symbolize is not always 
possible.

We can also use symbolization keys to provide English readings 
of sentences of PL. For example, using our current symbolization key we 
can read

Lrh ≡ (Lhr & ∼ Lhs)

as

Rita likes Henry if and only if Henry likes Rita and does not like Sue.

Using the same symbolization key we can also provide English readings for the 
following sentences of PL:

Lhr & ∼ Lrh
Lrh ⊃ Lrm
Trh & ∼ Trs
Tsh ⊃ Lhs
(Lmh ∨ Lms) ⊃ (Lmh & Lms)

In English these become, respectively,

Henry likes Rita and Rita does not like Henry.
If Rita likes Henry, then Rita likes Michael.
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Rita is taller than Henry and Rita is not taller than Sue.
If Sue is taller than Henry, then Henry likes Sue.
If Michael likes Henry or Michael likes Sue, then Michael likes 
Henry and Michael likes Sue.

We can, of course, improve on the English. For example, the last sentence of 
PL can be more colloquially read as

If Michael likes either Henry or Sue he likes both of them.

Earlier we gave several examples of English sentences having quantity expres-
sions in positions that singular terms can also occupy. Among these were

Everyone is easygoing.
No one is easygoing.

We can symbolize such sentences in PL without using quantifi ers provided the 
discourse within which such sentences occur is about a fi nite, and for practical 
purposes, a reasonably small number, of things or individuals. For example, 
suppose we are again talking about only Michael, Sue, Henry, and Rita. Given 
this context, ‘Everyone is easygoing’ is equivalent to ‘Michael, Sue, Henry, and 
Rita are easygoing’ and this claim can be symbolized as an iterated conjunction:

(Em & Es) & (Eh & Er)

And ‘No one is easygoing’ is in this context equivalent to ‘Neither Michael nor 
Sue nor Henry nor Rita is easygoing’ and can be symbolized as the negation 
of an iterated disjunction:

∼ [(Em ∨ Es) ∨ (Eh ∨ Er)]

But these techniques are impractical when the number of things or individuals 
we are talking about is even moderately large. And we cannot, even in principle, 
symbolize quantity claims about an infi nite number of things, say the positive 
integers, by using iterated conjunctions and disjunctions. For these purposes 
we do need the quantifi ers of PL.

Suppose substantially more than four people work in Michael’s offi ce 
and we want to symbolize sentences about this larger group of individuals. We 
will use the following symbolization key to do so.

 UD: The set of people who work in Michael’s offi ce
 Lxy: x likes y
 Rxy: x respects y
 m: Michael
 r: Rita
 h: Henry
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The fi rst sentence we will symbolize is

Everyone likes Michael.

In symbolizing English sentences in PL it will often be useful to fi rst para-
phrase those sentences. Our paraphrases will be analogous to those we used 
in Chapter 2. We will use the terms ‘each’ and ‘there is a(n)’ followed by 
a variable to specify where quantifi ers will occur in PL, and we will under-
line all expressions that are counterparts to the logical operators of PL. As 
‘ Everyone likes Michael’ is a claim about everyone in the UD, we will para-
phrase it as:

Each x is such that x likes Michael.

Using ‘Lxy’ to symbolize ‘x likes y’ and using ‘m’ to designate Michael, our 
symbolization is

(∀x)Lxm

This sentence says that ‘Lxm’ is true of each thing in the UD, that is, each 
thing in the UD likes Michael. Our symbolization key includes

Lxy: x likes y

That we chose, arbitrarily, to use ‘x’ and ‘y’ in assigning an English reading 
to this 2-place predicate does not mean that whenever we use this predicate it 
must be followed by ‘x’ and then ‘y’. A predicate of PL can be followed by any 
combination of the appropriate number of variables and individual constants. 
More generally, in symbolization keys, variables are used to mark the gaps in 
n-place predicates, not to specify what variables are to be used in symbolizations 
containing those predicates. We also could have used any variable in our para-
phrase and any variable in our symbolization. For example, ‘(∀y)Lym’, ‘(∀z)
Lzm’, and ‘(∀w)Lwm’ are all correct symbolizations of ‘Everyone likes Michael’.

Having symbolized ‘Everyone likes Michael’ it is easy to symbolize 
‘Michael likes everyone’. An appropriate paraphrase is

Each x is such that Michael likes x.

Our symbolization is ‘(∀x)Lmx’. Note that since Michael is part of the UD, it 
follows both from ‘Everyone likes Michael’ and from ‘Michael likes everyone’ 
that Michael likes Michael, that is, that Michael likes himself.

The sentence

Someone likes Michael and someone does not like Michael
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can be paraphrased and symbolized as a conjunction. Our paraphrase is

There is a y such that y likes Michael and there is a y such that it is not 
the case that y likes Michael.

Our paraphrase is readily symbolized as

(∃y)Lym & (∃y) ∼ Lym

Again, there is no requirement that the variables we use in symbolization keys 
also be used in corresponding positions in symbolizations based on those symboli-
zation keys. And there is no requirement that the variable we use in one subfor-
mula of a sentence of PL also be used in other subformulas unless those variables 
are being interpreted by the same quantifi er. So we could equally correctly have 
symbolized ‘Someone likes Michael and someone does not like Michael’ as

(∃x)Lxm & (∃z) ∼ Lzm

Note that ‘(∃y)(Lym & ∼ Lym)’ says something very different from ‘(∃y)Lym 
& (∃y) ∼ Lym’. The former sentence says that there is someone who both likes 
Michael and does not like Michael.

The sentence

Everyone who likes Michael also respects him

is readily paraphrased and symbolized as follows:

Each x is such that (if x likes Michael then x respects Michael).

(∀w)(Lwm ⊃ Rwm)

And ‘Someone likes and respects Michael’ can be paraphrased and symbolized as

There is a y such that (y likes Michael and y respects Michael).

(∃y)(Lym & Rym)

It is important to understand why the main logical operator of the immedi-
ate subformula of ‘(∀w)(Lwm ⊃ Rwm)’ is a ‘⊃’ while that of ‘(∃x)(Lxm & 
Rxm)’ is an ‘&’. ‘(∀w)(Lwm & Rwm)’ and ‘(∀w)(Lwm ⊃ Rwm)’ say quite 
different things. The former says that each member of the UD both likes 
and respects Michael. The latter attributes ‘respects Michael’ only to those 
members of the UD who do like Michael. When the UD is heterogeneous 
and we want to attribute some property to members of the UD that are of 
a particular sort, the most common way of doing so is to use a universally 
quantifi ed sentence whose immediate subformula is a material conditional, 
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that is, to use a sentence of the form (∀x)(P ⊃ Q). Such a sentence does 
not say that every member of the UD is of the sort P, nor does it say that 
every member of the UD is of the sort Q. Rather, it says of those members 
of the UD that are of the sort P that they are also of the sort Q. So, while 
a sentence of the form (∀x)(P ⊃ Q) does say of every member of the UD 
that it is of the sort P ⊃ Q, when a member of the UD is not of the sort P 
this comes to naught.

On the other hand, when we do want to say that one or more mem-
bers of the UD are of the sort P and of the sort Q our symbolization will be 
a sentence of the form (∃x)(P & Q). Note that ‘⊃’ is not appropriate in this 
case, for (∃x)(P ⊃ Q) says that there is at least one member of the UD such 
that if it is of the sort P then it is also of the sort Q. If a member of the UD 
is not of the sort P, then trivially it is such that if it is of the sort P (which it is 
not) then it is also of the sort Q. This is a much weaker claim than the claim 
made by a sentence of the form (∃x)(P & Q).

For the reasons just given, many of our symbolizations of English sen-
tences will be either of the form (∀x)(P ⊃ Q) or of the form (∃x)(P & Q) 
(where the variable x occurs in both P and Q). Sentences of the form (∀x)(P 
& Q) as well as those of the form (∃x)(P ⊃ Q) are far less common as sym-
bolizations of English sentences. Sentences of the form (∀x)(P & Q) are very 
strong. They say each thing in the UD is both of the sort P and of the sort Q. 
On the other hand, sentences of the form (∃x)(P ⊃ Q) are extremely weak. On 
truth-functional grounds such sentences are equivalent to sentences of the form 
(∃x)( ∼ P ∨ Q), which means all they say is that there is at least one thing that 
either is not of the sort P or is of the sort Q. The moral in both cases is that 
when we fi nd we have constructed a symbolization that is of the form (∀x)(P 
& Q) or of the form (∃x)(P ⊃ Q) it is a good idea to double-check to make 
sure our symbolization is correct.

The quantity terms ‘any’ and ‘anyone’ are often appropriately symbol-
ized by universal quantifi ers. Such is the case in the sentence

Anyone who respects Michael also respects Rita.

Our paraphrase and symbolization are

Each x is such that (if x respects Michael then x respects Rita)

(∀x)(Rxm ⊃ Rxr)

But some uses of ‘any’ can be symbolized by an existential quantifi er. Consider 
‘If anyone respects Rita, Henry does’. This sentence is a material conditional 
and the consequent says that a specifi c person, Henry, respects Rita. This sen-
tence can be paraphrased in two different ways:

If there is an x such that x respects Rita then Henry respects Rita,
Each x is such that (if x respects Rita then Henry respects Rita).
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These can be symbolized, respectively, as ‘(∃x)Rxr ⊃ Rhr’ and ‘(∀x)(Rxr ⊃ 
Rhr)’. The fi rst sentence of PL is a material conditional, while the second is 
a universally quantifi ed sentence whose immediate component is a material 
conditional. These sentences are equivalent, as are our paraphrases. If it is 
true that if there is a person that respects Rita, then Henry does, it is also 
true of each person that if that person respects Rita (which means that at 
least one person respects Rita) then Henry does, and vice versa. But neither 
of the following is a correct symbolization of ‘If anyone respects Rita, Henry 
does’:

(∀x)Rxr ⊃ Rhr
(∃x)(Rxr ⊃ Rhr)

The fi rst of these sentences of PL says that if each person x is such that x 
respects Rita then Henry respects Rita, that is, that if everyone respects Rita then 
Henry does. This is not news, for Henry, being one of ‘everyone’, of course 
respects Rita if everyone does. That is, the sentence is logically true.

The second of these sentences of PL is an existentially quantifi ed 
sentence whose immediate subformula, ‘Rxr ⊃ Rhr’, is a material condi-
tional. As pointed out above, a sentence of a form such as ‘(∃x)(Rxr ⊃ Rhr)’ 
is equivalent to ‘(∃x)(∼ Rxr ∼ Rhr)’, which says that there is someone such 
that either that person does not respect Rita or Henry respects Rita. This 
is also a logical truth—and not surprisingly, because it is equivalent to the 
symbolization ‘(∀x)Rxr ⊃ Rhr’ that we discussed in the previous paragraph 
(later in this section we will explain why the equivalence holds). Not all 
sentences of the form (∃x)(P ⊃ Q), where P contains x but Q does not, 
are logically true but, as we have noted, no such sentence makes a very 
strong claim.

In English there are a fair number of different ways we can say that 
everything of this sort is also of that sort. For example, if we are talking about 
the people in Michael’s offi ce, all of the following sentences can be used to 
make the same claim:

Everyone who respects Henry also respects Rita.
Each person who respects Henry also respects Rita.
All those who respect Henry also respect Rita.
Anyone who respects Henry also respects Rita.
Those who respect Henry also respect Rita.
A person who respects Henry also respects Rita.

All of these can appropriately be paraphrased and symbolized as follows:

Each x is such that (if x respects Henry then x respects Rita).

(∀x)(Rxh ⊃ Rxr)
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Examples of English sentences that are appropriately symbolized as existentially 
quantifi ed sentences are

There is someone who respects Henry and Rita,
Someone respects Henry and Rita,

and

At least one person respects Henry and Rita

These can all be paraphrased and symbolized as

There is an x such that (x respects Henry and x respects Rita)

(∃x)(Rxh & Rxr)

It is at least arguable that there are some uses of ‘some’ in English where ‘some’ 
means ‘at least two’. We here note that the existential quantifi er of PL always 
means ‘there is at least one’. In Section 7.5 we will introduce an expansion of 
PL, PLE, and in that language we will be able to adequately symbolize such 
expressions as ‘there are at least two’ and ‘there are exactly two’ and thus accom-
modate those uses of ‘some’ in English where ‘some’ means’ ‘at least two’.

We next symbolize some sentences about the animals in the Saint 
Louis Zoo.5 

• The dolphins want to swim with us.
• The jaguars prance on tree limbs.
• The grizzlies are discontent when forced to dine without wine.
• The alligators sup in sullen silence and the polar bears sunbathe with-

out swim suits.
• The gorillas stare mutely but intently as the rhinos dance divinely.
• The great horned owls see and know all but say nothing.
• Neither the tigers nor the zebras ever change their stripes.

Our symbolization key will be

 UD: The set consisting of animals in the Saint Louis Zoo
 Az: z is an alligator
 Bz: z is a grizzly bear
 Cz: z sometimes changes its stripes
 Dz: z is a dolphin
 Ez: z sees everything
 Fz: z is discontent when forced to dine without wine
 Gz: z is a gorilla

5Some readers will recognize the infl uence of Simon and Garfunkel’s whimsical song At the Zoo.
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 Iz: z stares intently
 Jz: z is a jaguar
 Kz: z knows everything
 Mz: z stares mutely
 Nz: z says nothing
 Oz: z is a great horned owl
 Pz: z is a polar bear
 Rz: z is a rhinoceros
 Sz: z sups in sullen silence
 Tz: z is a tiger
 Uz: z prances upon tree limbs
 Vz: z dances divinely
 Wz: z wants to swim with us
 Xz: z sunbathes without a swim suit
 Zz: z is a zebra

As is to be expected with this large a symbolization key, not all of the predicate 
letters we have selected are mnemonic reminders of what they symbolize. Our 
fi rst three symbolizations are straightforward: 

• The dolphins want to swim with us.

(∀x)(Dx ⊃ Wx)

• The jaguars prance upon tree limbs.

(∀y)(Jy ⊃ Uy)

We can paraphrase our third example

• The grizzlies are discontent when forced to dine without wine. Each 
x is such that if x is a grizzly then x is discontent when forced to 
dine without wine and symbolize it as

(∀w)(Bw ⊃ Fw)

Our next three examples can be paraphrased and symbolized as conjunctions.

• The alligators sup in sullen silence and the polar bears sunbathe 
without swimsuits.

 Each w is such that if w is an alligator then x sups in sullen silence 
and each x is such that if x is a polar bear then x sunbathes without 
a swimsuit. 

(∀w)(Aw ⊃ Sw) & (∀x)(Px ⊃ Xx)

Our current example can also (and equivalently) be paraphrased and sym-
bolized as
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 Each w is such that [(if w is an alligator then w sups in sullen silence) 
and (if w is a polar bear then w sunbathes without a swimsuit)]

(∀w)[(Aw ⊃ Sw) & (Pw ⊃ Xw)]

• The gorillas stare mutely but intently; moreover, the rhinos dance 
divinely.

 Each z is such that [if z is a gorilla then (z stares mutely and z stares 
intently)] and each z is such that (if z is a rhino then z dances 
divinely)

(∀z)[Gz ⊃ (Mz & Iz)] & (∀z)(Rz ⊃ Vz)

An alternative paraphrase and symbolization are equally appropriate:

 Each x is such that ([if x is a gorilla then (x stares mutely and x 
stares intently)] and (if x is a rhino then x dances divinely))

(∀x)([Gx ⊃ (Mx & Ix)] & (Rx ⊃ Vx))

Note that in our paraphrases we have used ‘and’ in place of both ‘but’ and 
‘moreover’.

• The great horned owls see and know all but say nothing.

 Each y is such that (if y is a great horned owl then [(y sees all and y 
knows all) and y says nothing])

(∀y)(Oy ⊃ [(Ey & Ky) & Ny])

• Neither the tigers nor the zebras ever change their stripes

can be paraphrased and symbolized in various ways, including as a conjunction of 
two universally quantifi ed sentences and as a quantifi ed sentence whose immedi-
ate component is a material conditional whose antecedent is a disjunction:

Each x is such that (if x is a tiger then it is not the case that x sometimes 
changes its stripes) and each y is such that (if y is a zebra then it is not the 
case that y sometimes changes its stripes).

(∀x)(Tx ⊃ ∼ Cx) & (∀y)(Zy ⊃ ∼ Cy)

Each x is such that [if (x is a tiger or x is a zebra) then it is not the case 
that x sometimes changes its stripes]

(∀x)[(Tx ∨ Zx) ⊃ ∼ Cx]
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We specifi ed that the sentences we have just symbolized are about a 
specifi c group of animals—those at the Saint Louis Zoo. This makes the use of 
‘the’ (‘The dolphins . . .’, ‘The grizzlies . . .’) appropriate. In English, as we have 
already seen, we don’t always use ‘all’, ‘every’, ‘each’ or other quantity terms 
when making universal claims. For example, ‘Dolphins are good swimmers’ is 
appropriately used to make a claim about all dolphins, everywhere. But in ‘The 
dolphins want to swim with us’ the use of ‘the’ indicates we are talking about 
some specifi c group of dolphins.

In our symbolization key we used ‘z’ in interpreting our one-place 
predicates. But in our symbolizations we sometimes used ‘x’, sometimes ‘y’, 
sometimes ‘w’, and sometimes ‘z’. As we noted earlier, the variables we use in 
symbolization keys to interpret predicates need not be the variables we use in 
quantifi ed sentences containing those predicates. What matters is that the vari-
able we use in a quantifi er matches the variables that the quantifi er is intended 
to interpret. ‘(∀y)(Dy ⊃ Wy)’ and ‘(∀w)(Dw ⊃ Ww)’ are equally good symboli-
zations of ‘The dolphins want to swim with us’ but ‘(∀x)(Dx ⊃ Wy)’ is not a 
symbolization of that sentence at all. It is, in fact, not a sentence of PL because 
it contains a free variable, ‘y’.

In symbolizing our sentences about zoo animals we constructed uni-
versally quantifi ed sentences whose immediate components are truth-functional 
compounds, often material conditionals. Because these symbolizations are uni-
versally quantifi ed sentences their immediate components—-truth-functional 
compounds—-are attributed to each and every member of the UD. We again 
note that the attribution is vacuous, comes to nothing, when the attribution is 
to a member of the UD that is not of the sort specifi ed by the antecedent of the 
material conditional. So while ‘(∀w)(Jw ⊃ Uw)’ attributes ‘Jw ⊃ Uw’ to all mem-
bers of the UD, it attributes ‘Uw’ (‘w prances upon tree branches’) only to those 
members that ‘Jw’ (‘w is a jaguar’) is true of and says nothing of the non-jaguars.

We now augment our present symbolization key by adding the follow-
ing two-place predicates to symbolize the sentences that follow:

 Hxy: x is heavier than y
 Lxy: x likes y

• Every animal likes every animal

Each x and each y are such that (or each pair x and y is such that) 
x likes y.

(∀x)(∀y)Lxy

• Every animal likes at least one animal.

Each x is such that there is a y such that x likes y.

(∀x)(∃y)Lxy
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• There is an animal that likes all the animals.

There is a z such that each w is such that z likes w.

(∃z)(∀w)Lzw

• No animal is heavier than every animal.

It is not the case that there is an x such that each y is such that x is 
heavier than y.

∼ (∃x)(∀y)Hxy

• If an animal is heavier than another, then the second is not heavier 
than the fi rst.

Each x and each y are such that (if x is heavier than y then it is not the 
case that y is heavier than x).

(∀x)(∀y)(Hxy ⊃ ∼ Hyx)

• No animal is heavier than itself.

It is not the case that there is an x such that x is heavier than x.

∼ (∃x)Hxx

• Every gorilla likes every rhinoceros.

Each x is such that [if x is gorilla then each y is such that (if y is a 
 rhinoceros then x likes y)].

(∀x)[Gx ⊃ (∀y)(Ry ⊃ Lxy)]

‘Every gorilla likes every rhinoceros’ can also be equivalently paraphrased and 
symbolized as:

Each x and each y are such that if [(x is a gorilla and y is a rhinoceros) 
then x likes y].

(∀x)(∀y)[(Gx & Ry) ⊃ Lxy]

• Every gorilla likes at least one rhinoceros.
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Each x is such that [if x is a gorilla then there is a y such that (y is a 
 rhinoceros and x likes y)].

(∀x)[Gx ⊃ (∃y)(Ry & Lxy)]

• Every gorilla likes at least one rhinoceros and does not like at least 
one jaguar.

Each z is such that (if z is a gorilla then [there is a w such that (w is a 
rhinoceros and z likes w) and there is a y such that (y is a jaguar and it is 
not the case that z likes y)]).

(∀z)(Gz ⊃ [(∃w)(Rw & Lzw) & (∃y)(Jy & ∼ Lzy)])

• The dolphins don’t like the grizzly bears.

Each y is such that [if y is a dolphin then each w is such that (if w is a 
grizzly bear then it is not the case that y likes w)].

(∀y)[Dy ⊃ (∀w)(Bw ⊃ ∼ Lyw)]

• Some tigers like all the jaguars but no tiger likes any grizzly bear.

There is an x such that [x is a tiger and each y is such that (if y is a jaguar 
then x likes y)] and it is not the case that there is a w such that [w is a 
tiger and there is a z such that (z is a grizzly bear and w likes z)].

(∃x)[Tx & (∀y)(Jy ⊃ Lxy)] & ∼ (∃w)[Tw & (∃z)(Bz & Lwz)]

The right conjunct of our paraphrase can also be correctly symbolized as 
‘∼ (∃w)(∃z)[(Tw & Bz) & Lwz)]’.

• Every dolphin is heavier than every great horned owl but no dolphin 
is heavier than any rhinoceros.

Each x and each y are such that [if (x is a dolphin and y is a great horned 
owl) then x is heavier than y] and it is not the case that there is an x and 
there is a y such that [(x is a dolphin and y is an rhinoceros) and x is 
heavier than y].

(∀x)(∀y)[(Dx & Oy) ⊃ Hxy] & ∼ (∃x)(∃y)[(Dx & Ry) & Hxy]

• Anything that is heavier than every gorilla is a rhinoceros.

Each w is such that [if each y is such that (if y is a gorilla then w is heavier 
than y) then w is a rhinoceros].

(∀w)[(∀y)(Gy ⊃ Hwy) ⊃ Rw]
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Notice that the scope of ‘(∀w)’ is the entire sentence, while the scope of ‘(∀y)’ 
is just ‘(∀y)(Gy ⊃ Hwy)’. Compare this sentence of PL to

(∀w)(∀y)[Gy ⊃ (Hwy ⊃ Rw)],

which says that each pair of members of the UD is such that if one is a gorilla 
then if the other is heavier than that gorilla then it is a rhinoceros. In better 
English, this comes to ‘Anything that is heavier than any gorilla [even one 
gorilla] is a rhinoceros’.

We can also use our symbolization key to construct English readings 
of the following sentences of PL:

• (∀y)[Jy ⊃ (∀x)(Tx ⊃ ∼ Lyx)]

Each y is such that if [y is a jaguar then each x is such that (if x is a tiger 
then it is not the case that y likes x)].

Since we are talking about each y and each x, this comes to

Each jaguar and each tiger are such that it is not the case that the jaguar 
likes the tiger,

or more idiomatically:

The jaguars do not like the tigers.

Note that it would be a mistake to read the sentence of PL we are currently 
considering as ‘All the jaguars don’t like all the tigers’, for this English sentence 
is ambiguous. It can be taken to mean that it is not the case that all the jaguars 
like all the tigers, which is consistent with some of the jaguars liking some or 
all of the tigers. Our next example is

• (∃w)[Gw & (∀x)(Bx ⊃ Lwx)] & ∼ (∀z)[Gz ⊃ (∀x)(Bx ⊃ Lzx)]

The left conjunct can be read as

There is a w such that [w is a gorilla and each x is such that (if x is a griz-
zly bear then w likes x)]

which comes to ‘There is a gorilla that likes every grizzly bear’. The right con-
junct can be read as

It is not the case that each z is such that [if z is a gorilla then each x is 
such that (if x is a grizzly bear then z likes x)]
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which comes to ‘Not every gorilla likes every grizzly bear’. An appropriate read-
ing of the entire conjunction is

Some, but not all, of the gorillas like all the grizzly bears.

While PL can be used to symbolize claims about almost anything, 
including people, animals, all living things, countries, numbers, and whatever 
else our ontology (those things we take to exist) includes, the positive integers 
(the whole numbers 1, 2, 3, . . . ) constitute an especially interesting UD for 
at least two reasons, and we will frequently use them as our UD in examples 
and exercises in the rest of this chapter as well as throughout Chapter 8. First, 
once one is familiar with the basic nature of the positive integers, symbolizing 
claims about them becomes fairly straightforward. Many claims about the posi-
tive integers and the relations among them are clear and unambiguous. This 
is often not true of sentences about other kinds of things. Second, if there is 
an interpretation of a set of sentences of PL on which all the members of the 
set are true then there is such an interpretation that uses the positive integers 
as the universe of discourse. This will be of considerable importance when we 
are working with the semantics of PL, as we will see in Chapter 8.

We will next symbolize a number of sentences about the positive inte-
gers. Readers may fi nd it useful to consult Appendix 1, which details some 
simple facts about the positive integers, before proceeding. We will use the 
following symbolization key:

 UD: The set of positive integers
 Lxy: x is less than y
 Ox: x is odd
 Ex: x is even
 Exy: x times y is even
 Oxy: x times y is odd
 Px: x is a prime number
 Sxy: x is the successor of y (x � y � 1)
 a: 2

• There is a smallest positive integer.

Symbolizing this sentence is fairly straightforward. All we need say is that there is 
a positive integer such that no positive integer is smaller than it. And this is what

(∃y) ∼ (∃x)Lxy

says.

• There is no largest positive integer.

We do not have a predicate for ‘x is larger than y’ in our symbolization key, and 
we do not need one to symbolize this sentence. What would a largest positive 
integer be? It would be an integer such that there is no positive integer it is 
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less than. And we do have a predicate for ‘x is less than y’: ‘Lxy’. So the follow-
ing says that there is a positive integer y such that there is no positive integer 
x such that y is less than x. That is, it says there is a largest positive integer.

(∃y) ∼ (∃x)Lyx

So the negation of this sentence

∼ (∃y) ∼ (∃x)Lxy

symbolizes ‘There is no largest positive integer’.

• An odd positive integer times an odd positive integer is odd.

We can paraphrase and symbolize this sentence as follows:

Each x and each y are such that [if (x is odd and y is odd) then x times 
y is odd]

(∀x)(∀y)[(Ox & Oy) ⊃ Oxy]

• There is a pair of primes such that one member of the pair is the 
successor of the other member of the pair.

Our paraphrase and symbolization are

There is an x and there is a y such that [(x is prime and y is prime) and 
y is the successor of x]

(∃x)(∃y)[(Px & Py) & Syx]

(This claim is true; 2 and 3 are both primes and 3 is the successor of 2.)

• An even positive integer times an even positive integer is an even 
positive integer.

Our paraphrase and symbolization are

Each x and each y are such that [(if x is even and y is even) then x times 
y is even]

(∀x)(∀y)[(Ex & Ey) ⊃ Exy]

• An even positive integer times an odd positive integer is an even positive 
integer.
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Our symbolization of this sentence is like that of the preceding one, substitut-
ing ‘Oy’ for ‘Ey’, thus specifying that the second member of the pair is an odd, 
not an even, positive integer:

(∀x)(∀y)[(Ex & Oy) ⊃ Exy]

Our next example combines the claims of the preceding two examples:

• An even positive integer times an even or an odd positive integer is even.

Our symbolization is

(∀x)(∀y)[(Ex & (Ey ∨ Oy)) ⊃ Exy]

Our fi nal three sentences concern prime numbers. The fi rst is

• 2 is prime and 2 has a prime successor.

Pa & (∃y)(Sya & Py)

A literal reading of this sentence is ‘2 is prime and there is a successor of 2 
and it is prime’.

Our second sentence about primes is

• 2 is prime and no prime number is less than 2.

Our symbolization is straightforward:

Pa & ∼ (∃x)(Px & Lxa)

Our last sentence concerning primes is

• 2 is an even prime and every prime greater than 2 is odd.

We can symbolize this sentence as a conjunction:

(Pa & Ea) & (∀y)[(Py & Lay) ⊃ Oy]

Before concluding this section, we note a limited parallel between PL and 
Aristotelian logic. Aristotelian logic recognizes four kinds of quantity claims, 
traditionally termed ‘A-’, ‘E-’, ‘I-’, and ‘O-sentences’:6

A-sentences All As are Bs.
E-sentences No As are Bs.

6The use of ‘A’, ‘E’, ‘I’, and ‘O’ to designate kinds of sentences apparently dates to the Middle Ages. A- and 
I-sentences are thought of as affi rmations and match the fi rst two vowels in the Latin verb ‘affi rmo’ (which means 
‘I affi rm’) while E- and O-sentences are thought of as denials and match the fi rst two vowels in the Latin verb 
‘nego’ (which means ‘I deny’). See Francis Garden, Outline of Logic: For the Use of Teachers and Students, 2nd ed. 
(Oxford and London: Rivingtons, 1871, p. 65).
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I-sentences Some As are Bs.
O-sentences Some As are not Bs.

Here ‘A’ and ‘B’ are metavariables ranging over general terms, that is, terms 
such as ‘people’, ‘horses’, ‘orators’, ‘fi sh’, ‘voters’, and ‘Athenians’. Here are 
examples of each kind of sentence:

A-sentence All horses are mammals.
E-sentence No horses are mammals.
I-sentence Some horses are mammals.
O-sentence Some horses are not mammals.

PL contains analogues to each of these kinds of sentences. Where x is a variable 
of PL and P and Q are open sentences of PL, each of which contains at least 
one occurrence of x and no x-quantifi er, the PL analogues are

A-sentence (∀x)(P ⊃ Q)
E-sentence (∀x)(P ⊃ ∼ Q)
I-sentence (∃x)(P & Q)
O-sentence (∃x)(P & ∼ Q)

We can use these templates to provide symbolizations of the above four claims 
about horses:

A-sentence (∀x)(Hx ⊃ Mx)
E-sentence (∀x)(Hx ⊃ ∼ Mx)
I-sentence (∃x)(Hx & Mx)
O-sentence (∃x)(Hx & ∼ Mx)

We are here taking our UD to be the set of living things, and using ‘Hx’ to sym-
bolize ‘x is a horse’ and ‘Mx’ to symbolize ‘x is a mammal’. The relations among 
these kinds of claims are often presented through a square of opposition:

A-sentence
(∀x)(P ⊃ Q) 

E-sentence
(∀x)(P ⊃ ∼ Q) 

I-sentence
(∃x)(P & Q) 

O-sentence
(∃x)(P & ∼ Q) 

C o n t r a d i c t o r i e s C
o n t r a d   c

t o r i e
s
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Aristotle held that there are several interesting relationships among the 
four types of sentences displayed at the corners of the square of opposition. In 
PL the interesting relations are those between sentence types at opposite ends 
of the diagonal lines. These constitute contradictory sentence pairs. That is, an 
A- sentence is equivalent to the negation of the corresponding O-sentence and 
vice versa. And an E-sentence is equivalent to the negation of the corresponding 
I- sentence, and vice versa, yielding the following pairs of equivalent sentence 
forms: 

(∀x)(P ⊃ Q) and ∼ (∃x)(P & ∼ Q)
(∀x)(P ⊃ ∼ Q) and ∼ (∃x)(P & Q)
(∃x)(P & Q) and ∼ (∀x)(P ⊃ ∼ Q)
(∃x)(P & ∼ Q) and ∼ (∀x)(P ⊃ Q)

Knowing the foregoing equivalences can be helpful in symbolizing English 
 sentences in PL, for these equivalences provide alternative patterns for sym-
bolizing sentences that can be symbolized as A-, E-, I-, or O-sentences.

 7.3E EXERCISES

 1. Symbolize the following sentences in PL, without using quantifi ers, using the 
following symbolization key:

 UD: The set {Bob, Carol, David, Emily}
 Gy: y will graduate
 Jy: y will get a job
 Ay: y will join the Army
 Ly: y will become a longshoreman
 Mxy: x will make more money than y
 b: Bob
 c: Carol
 d: David
 e: Emily

 a. Bob and Carol will graduate and so will either David or Emily.
 *b. If David doesn’t graduate he will join the Army and if Emily doesn’t graduate 

she will become a longshoreman.
 c. If David joins the Army and Emily becomes a longshoreman, she will make 

more money than he will.
 *d. All of those who graduate will get jobs.
 e. If David will graduate they will all graduate.
 *f. If at least one of them graduates they will all graduate.

 2. Symbolize the following sentences in PL.

 UD: The set of positive integers
 Ex: x is even
 Ox: x is odd
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 Lxy: x is less than y
 Px: x is prime
 a: 1
 b: 2
 c: 4
 d: 100

 a. Some positive integers are odd and some are even.
 *b. Some positive integers are prime but not all positive integers are prime.
 c. No positive integer is less than 1.
 *d. No positive integer is less than itself.
 e. 2 is less than 4 and 4 is less than some positive integer.
 *f. Not every positive integer is less than 100.
 g. Not all positive integers are prime and not all positive integers are even.
 *h. Not all positive integers are primes and not all positive integers are non-primes.
 i. All positive integers are even if and only if all positive integers are not odd.
 *j. 1 is not prime and no positive integer is less than 1.
 k. There is a positive integer that is less than 100.

 3. Symbolize the following sentences in PL, using quantifi ers wherever appropri-
ate, using the following symbolization key:

 UD: The set of seniors at Dartmouth College
 Gy: y will graduate
 Jy: y will get a job
 Ay: y will join the Army
 Ly: y will become a longshoreman
 Mxy: x will make more money than y
 b: Bob
 c: Carol
 d: David
 e: Emily

 a. All of those who graduate will get jobs.
 *b. If David will graduate, all seniors will graduate.
 c. If at least one senior graduates, they will all graduate.
 *d. Everyone who doesn’t graduate will join the Army.
 e. If anyone joins the Army both Carol and David will.
 *f. Everyone will graduate or no one will graduate.
 g. Each senior will either graduate or not graduate.
 *h. If anyone who graduates becomes a longshoreman Emily will become a long-

shoreman.
 i. Everyone who becomes a longshoreman will make more money than will eve-

ryone who does not.
 *j. Each senior will join the Army if and only if he or she does not graduate.

 4. Using the following symbolization key, symbolize the following sentences in PL. 
(Note: Not all of these sentences are true.)

 UD: The set of positive integers
 Px: x is a prime

ber38413_ch07_262-328.indd Page 295  12/4/12  1:19 PM ber38413_ch07_262-328.indd Page 295  12/4/12  1:19 PM F-400F-400



296  PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

 7.4 SYMBOLIZATION FINE-TUNED

In this section we discuss some missteps that need to be avoided in symbol-
izing English sentences in PL, and we symbolize some sentences that are more 
complex than the ones we have so far dealt with.

There are contexts in English and other natural languages in which 
singular terms cannot be interpreted as denoting or referring to anything, and 
there are contexts in which predicates cannot be interpreted as we have been 
interpreting them. These contexts arise because we can think, dream, specu-
late, hunt for, and believe in (and give names to) things that do not exist. 
Consider, for example, the following claims:

Ponce de Leon is hunting for the Fountain of Youth.
Max is looking for trolls.

Ponce de Leon was a Spanish explorer of the fi fteenth century who allegedly 
spent a lot of time looking for the Fountain of Youth. But of course there is no 
such thing. The nonexistence of such a fountain does not keep people from 
looking for it, though of course that nonexistence does prevent anyone from 
fi nding it. So too, although Norse mythology contains numerous descriptions 
of trolls there are no trolls. Nonetheless, it may well be true that our benighted 
friend Max is out looking for trolls.

Because there is no Fountain of Youth we cannot symbolize the sen-
tence concerning Ponce de Leon as

Hpf

 Ox: x is odd
 Ex: x is even
 Lxy: x is less than y
 Txy: x times y is prime
 Dxy: x is evenly divisible by y (x is divisible by y without remainder)
 a: 2

 a. There is a positive integer that is less than all primes.
 *b. A positive integer is even if and only if it is evenly divisible by 2.
 c. A prime times a prime is not prime.
 *d. A prime times an even positive integer is not prime.
 e. A prime times any positive integer greater than 1 is not prime.
 *f. If a pair of positive integers is such that the fi rst is evenly divisible by the 

 second, then either both integers are even or both are odd.
 g. If a pair of positive integers is such that the fi rst is evenly divisible by the second 

and the second is greater than 1, then either both integers are even or both 
are odd.

 *h. For each prime, there is a greater non-prime.
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where ‘Hxy’ symbolizes ‘x is hunting for y’, ‘p’ designates Ponce de Leon, and 
‘f’ designates the Fountain of Youth, because there is no such thing for ‘f’ to 
designate. Nor can we symbolize ‘Max is looking for trolls’ as

(∃y)(Ty & Lmy)

where ‘Tx’ symbolizes ‘x is a troll’, ‘Lxy’ symbolizes ‘x is looking for y’, and ‘m’ 
designates Max, because the English sentence ‘Max is looking for trolls’ does 
not entail ‘There are trolls’. For these reasons, we should instead symbolize the 
claim about Ponce de Leon as an atomic sentence of PL such as

Fp

where ‘Fx’ symbolizes ‘x is looking for the Fountain of Youth’ and ‘p’ desig-
nates Ponce de Leon. And we should symbolize our sentence about Max as an 
atomic sentence such as

Tm

where ‘m’ designates ‘Max’ and ‘Tx’ symbolizes ‘x is looking for trolls’. In the 
fi rst case we have embedded the non-referring expression ‘the Fountain of 
Youth’ in a predicate, thus keeping it out of referential position. In the second 
case we have embedded ‘trolls’ in a larger predicate to avoid the problematic 
existential quantifi cation.

A related problem arises when someone is looking for or seeking an 
object of a kind of which there are instances, but no particular instance is being 
looked for. Suppose that an orangutan—Sally, to be specifi c—has gone missing 
from the Saint Louis Zoo and the zookeeper, Mike by name, is in pursuit of her. 
In this situation the zookeeper is looking for a particular orangutan. Finding 
another orangutan might be a surprise, and perhaps even a pleasant surprise 
(for the zoo is short on orangutans), but this will not bring Mike’s search to 
an end. He is after Sally, not just any orangutan. In this situation, we can sym-
bolize ‘Mike is looking for an orangutan missing from the Saint Louis Zoo’ as

(∃z)[(Oz & Mz) & Lmz],

where ‘Oz’ symbolizes ‘z is an orangutan’, ‘Mz’ symbolizes ‘z is missing from 
the Saint Louis Zoo’, ‘Lwz’ symbolizes ‘w is looking for z’, and ‘m’ designates 
Mike. Similarly, if all of the zoo’s orangutans have gone missing and Mike is 
in pursuit, we can accurately say that Mike is looking for all of the missing 
orangutans and symbolize this claim as

(∀y)[(Oy & My) ⊃ Lmy]

In the envisioned situation this sentence of PL accurately says ‘Each y is such 
that if y is an orangutan and y is missing from the Saint Louis Zoo then Mike 
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is looking for y’. But the situation is quite different if Mike has been sent to 
Indonesia to acquire an orangutan for the zoo. In this context

Mike is looking for an orangutan 
 cannot be symbolized as

(∃x)(Ox & Lmx)

because it is not true that there is a particular orangutan that Mike is looking 
for. Nor is

(∀x)(Ox ⊃ Lmx)

an appropriate characterization of Mike’s activity, for this sentence says that 
he is looking for all orangutans, and he is not. Mike is neither looking for one 
particular orangutan nor looking for all orangutans. He does want to acquire 
an orangutan, but any orangutan will suffi ce. So we should symbolize ‘Mike is 
looking for an orangutan’ as an atomic sentence of PL, say, ‘Lm, where ‘Lx’ 
symbolizes ‘x is looking for an orangutan’ and ‘m’ again designates Mike.

The general point is that we can look for, believe in, and dream about 
things that do not exist and we can look for, speculate about, and hope to 
fi nd a certain sort of thing without there being a particular thing that we are 
looking for, speculating about, or hoping to fi nd. We must symbolize sentences 
concerning these activities as we have just done, by embedding the problematic 
language in predicates that specify the relevant activity (thinking about, search-
ing for, hoping to fi nd, and so on).

We turn now to a more general discussion of how to decide what predi-
cates it is appropriate to use in symbolizing sentences in PL. Usually this is a 
straightforward matter. But consider sentences such as the following:

There are rabid bats in the attic.

In symbolizing sentences such as this, where an adjective modifi es a noun, 
we must decide how many predicates we should use. Should we use a single 
predicate, ‘x is a rabid bat in the attic’, two predicates, ‘x is a rabid bat’ and 
‘x is in the attic’, or three, ‘x is a bat, ‘x is rabid’, and ‘x is in the attic’? Using 
just one predicate will yield ‘(∃x)Ix’ where ‘Ix’ symbolizes ‘x is a rabid bat in 
the attic’. If we use two predicates our symbolization might be

(∃x)(Bx & Ax),

where ‘Bx’ symbolizes ‘x is a rabid bat’ and ‘Ax’ symbolizes ‘x is in the attic’. 
An appropriate symbolization using three predicates is

(∃x)[(Rx & Bx) & Ax],

here using ‘Rx’ to symbolize ‘x is rabid’, ‘Bx’ to symbolize ‘x is a bat’, and ‘Ax’ 
to symbolize ‘x is in the attic’.
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When the sentence ‘There are rabid bats in the attic’ is taken in isola-
tion, or as part of a set of symbolization exercises, all three ways of symbolizing 
the sentence are correct symbolizations of ‘There are rabid bats in the attic’. 
But there are contexts in which one symbolization is clearly preferable to the 
others. Consider this simple and clearly valid argument:

Rabid animals are dangerous.

There are rabid bats in the attic.

There are dangerous animals in the attic.

The symbolization key

 UD: The set of all animals
 Rx: x is rabid
 Dx: x is dangerous
 Bx: x is a rabid bat
 Ax: x is in the attic

yields an argument that is not valid in PL:

(∀x)(Rx ⊃ Dx)

(∃x)(Bx & Ax)

(∃x)(Dx & Ax)

This argument is invalid because its component sentences do not reveal the 
connection between there being rabid bats in the attic and there being rabid 
animals in the attic. But if we use ‘Bx’ to symbolize ‘x is a bat’, rather than ‘x 
is a rabid bat’ the resulting symbolization of our argument is valid in PL:

(∀x)(Rx ⊃ Dx)

(∃x)[(Rx & Bx) & Ax]

(∃x)(Dx & Ax)

The lesson to be learned here is that when we are symbolizing a number 
of sentences and are interested in the relations among them it is advisable 
to select predicates that will capture as many of the connections among 
the English sentences as possible. But we must be careful. It is not always 
correct to extract two separate predicates when an adjective modifi es a noun. 
Consider:

Sue is a ninety-eight pound gymnast.
Ed is an attractive candidate.
Stan is a meticulous accountant.
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We can extract two predicates from the fi rst of these sentences, parsing it as 
‘Sue is a gymnast and Sue weighs ninety-eight pounds’, and symbolize it as ‘Gs 
& Ns’, using ‘s’ to designate Sue, ‘Gx’ to symbolize ‘x is a gymnast’, and ‘Nx’ 
to symbolize ‘x weighs ninety-eight pounds’. But we cannot similarly parse ‘Ed 
is an attractive candidate’, at least not in every context. Suppose Ed is running 
for state offi ce and that he is fi scally conservative and a wounded war veteran. 
These traits may well make him an attractive candidate for state offi ce, but 
they don’t have anything to do with his being attractive in the sense of being 
a handsome man. In this case, we must treat ‘is an attractive candidate’ as one 
predicate. Similarly, it is probably unwise to parse ‘Stan is a meticulous account-
ant’ as ‘Stan is meticulous and Stan is an accountant’, for although Stan is a 
meticulous accountant, he may be anything but meticulous in the rest of his life.

We now turn our attention to fi ner issues concerning quantifi ers. The 
syntax of PL requires that each variable occurring in a sentence of PL be bound, 
that is, fall within the scope of a matching quantifi er. So ‘(∀x)(Fx ⊃ Gy)’ is a 
formula but not a sentence of PL, because ‘y’ is free in ‘(∀x)(Fx ⊃ Gy)’. We 
have also seen that quantifi ers can have overlapping scope. For example, we can 
transform ‘(∀x)(Fx ⊃ Gy)’ into a sentence by adding a universal y-quantifi er. 
The three sentences we can obtain in this way are

(∀x)(Fx ⊃ (∀y)Gy)
(∀x)(∀y)(Fx ⊃ Gy)
(∀y)(∀x)(Fx ⊃ Gy)

The question now arises: are these three sentences equivalent? In subsequent 
chapters we will present techniques for answering this question but at present 
our concern is with symbolizing sentences in PL, and in symbolizing sentences 
in PL we need to understand the effects of placing quantifi ers in different 
positions.

In fact, the three sentences of PL are equivalent. The second and third 
sentences are equivalent because whenever a sentence begins with multiple 
universal quantifi ers or with multiple existential quantifi ers and the rest of 
the sentence is in the scope of all of these quantifi ers, the order in which 
the quantifi ers appear does not matter. That is, changing the order does not 
change what the sentence says. So

(∃x)(∃y)(∃z)Fxyz
(∃y)(∃x)(∃z)Fxyz
(∃z)(∃y)(∃x)Fxyz

are also equivalent sentences of PL, as are the results of placing the three exis-
tential quantifi ers in any order. And as all of ‘Fy ⊃ Gx’ falls within the scope 
of both quantifi ers in

(∃x)(∃y)(Fy ⊃ Gx)
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reversing the order of the quantifi ers produces an equivalent sentence:

(∃y)(∃x)(Fy ⊃ Gx)

But our rule about reversing the order of initial quantifi ers does not apply to 
‘(∃x)[(∃y)Fy ⊃ Gx]’, as this sentence does not begin with two existential quan-
tifi ers both having scope over the rest of the sentence. The scope of ‘(∃y)’ in 
‘(∃x)[(∃y)Fy ⊃ Gx]’ is just ‘(∃y)Fy’.

When a sentence contains consecutive quantifi ers of different types, 
existential and universal, such as ‘(∀x)(∃y)’, we cannot in general change the 
order of those quantifi ers. ‘(∀x)(∃y)Lxy’ and ‘(∃y)(∀x)Lxy’ are not equivalent 
sentences. Suppose we are using the set of positive integers as the UD and 
using ‘Lxy’ to symbolize ‘x is less than y’. Then the fi rst sentence says that every 
positive integer is less than some positive integer, while the second sentence 
says that there is a specifi c positive integer such that every positive integer is 
less than it.

Quantifi ers can often be moved without producing nonequivalent sen-
tences. They can, of course, only be moved if the result is not a formula con-
taining a free variable. Consider the following pairs of sentences:

Fa & (∃x)Gx   (∃x)(Fa & Gx)
Fa & (∀x)Gx  (∀x)(Fa & Gx)
Fa ∨ (∃x)Gx  (∃x)(Fa ∨ Gx)
Fa ∨ (∀x)Gx  (∀x)(Fa ∨ Gx)
Fa ⊃ (∃x)Gx  (∃x)(Fa ⊃ Gx)
Fa ⊃ (∀x)Gx  (∀x)(Fa ⊃ Gx)

Careful refl ection should convince the reader that all of these are pairs of 
equivalent sentences.

But there are two cases in which changing the scope of a quantifi er 
requires changing the quantifi er: in these cases if we broaden the scope of an 
existential quantifi er we must replace it with a universal quantifi er, and if we 
broaden the scope of a universal quantifi er we must replace it with an existen-
tial quantifi er. Here is an example of the fi rst case:

(∃x)Gx ⊃ Fa   (∀x)(Gx ⊃ Fa)

These sentences are equivalent and it is fairly easy to see why they are. We dis-
cussed such a case when we symbolized ‘If anyone respects Rita, Henry does’. 
We saw that this sentence can be correctly symbolized either as ‘(∃x)Rxr ⊃ Rhr’ 
or as ‘(∀x)(Rxr ⊃ Rhr)’. Both will be true if either the UD does not contain 
anyone who respects Rita, or it contains at least one person who respects Rita 
and Henry respects Rita. So we can add ‘(∃x)Gx ⊃ Fa’ and ‘(∀x)(Gx ⊃ Fa)’ 
to our list of pairs of equivalent sentences.

ber38413_ch07_262-328.indd Page 301  12/4/12  1:19 PM ber38413_ch07_262-328.indd Page 301  12/4/12  1:19 PM F-400F-400



302  PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

The second case in which extending the scope of a quantifi er requires 
changing the quantifi er is illustrated by the following pair of sentences:

(∀x)Gx ⊃ Fa   (∃x)(Gx ⊃ Fa)

It turns out, perhaps surprisingly, that these sentences are equivalent. It should 
be apparent that the fi rst of these sentences is equivalent to ‘∼ (∀x)Gx ∨ Fa’ 
on truth-functional grounds. Because ‘∼ (∀x)Gx’ is equivalent to ‘(∃x) ∼ Gx’, 
‘∼ (∀x)Gx ∨ Fa’ is equivalent to ‘(∃x) ∼ Gx ∨ Fa’. And since we can extend 
the scope of an existential quantifi er over a wedge (providing the result is a 
sentence of PL), this sentence is equivalent to ‘(∃x)(∼ Gx ∨ Fa)’, which, again 
on truth-functional grounds, is equivalent to ‘(∃x)(Gx ⊃ Fa)’. So ‘(∀x)Gx ⊃ Fa’ 
and ‘(∃x)(Gx ⊃ Fa)’ are equivalent sentences.

The following table displays equivalent sentence forms. Here P is a 
formula containing at least one free occurrence of x and Q is a sentence of 
PL in which x does not occur.

(∃x)P ⊃ Q (∀x)(P ⊃ Q)
(∀x)P ⊃ Q (∃x)(P ⊃ Q)
Q ⊃ (∃x)P (∃x)(Q ⊃ P)
Q ⊃ (∀x)P (∀x)(Q ⊃ P)
(∃x)P ∨ Q (∃x)(P ∨ Q)
(∀x)P ∨ Q (∀x)(P ∨ Q)
Q ∨ (∃x)P (∃x)(Q ∨ P)
Q ∨ (∀x)P (∀x)(Q ∨ P)
(∃x)P & Q (∃x)(P & Q)
(∀x)P & Q (∀x)(P & Q)
Q & (∃x)P (∃x)(Q & P)
Q & (∀x)P (∀x)(Q & P)

Conspicuously absent from this table are sentence forms containing the 
triple bar. It turns out that in general, a sentence of the form (∀x)Px ≡ Q is 
equivalent neither to the corresponding sentence of the form (∀x)(Px ≡ Q) 
nor to the corresponding sentence of the form (∃x)(Px ≡ Q). Hence, the scope 
of a quantifi er that includes only one side of a material biconditional cannot in 
general be broadened to have scope over the entire biconditional without creat-
ing a nonequivalent sentence.

We now turn to more complex symbolizations. Recall the argument we 
considered at the beginning of this chapter:

None of David’s friends supports Republicans. Sarah supports Breitlow 
and Breitlow is a Republican. So Sarah is no friend of David’s.
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We saw that symbolizations of this argument in SL are not valid. We are now 
in a position to provide a symbolization in PL that is valid. We will use the fol-
lowing symbolization key:

 UD: The set of all people
 Fxy: x is a friend of y
 Sxy: x supports y
 Rx: x is a Republican
 d: David
 b: Breitlow
 s: Sarah

The second premise is readily symbolized as the conjunction ‘Ssb & 
Rb’. The conclusion is also easy to symbolize since it simply amounts to the 
claim that Sarah is not a friend of David’s: ‘∼ Fsd’. The fi rst premise, however, 
may pose diffi culties. An appropriate paraphrase is

It is not the case that there is an x such that [x is a friend of David’s and 
(there is a y such that y is a Republican and x supports y)].

The expressions ‘there is an x’ and ‘there is a y’ are standing proxy for existen-
tial quantifi ers. The structure of our paraphrase indicates that our symbolization 
will be a negation containing two existential quantifi ers and two occurrences of 
‘&’. Our symbolization mirrors the syntax of our paraphrase:

∼ (∃x)[Fxd & (∃y)(Ry & Sxy)]

This is a somewhat complicated case of a negated I-sentence. Our English argu-
ment can thus be symbolized as the following argument of PL:

∼ (∃x)[Fxd & (∃y)(Ry & Sxy)]
Ssb & Rb                          
∼ Fsd

The techniques presented in subsequent chapters can be used to show that this 
is a valid argument of PL.

We know that the negation of an I-sentence is equivalent to the cor-
responding E-sentence. This suggests that there is an alternative but equally 
correct symbolization of the fi rst premise of our argument that has the form 
(∀x)(P ⊃ ∼ Q), and there is. We can alternatively paraphrase the argument’s 
fi rst premise as

Each x is such that [if x is a friend of David’s then it is not the case 
that there is a y such that (y is a Republican and x supports y)].
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Our symbolization of this paraphrase is

(∀x)[Fxd ⊃ ∼ (∃y)(Ry & Sxy)]

Here is a somewhat more interesting, and convoluted, argument:

Anyone who is proud of anyone is proud of Samantha. Rhoda isn’t proud 
of anyone who’s proud of him- or herself, but she is proud of everyone 
who has mastered calculus. Therefore if Art has mastered calculus, Sa-
mantha isn’t proud of herself.

We will use the following symbolization key:

 UD: The set of students in Samantha’s class
 Pxy: x is proud of y
 Mx: x has mastered calculus
 a: Art
 r: Rhoda
 s: Samantha

The fi rst premise can be paraphrased as

Each x is such that [if there is a y such that x is proud of y then x is proud 
of Samantha]

and can be symbolized as

(∀x)[(∃y)Pxy ⊃ Pxs]

The second premise of our argument is a conjunction. The fi rst conjunct is

Rhoda isn’t proud of anyone who’s proud of him- or herself.

Although the quantity expression ‘anyone’ does not occur at the beginning of 
this sentence, it is clear that the sentence is saying something about anyone 
who is proud of him- or herself. And ‘anyone’ in this sentence will go over to 
a universal quantifi er in our symbolic sentence, for the sentence says something 
about all those individuals in Samantha’s class who are proud of themselves. 
Our paraphrase is

Each x is such that (if x is proud of x then it is not the case that 
Rhoda is proud of x).

The second conjunct of the second premise is

she (Rhoda) is proud of everyone who has mastered calculus

ber38413_ch07_262-328.indd Page 304  12/4/12  1:19 PM ber38413_ch07_262-328.indd Page 304  12/4/12  1:19 PM F-400F-400



7.4 SYMBOLIZATION FINE-TUNED  305

This is a claim about everyone in Samantha’s class who has mastered calculus. 
Our paraphrase is

Each x is such that (if x has mastered calculus then Rhoda is proud of x).

Our symbolization of the entire second premise is thus

(∀x)(Pxx ⊃ ∼ Prx) & (∀x)(Mx ⊃ Prx)

The conclusion, ‘If Art has mastered calculus, Samantha isn’t proud of herself’ 
is a simple truth-functional claim and can be symbolized as

Ma ⊃ ∼ Pss

Our complete argument of PL is therefore

(∀x)[(∃ y)Pxy ⊃ Pxs]
(∀x)(Pxx ⊃ ∼ Prx) & (∀x)(Mx ⊃ Prx)
Ma ⊃ ∼ Pss

Techniques developed in subsequent chapters can be used to show that this is 
a valid argument of PL.

We will next paraphrase and symbolize a number of sentences about 
the positive integers. We will paraphrase each sentence before we symbolize 
it, and we will classify our paraphrases and symbolizations according to the 
Aristotelian classifi cation system introduced at the end of the last section. But 
our classifi cation is arbitrary in the sense that, as the square of opposition illus-
trates, an  English sentence that can be symbolized as an A-sentence can also be 
symbolized as the negation of an O-sentence, one that can be symbolized as an 
E-sentence can also be symbolized as the negation of an I-sentence, and so on. 
Some readers will fi nd identifying sentences in terms of the  Aristotelian classifi -
cation system useful; others will not. We will use the following symbolization key:

 UD: The set of positive integers
 Px: x is prime
 Ex: x is even
 Ox: x is odd
 Gxy: x is greater than y
 Dxy: x is evenly divisible by y
 Sxyz: x is the sum of y and z
 Txyz: x is the product of y and z
 a: 1
 b: 2

• Not every positive integer is prime.
 Negation of an A-sentence
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It is not the case that each x is such that x is prime.

∼ (∀x)Px

• Every prime greater than 2 is odd.
 A-sentence

Each x is such that [(if x is prime and x is greater than 2) then x is 
odd].

(∀x)[(Px & Gxb) ⊃ Ox]

• The sum of two primes each of which is greater than 2 is even.
 A-sentence

Each x, each y, and each z are such that if [([(x is prime and y is prime) 
and (x is greater than 2 and y is greater than 2)] and z is the sum of x 
and y) then z is even].

(∀x)(∀y)(∀z)[([(Px & Py) & (Gxb & Gyb)] & Szxy) ⊃ Ez]

• The sum of 2 and a prime greater than 2 is odd.
 A-sentence

Each x and each y are such that if ([(x is prime and x is greater than 2) 
and y is the sum of 2 and x] then y is odd).

(∀x)(∀y)([(Px & Gxb) & Sybx] ⊃ Oy)

• No product of primes is a prime.
 Negation of an I-sentence

It is not the case that there is an x and a y and a z such that [(x is prime 
and y is prime) and (z is the product of x and y and z is prime)].

∼ (∃x)(∃y)(∃z)[(Px & Py) & (Tzxy & Pz)]

• No product of a prime and a non-prime greater than 1 is prime.
 Negation of an I-sentence

It is not the case that there is an x and a y and a z such that [(x is prime 
and it is not the case that y is prime) and [(y is greater than 1 and (z is 
the product of x and y and z is prime)]].

∼ (∃x)(∃y)(∃z)[(Px & ∼ Py) & [Gya & (Tzxy & Pz)]]

• No prime greater than 2 is evenly divisible by 2.
 Negation of an I-sentence
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It is not the case that there is a y such that [(y is prime and y is greater 
than 2) and y is evenly divisible by 2].

∼ (∃y)[(Py & Gyb) & Dyb]

• No prime greater than 2 is evenly divisible by an even number.
 E-sentence

Each w is such that [if (w is prime and w is greater than 2 ) then it is not 
the case that there is a z such that (z is even and w is evenly divisible by z)].

(∀w)[(Pw & Gwb) ⊃ ∼ (∃z)(Ez & Dwz)].

• There are pairs of primes whose sum is prime.
 I-sentence

There is an x and a y and a z such that [(x is prime and y is prime) and 
(z is the sum of x and y and z is prime)].

(∃x)(∃y)(∃z)[(Px & Py) & (Szxy & Pz)]

The last group of sentences we symbolize are more complex than those we 
have so far dealt with, and the last of these is very complex. We will use the 
symbolization key:

 UD: The set of all books and all people
 Uxy: x understands y
 Lxy: x likes y
 Axy: x admires y
 Rxy: x reads y
 Lx: x is a logician
 Px: x is a person
 p: Principia Mathematica
 a: Alice in Wonderland
 g: Green Eggs and Ham

We note that the universe of discourse does not consist exclusively of people. 
This means that when we want to say something about people we will have to 
use the predicate ‘Px’ to distinguish them from other members of the UD.

Our fi rst example can be symbolized as an I-sentence; our second exam-
ple can be symbolized as the conjunction of two I-sentences:

• Someone understands Principia Mathematica and Alice in Wonderland.

There is an x such that [x is a person and (x understands Principia Math-
ematica and x understands Alice in Wonderland)].

(∃x)[Px & (Uxp & Uxa)]
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• Someone understands Principia Mathematica and someone under-
stands Alice in Wonderland.

There is an x such that (x is a person and x understands Principia Math-
ematica) and there is an x such that (x is a person and x understands Alice 
in Wonderland).

(∃x)(Px & Uxp) & (∃x)(Px & Uxa)

The difference between the two sentences we have just paraphrased and sym-
bolized is that the fi rst says that there is some one person who understands 
both the books in question. The second sentence says only that there is some-
one who understands Principia Mathematica and that there is someone who 
understands Alice in Wonderland. It does not say whether these are one and the 
same person.

The third example can be symbolized as an A-sentence, and the fourth 
as the negation of an I-sentence:

• Everyone who reads Green Eggs and Ham both understands it and 
likes it.

Each y is such that [if (y is a person and y reads Green Eggs and Ham) then 
(y is understands Green Eggs and Ham and y likes Green Eggs and Ham)].

(∀y)[(Py & Ryg) ⊃ (Uyg & Lyg)]

• No one who reads Principia Mathematica either understands it or likes it.

It is not the case that there is a w such that [(w is a person and w reads 
Principia Mathematica) & (w understands Principia Mathematica or w likes 
Principia Mathematica)].

∼ (∃w)[(Pw & Rwp) & (Uwp ∨ Lwp)]

Our fi fth example can be symbolized as an E-sentence and our sixth example 
as an A-sentence:

• Anyone who reads Green Eggs and Ham and likes it doesn’t 
 understand anyone who reads it and doesn’t like it.

Each z is such that if ([z is a person and (z reads Green Eggs and Ham and 
z likes Green Eggs and Ham)] then it is not the case that there is a w such 
that ([(w is a person and w reads Green Eggs and Ham) and it is not the 
case that w likes Green Eggs and Ham] and z understands w)]).

(∀z)([Pz & (Rzg & Lzg)] ⊃ ∼ (∃w)([(Pw & Rwg) & ∼ Lwg] & Uzw))
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• Anyone who understands both Principia Mathematica and Alice in 
 Wonderland is admired by every logician.

Each x is such that if ([x is a person and (x understands Principia Math-
ematica and x understands Alice in Wonderland) then each y is such that (if 
y is a logician then y admires x))

(∀x)([Px & (Uxp & Uxa)] ⊃ (∀y)(Ly ⊃ Ayx))

Our seventh example can be paraphrased and symbolized as the negation of 
an I-sentence:

• No one who is not a logician understands either Principia Mathematica 
or Alice in Wonderland.

It is not the case that there is an x such that [x is a person and it is not 
the case that x is a logician and (x understands Principia Mathematica or 
x understands Alice in Wonderland)].

∼ (∃x)[(Px & ∼ Lx) & (Uxp ∨ Uxa)]

We can symbolize our eighth example as a conjunction of an O-sentence and 
the negation of an O-sentence:

• There are logicians who understand but do not like Principia 
 Mathematica but there are no logicians who understand but do 
not like Alice in Wonderland.

There is a z such that [(z is a logician and z understands Principia 
 MathematicaI ) and it is not the case that z likes Principia Mathematica] and it 
is not the case that there is a y such that [(y is a logician and y understands 
Alice in Wonderland ) and it is not the case that y likes Alice in Wonderland ]

(∃z)[Lz & (Uzp & ∼ Lza)] & ∼ (∃y)[Ly & (Uya & ∼ Lya)]

We can symbolize our last example as a conjunction whose left conjunct is a 
negation of an A-sentence and whose right conjunct is an A-sentence.

• Not everyone admires those who understand Principia Mathematica, but 
those who do also admire those who understand Alice in Wonderland.

It is not the case that each w is such that [if w is a person then each z is 
such that (if (z is a person and z understands Principia Mathematica) then 
w admires z)] and each x is such that [ if [x is a person and each y is such 
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that [if (y is a person and y understands Principia Mathematica) then x 
admires y]] then each z is such that [if (z is a person and z understands 
Alice in Wonderland) then x admires z]].

∼ (∀w)[Pw ⊃ (∀z)((Pz & Uzp) ⊃ Awz)] & (∀x)[[Px & (∀y)
[(Py & Uyp) ⊃ Axy]] ⊃ (∀z)[(Pz & Uza) ⊃ Pxz]]

 7.5 THE LANGUAGE PLE (PREDICATE LOGIC EXTENDED)

The language PLE is an expansion of PL and as such includes all the vocabulary 
of PL. In addition, PLE includes a two-place predicate that is defi ned as the 
identity predicate, and functors (used to express functions).

Our standard reading of ‘some’ is ‘at least one’. Some may object that 
this is not an accurate reading, that ‘some’ sometimes means something like 
‘at least two’. It is alleged, for example, that to say

There are still some apples in the basket

when there is only one apple in the basket is at best misleading and at worst false. 
In any event we clearly do want a means of symbolizing such claims as

There are at least two apples in the basket.

We can do this by interpreting one of the two-place predicates of PL as express-
ing the identity relation. For example, we could interpret ‘Ixy’ as ‘x is identical 
with y’. Given the symbolization key

 UD: The set of items in a basket of fruit
 Nxy: x is in y
 Ixy: x is identical with y
 Ax: x is an apple
 b: the basket

both

(∃x)(Ax & Nxb)

and

(∃x)[(Ax & Nxb) & (∃y)(Ay & Nyb)]

say ‘There is at least one apple in the basket’. The latter merely says it twice. 
But

(∃x)(∃y)([(Ax & Ay) & (Nxb & Nyb)] & ∼ Ixy)
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does say ‘There are at least two apples in the basket’. This sentence of PL can be 
paraphrased as ‘There is an x and there is a y such that ([(x is an apple and y is 
an apple) and (x is in the basket and y is in the basket)] and it is not the case that 
x is identical to y)’. This last clause is not redundant because using different vari-
ables does not commit us to there being more than one thing of the specifi ed sort.

THE IDENTITY PREDICATE

An alternative to interpreting one of the two-place predicates of PL as expressing 
identity is to introduce a special two-place predicate and specify that it always be 
interpreted as expressing the identity relation. This is the course we shall follow. 
In adding this predicate to PL, we generate a new language, PLE. As an extension 
of PL, it includes all the vocabulary of PL and an additional two-place predicate. 
PLE also includes, as we detail later in this section, functors (used to express func-
tions). The formulas and sentences of PL are also formulas and sentences of PLE.

The new two-place predicate that is distinctive of PLE is the identity 
predicate,

��

When using this predicate we shall, as we have been doing with other predicates, 
omit the two primes as the number of individual terms used (two) will show that 
this is a two-place predicate. This predicate is always interpreted as the identity 
predicate. For example, ‘� ab’ says that a is identical to b. However, it is customary 
to write, informally, ‘a � b’, rather than ‘� ab’—that is to place one individual 
term before the predicate and one after it—and we shall follow this custom.

So, instead of ‘� ab’, ‘ � xy’, and ‘ � aa’, we write ‘a � b’, ‘x � y’, 
and ‘a � a’. And in place of, for example, ‘∼ � ab’, we write ‘∼ a � b’. Since 
the interpretation of ‘�’ is fi xed, we never have to include an interpretation 
of this predicate in a symbolization key.

We can now symbolize ‘There are at least two apples in the basket’ 
in PLE, using the preceding symbolization key (but dispensing with the now 
superfl uous ‘Ixy’), as

(∃x)(∃y)([(Ax & Ay) & (Nxb & Nyb)] & ∼ x � y)

In PLE we can also say that there are just so many apples in the basket 
and no more—for example, that there is exactly one apple in the basket. An 
appropriate paraphrase is

There is a y such that [(y is an apple and y is in the basket) and each thing z 
is such that [(if z is an apple and z is in the basket) then z is identical to y]].

A full symbolization is

(∃y)[(Ay & Nyb) & (∀z)[(Az & Nzb) ⊃ z � y]]
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What we are saying is that there is at least one apple in the basket and that 
anything that is an apple and is in the basket is that very apple.

Consider next

Henry hasn’t read Alice in Wonderland but everyone else in the class has.

If we limit our universe of discourse to the students in the class in question, 
let ‘h’ designate Henry, and interpret ‘Ax’ as ‘x has read Alice in Wonderland’, 
we can symbolize this claim as

∼ Ah & (∀y)[∼ y � h ⊃ Ay]

And, using ‘b’ to designate Bob, we can symbolize ‘Only Henry and Bob have 
not read Alice in Wonderland’, as

∼ (Ah ∨ Ab) & (∀x)[∼ (x � h ∨ x � b) ⊃ Ax]

This says that neither Henry nor Bob has read Alice in Wonderland and that eve-
ryone else—that is, each person in the class who is neither identical to Henry 
nor identical to Bob—has read it.

We can also use the identity predicate to symbolize the following sen-
tences of PLE:

1. There are apples and pears in the basket.
2. The only pear in the basket is rotten.
3. There are at least two apples in the basket.
4. There are two (and only two) apples in the basket.
5. There are no more than two pears in the basket.
6. There are at least three apples in the basket.

 UD: The set of items in a fruit bowl
 Ax: x is an apple
 Nxy: x is in y
 Px: x is a pear
 Rx: x is rotten
 b: the basket

We can recast sentence 1 as ‘There is at least one apple and at least one pear 
in the basket’, and symbolize it without using the identity predicate:

(∃x)(∃y)[(Ax & Py) & (Nxb & Nyb)]

However, if we take sentence 1 to assert that there are at least two apples and 
at least two pears in the basket, we do need the identity predicate:

(∃x)(∃y)[((Ax & Ay) & (Nxb & Nyb)) & ∼ x � y] & 
(∃x)(∃y)[((Px & Py) & (Nxb & Nyb)) & ∼ x � y]
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Sentence 2 says that there is one and only one pear in the basket and that that 
one pear is rotten:

(∃x)[((Px & Nxb) & Rx) & (∀y)[(Py & Nyb) ⊃ y � x]]

Sentence 3 says only that there are at least two apples in the basket, not that 
there are exactly two. Hence

(∃x)(∃y)[((Ax & Ay) & (Nxb & Nyb)) & ∼ x � y]

To symbolize sentence 4 we start with the symbolization for sentence 3 and add 
a clause saying there are no additional apples in the basket:

(∃x)(∃y)([((Ax & Ay) & (Nxb & Nyb)) & ∼ x � y] & 
(∀z)[(Az & Nzb) ⊃ (z � x ∨ z � y)])

The added clause says, in effect, ‘and anything that is an apple and is in the 
basket is either x or y’. Sentence 5 does not say that there are two pears in the 
basket; rather, it says that there are at most two pears in the basket. We can 
express this in PLE by saying that of any pears, x, y, and z that are in the basket 
these are really at most two; that is, either x is identical to y, or x is identical 
to z, or y is identical to z. In other words

(∀x)(∀y)(∀z)[([(Px & Py) & Pz] & [(Nxb & Nyb) & Nzb]) ⊃ 
((x � y ∨ x � z) ∨ y � z)]

Finally sentence 6 can be symbolized by building on the symbolization for 
sentence 3:

(∃x)(∃y)(∃z)(([(Ax & Ay) & Az] & [(Nxb & Nyb) & Nzb]) & 
[(∼ x � y & ∼ y � z) & ∼ x � z)]

We now return to our discussion of positive integers. This time we will 
use this symbolization key for the sentences that follow.

 UD: The set of positive integers
 Bxyz: x is between y and z
 Lxy: x is larger than y
 Sxy: x is a successor of y
 Ex: x is even
 Px: x is prime
 a: 1
 b: 2
 c: 10
 d: 14
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1. There is no largest positive integer.
2. There is a unique smallest positive integer.
3. 2 is the only even prime.
4. Every positive integer has exactly one successor.
5. 2 is the only prime whose successor is prime.

As we saw in our earlier discussion, we can symbolize sentence 1 without using 
the identity predicate, for to say that there is no largest positive integer it 
suffi ces to say that for every integer there is a larger integer (no matter what 
integer one might pick, there is an integer larger than it):

(∀x)(∃y)Lyx

It is also tempting to symbolize sentence 2 without using the identity predicate, 
for to say that there is a smallest positive integer seems to be to say that there 
is an integer that is not larger than any integer:

(∃x) ∼ (∃y)Lxy

But while the foregoing does say that there is a smallest positive integer, it 
does not say that there is a unique such integer. So a better symbolization is

(∃x)(∀y)(∼ y � x ⊃ Lyx)

This sentence of PL says that there is an integer such that every integer not 
identical to it is larger than it. This does imply uniqueness.

Sentence 3, ‘2 is the only even prime’, says that 2 is prime and is even 
and that all other primes are not even:

2 is prime and 2 is even, and each z is such that if z is prime and z is not 
identical with 2 then z is not even.

In PLE

(Pb & Eb) & (∀z)[(Pz & ∼ z � b) ⊃ ∼ Ez]

This is equivalent to

(Pb & Eb) & (∀z)[(Pz & Ez) ⊃ z � b]

Notice that we could equally well have paraphrased and symbolized sentence 
3 as

2 is prime and 2 is even, and it is not the case that there is a z such that z 
is prime and z is even, and z is not identical with 2
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and symbolized this claim as

(Pb & Eb) & ∼ (∃z)[(Pz & Ez) & ∼ z � b]

Notice, too, that all three symbolic versions of sentence 3 are truth-functional 
compounds, not quantifi ed sentences.

Sentence 4, ‘Every positive integer has exactly one successor’, can be 
symbolized as

(∀x)(∃y)[Syx & (∀z)(Szx ⊃ z � y)]

This says that each positive integer x has a successor y and that any integer 
that is a successor of x is identical to y—that is, that each positive integer has 
exactly one successor.

Sentence 5, ‘2 is the only prime whose (only) successor is prime’, can 
be paraphrased as a conjunction:

(2 is prime and there is an x such that [(x is the successor of 2 and each 
y is such that (if y is the successor of 2 then y � x)) and x is prime]) and 
each x and each y are such that [(if x is the successor of y and (y is prime 
and it is not the case that y � b)) then it is not the case that x is prime]

The fi rst conjunct can be symbolized as

Pb & (∃x)[(Sxb & (∀y)(Syb ⊃ y � x)) & Px]

The second conjunct can be symbolized as

(∀x)(∀y)[(Sxy & (Py & ∼ y � b)) ⊃ ∼ Px]

Putting these together we obtain

(Pb & (∃x)[(Sxb & (∀y)(Syb ⊃ y � x)) & Px]) & (∀x)(∀y)
[(Sxy & (Py & ∼ y � b)) ⊃ ∼ Px]

DEFINITE DESCRIPTIONS

In Section 7.1 we discussed three kinds of singular terms of English: proper names, 
pronouns, and defi nite descriptions. We subsequently noted that individual con-
stants of PL can be used analogously to singular terms of English that do refer. But 
following this practice means that the internal structure of defi nite descriptions is 
not represented in PL. Consider, by way of illustration, this argument:

The Roman general who defeated Pompey invaded both Gaul and 
 Germany. Therefore Pompey was defeated by someone who invaded 
both Gaul and Germany.
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This is fairly obviously a valid argument. But its symbolization in PL is not valid:

 UD: The set of persons and countries
 Ixy: x invaded y
 Dxy: x defeated y
 r: The Roman general who defeated Pompey
 p: Pompey
 g: Gaul
 e: Germany

Treating ‘The Roman general who defeated Pompey’ as an unanalyzable unit, 
to be symbolized by ‘r,’ and paraphrasing the conclusion as ‘There is an x such 
that [x defeated Pompey and (x invaded Gaul and x invaded Germany)]’ yields 
the following symbolization:

Irg & Ire
(∃x)[Dxp & (Ixg & Ixe)]

The techniques we develop for testing arguments of PL will show that this argu-
ment of PL is invalid. This should not be surprising, for the premise tells us only 
that the thing designated by ‘r’ invaded both Gaul and Germany; it does not 
tell us that that thing is a thing that defeated Pompey, as the conclusion claims.

By using the identity predicate we can capture the structure of defi -
nite descriptions within PLE. Suppose we paraphrase the fi rst premise of the 
preceding argument as

There is an x such that [[(x is a Roman general and x defeated Pompey) 
and each y is such that [if (y is a Roman general and y defeated Pompey) 
then y � x]] and (x invaded Gaul and x invaded Germany)].

Defi nite descriptions are, after all, descriptions that purport to specify condi-
tions that are satisfi ed by exactly one thing. Using our current symbolization 
key, plus ‘Rx’ for ‘x is a Roman general’, we can symbolize the fi rst premise as

(∃x)[[(Rx & Dxp) & (∀y)[(Ry & Dyp) ⊃ y � x]] & (Ixg & Ixe)]

We shall later show that in PLE the conclusion ‘(∃x)[Dxp & (Ixg & Ixe)]’ does 
follow from this premise.

By transforming defi nite descriptions into unique existence claims, that 
is, claims that there is exactly one object of such-and-such a sort, we gain the 
further benefi t of being able to symbolize English language defi nite descriptions 
that may, in fact, not designate anything. For example, taking the UD to be per-
sons and using ‘Dxy’ for ‘x is a daughter of y’, ‘Bx’ for ‘x is a biochemist’, and ‘j’ 
to designate John, we might symbolize ‘John’s only daughter is a biochemist’ as

(∃x)[(Dxj & (∀y)(Dyj ⊃ y � x)) & Bx]
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If it turns out that John has no, or more than one, daughter, or that his only 
daughter is not a biochemist, the above sentence of PLE will be false, not 
meaningless or truth-valueless. This is an acceptable result.

PROPERTIES OF RELATIONS

Identity is a relation with three rather special properties. First, identity is a 
transitive relation. That is, if an object x is identical with an object y, and y is 
identical with an object z, then x is identical with z. The following sentence of 
PLE says, in effect, that identity is transitive:

(∀x)(∀y)(∀z)[(x � y & y � z) ⊃ x � z]

Many relations other than identity are also transitive relations. The predicates

x is larger than y
x is taller than y
x is an ancestor of y
x is heavier than y
x occurs before y

all express transitive relations. But, ‘x is a friend of y’ does not represent a 
transitive relation. That is, ‘Any friend of a friend of mine is a friend of mine’ 
is a substantive claim, and one that is generally false. Where x, y, and z are all 
variables of PL or PLE and A is a two-place predicate of PL or PLE, the follow-
ing says that A expresses a transitive relation:

(∀x)(∀y)(∀z)[(Axy & Ayz) ⊃ Axz]

Identity is also a symmetric relation; that is, if an object x is identical 
with an object y, then y is identical with x. The following says that A is a sym-
metric relation:

(∀x)(∀y)(Axy ⊃ Ayx)

The following predicates also express symmetric relations:

x is a sibling of y
x is a classmate of y
x is a relative of y
x has the same father as does y

Note that neither ‘x is a sister of y’ nor ‘x loves y’ expresses a symmetric rela-
tion. Jane Fonda is a sister of Peter Fonda, but Peter Fonda is not a sister of 
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Jane Fonda. And, alas, it may be that Manfred loves Hildegard even though 
Hildegard does not love Manfred.

A relation is refl exive if and only if each object stands in that relation 
to itself. In PL and PLE the following says that A expresses a refl exive relation:

(∀x)Axx

Identity is a refl exive relation. In an unrestricted UD it is rather hard to fi nd 
other refl exive relations. For example, a little thought should show that none 
of the following expresses a refl exive relation in an unrestricted universe of 
discourse:

x is the same age as y
x is the same height as y
x is in the same place as y

Since the number 48 is not of any age, it is not the same age as itself nor the 
same height as itself. Numbers have neither age nor height, though inscriptions 
of numerals usually have both. So, too, neither the number 93 nor the set of 
human beings is in any place. Numbers and sets do not have spatial positions; 
hence neither is in the same place as itself. However, the relations just discussed 
are refl exive relations in suitably restricted universes of discourse. For example, 
if the universe of discourse consists exclusively of people, then

x is the same age as y

expresses a refl exive relation (it is also transitive and symmetric). Every person is 
the same age as him- or herself. In this restricted universe ‘x is the same height 
as y’ and ‘x is in the same place as y’ also represent refl exive relations. Each 
person is the same height as him- or herself and is in the same place as him- or 
herself. And, if the universe of discourse is restricted to the positive integers, then

x is evenly divisible by y

expresses a refl exive relation, for every positive integer is evenly divisible by 
itself. This relation is not symmetric (not every positive integer evenly divides 
all the positive integers it is evenly divisible by). However, ‘x is evenly divisible 
by y’ does express a transitive relation.

FUNCTIONS

A function is an operation that takes one or more element of a set as argu-
ments and returns a single value. Addition, subtraction, multiplication, square, 
and  successor are all common functions of arithmetic. Each returns, for each 
number or pair of numbers, a single value. Addition takes a pair of numbers 
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as arguments and returns their sum; multiplication takes a pair of numbers and 
returns the product of those numbers; subtraction returns, for each pair of num-
bers, the fi rst number minus the second. The square function returns, for each 
number, the result of multiplying that number by itself; the successor function 
returns, for any positive integer n, the integer n � 1.

Not all functions are arithmetic functions. We have already encoun-
tered truth-functions—functions that map values from the set consisting of the 
truth-values (the set {T, F}) to truth-values. Negation is a function of one argu-
ment that returns F when given T as an argument and returns T when given F 
as an argument. Conjunction, disjunction, the material conditional, and the material 
biconditional are all functions that take two arguments (two truth-values) and 
return a single truth-value. Characteristic truth-tables display the value of each 
of these functions for each pair of truth-values.

Functions are also found outside of formal logic and mathematics. Con-
sider a set of monogamously married individuals.7 Here spouse is a function that 
takes a single member of the set as an argument and returns that person’s spouse 
as its value. For the set of all twins, the function twin returns, for each member of 
the set, that member’s twin. In PLE we shall use lowercase italicized Roman letters 
a–z, with or without a positive-integer subscript, followed by one or more prime 
marks to symbolize functions. We call these symbols functors. Where n is the 
number of prime marks after the functor, the function assigned to the functor 
takes n arguments. For example, in talking about the set of positive integers, we 
might assign the successor function to the functor f.8 We specify this assignment 
in a symbolization key much the way we have been assigning interpretations to 
predicates. The following symbolization key assigns the successor function to f �:

 UD: The set of positive integers
 f �(x): the successor of x
 Ex: x is even
 Ox: x is odd
 a: 2
 b: 3

The variable x in parentheses indicates that we are assigning to f  � a function 
that takes a single argument. The expression to the right of the colon assigns 
the successor function to f  �. Given the above symbolization key,

Ob

says 3 is odd. The sentence

Of �(a)

7The example is from Geoffrey Hunter, Metalogic: An Introduction to the Metatheory of Standard First Order Logic, 
Paperback ed. (Berkeley: University of California Press, 1996).
8It is customary to use, where only a few functors are needed, the letters ‘f  �, ‘g’, ‘h’, . . . We will follow this custom.
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says the successor of 2, which is 3, is odd. Both claims are, of course, true. And

f  �(a) � b

says the successor of 2 is 3, which it is. Similarly,

(∃x)Of  �(x) & (∃x)Ef  �(x)

says there is a positive integer whose successor is odd and there is a positive 
integer whose successor is even. We can also use the symbolization key to sym-
bolize ‘The successor of an even number is odd’. A fi rst step is the quasi-English

(∀x)(Ex ⊃ the successor of x is odd)

The successor of x is f  �(x), so the full symbolization is

(∀x)(Ex ⊃ Of  �(x))

We can add the following to our symbolization key

h�(x,y): the sum of x and y

and symbolize ‘The sum of an even number and an odd number is odd’ as

(∀x)(∀y)[(Ex & Oy) ⊃ Oh�(x,y)]

Since the number of distinct individual terms occurring within the parentheses 
after a functor indicates how many arguments the function assigned to that 
functor takes, we can informally omit the primes that offi cially follow functors, 
just as we do for predicate letters. Hereafter we will do so.

Returning to our example of the set of twins, we can use the following 
symbolization key

 UD: The set of all twins
 f(x): the twin of x
 c: Cathy
 h: Henry
 j: Jose
 s: Simone

to symbolize

Simone is Henry’s twin
as

s � f(h)
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and

Jose is Cathy’s twin

as

j � f(c)

Using ‘Bx’ for ‘x is bald’, we can symbolize ‘A twin is bald if and only if her 
or his twin is bald’ as

(∀x)[Bx ≡ Bf(x)]

and ‘Some bald twins have twins that are not bald’ as

(∃x)[Bx & ∼ Bf(x)]

The symbolization

(∀x)(∀y)[(∃z)(z � f(x) & z � f(y)) ⊃ x � y]

says, in quasi-English, ‘Any members of the UD x and y who are such that if 
there is a z who is both a twin of x and a twin of y then x and y are identical’, 
or ‘No one is a twin of two different twins’.

We require that the functions we symbolize with functors have the 
 following characteristics:

1. An n-place function must yield one and only one value for each 
n-tuple of arguments.9

2. The value of a function for an n-tuple of members of a UD must be a 
member of that UD.

If the UD is the set of integers, the square root operation does not meet 
condition 1 because it can yield more than one value for its arguments (there are 
two square roots of 4, 2 and �2.). (It also fails to meet condition 2 because not 
all square roots of integers are integers.) If the UD is the set of positive integers, 
the subtraction function does not meet condition 2, because when y is greater 
than x, x minus y yields a value that is not a positive integer (3 minus 9 is �6, and 
�6 is not a positive integer). Subtraction does meet condition 2 when the UD is 
the set of all integers—positive, zero, and negative. If the UD is the set of positive 
integers, division also fails to meet condition 2 (3 divided by 9 yields 1/3, which 
is not a positive integer). Division does meet condition 2 when the UD is the set 
of positive rational numbers (positive integers plus numbers expressible as the 
ratio between positive integers). Finally division does not meet condition 1 when 
the UD is the set of all integers because it is undefi ned when the divisor is zero.

9An n-tuple is an ordered set containing n members.
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As we have just seen, functors can be used to generate a new kind of 
individual term (in addition to the individual constants and variables of PL). 
We call these new terms complex terms. Complex terms are of the form

f(t1, t2, . . . tn)

where f is an n-place functor and t1, t2, . . . tn are individual terms. Further 
examples of complex terms include

f(a,b)
h(a,b,c)
g(a)
f(b,b)
f(x,y)
f(a,y)
f(y,a)
g(x)
f(g(a),b)
f(a,g(x))

Complex terms are complex in that they are always formed from a functor 
and at least one individual term. Some complex terms contain variables, and 
some do not. We call individual terms that do not contain variables closed 
terms, and those that do open terms. This makes both individual constants and 
complex terms that contain no variables closed terms. Complex terms that do 
contain at least one variable, as well as variables themselves, are open terms. 
Individual terms that are not complex terms (the individual constants and indi-
vidual variables) are simple individual terms. In the above list, the fi rst four 
complex terms are closed, the next four open, the ninth closed, and the last 
open. Note the last two examples. In each, one of the individual terms from 
which the example is built is itself a complex term. This is wholly in order, as 
complex terms are individual terms and can occur anywhere a constant can 
occur. The kinds of individual terms included in PLE are summarized in the 
following table:

INDIVIDUAL TERMS OF PLE

 Open Closed

Simple Individual variables Individual constants

Complex Individual term formed from a 
functor and at least one individual 
variable—for example, f(x), 
f(a,x), g(f(a),y), g(h(x,y),a)

Individual term formed from 
a functor and containing no 
individual variable—for example, 
f(a), g(a,b), f(g(a,f(a,c)))
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All of the following are formulas of PLE:

Faf(x)
Ff(x)a
Ff(a)b
(∀x)Faf(x)
(∀x)(∃y)Fxf(y)

In each of these examples ‘F’ is a two-place predicate. The fi rst and second are 
formulas of PLE but are not sentences (because the x in ‘f(x)’ is not bound). 
The third, fourth, and fi fth examples are all both formulas and sentences of 
PLE. The third says that f(a) bears the relation F to b. The fourth says that 
each thing x in the UD is such that a bears the relation F to f(x), that is, to 
the value of the function f as applied to x. The fi fth says that each thing x in 
the UD is such that there is a thing y such that x bears the relation F to f(y). 
Every example contains a complex individual term, and all but the third an 
open complex individual term.

Consider this symbolization key:

 UD: The set of positive integers
 Ox: x is odd
 Ex: x is even
 Px: x is prime
 Gxy: x is greater than y
 h(x,y): the sum of x and y
 f(x): the successor of x
 a: 1
 b: 2

The sentence

(∀x)[Ex ⊃ Of(x)]

says, truly, that each positive integer is such that if it is even then its successor 
is odd. And

(∀x)[Ex ⊃ Ef(f(x))]

says, truly, that each positive integer is such that if it is even then the successor 
of its successor is also even. The sentence

(∀x)(∀y)[(Ex & Ey) ⊃ Eh(x,y)]

can be read in quasi-English as ‘Each x and each y are such that [if (x is even 
and y is even) then the sum of x and y is even]. This is, of course, true.
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Here are further sentences of PLE that can be read in English using 
the above symbolization key. The sentence

(∀x)(∀y)[Gh(x,y)x & Gh(x,y)y]

says that for any positive integers x and y the sum of x and y is greater than x, 
and the sum of x and y is greater than y. This is true. The sentence

(∃x)Gxh(a,b)

says that there is a positive integer, x, that is greater than the sum of 1 and 
2—that is, there is a positive integer that is greater than 3. This is also true. 
The sentence

(∀x)(∀y)[(Ex & Oy) ⊃ Oh(x,y)]

says that, for any pair of positive integers x and y, if the fi rst is even and 
the second is odd, then their sum is odd. This is true as well. Finally the 
sentence

(∀x)(∀y)[Ph(x,y) ⊃ ∼ (Px & Py)]

says that, for any pair of positive integers, if their sum is prime then it is not 
the case that they are both prime, or, in other words, that there are no prime 
numbers x and y such that their sum is also prime. This sentence is false; 2 
and 3 are both prime, and so is their sum, 5.

THE SYNTAX OF PLE

In addition to the vocabulary of PL, the vocabulary of PLE also includes

��: The two-place identity predicate (fi xed interpretation)
Functors of PLE: Lowercase italicized Roman letters a, b, c, . . . , with 
or without a numeric subscript, followed by n primes.
Individual terms of PLE:

 Individual constants are individual terms of PLE

 Individual variables are individual terms of PLE

 Expressions of the form f(t1, t2, . . . tn), where f is an n-place 
 functor and t1, t2, . . . , tn are individual terms of PLE

We can classify the individual terms of PLE as follows:

Simple terms of PLE: The individual constants and individual variables 
of PLE
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Complex terms of PLE: Individual terms of the form f(t1, t2, . . . , tn), where 
f is an n-place functor
Closed individual term: An individual term in which no variable occurs
Open individual term: An individual term in which at least one variable 
occurs

Individual variables and functors that contain at least one individual variable 
are thus open terms. Individual constants and functors that contain no variables 
are thus closed terms.

In PLE a substitution instance is defi ned as follows:

Substitution instance of P: If P is a sentence of PLE of the form 
(∀x)Q or (∃x)Q and t is a closed individual term, then Q(t/x) is a 
 substitution instance of P. The individual term t is the instantiating 
individual term.

Note that every substitution instance of a sentence of PL is also a substitution 
instance of that same sentence in PLE.

 7.5E EXERCISES

 1. Symbolize the following sentences in PLE using the following symbolization 
key:

 UD: The set of all people
 Sx: x is a sailor
 Lx: x is lucky
 Cx: x is careless
 Yx: x dies young
 Sxy: x is a son of y
 Dxy: x is a daughter of y
 Wx: x is a Wilcox
 d: Daniel Wilcox
 j: Jacob Wilcox
 r: Rebecca Wilcox

 a. Every Wilcox except Daniel is a sailor.
 *b. Every Wilcox except Daniel is the offspring of a sailor.
 c. Every Wilcox except Daniel is either a sailor or the offspring of sailor.
 *d. Daniel is the only son of Jacob.
 e. Daniel is the only child of Jacob.
 *f. All the Wilcoxes except Daniel are sailors.
 g. Rebecca’s only son is Jacob’s only son.
 *h. Rebecca Wilcox has only one son who is a sailor.
 i. Rebecca Wilcox has at least two daughters who are sailors.
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 *j. There are two and only two sailors in the Wilcox family.
 k. Jacob Wilcox has one son and two daughters, and they are all sailors.

 2. Give fl uent English readings for the following sentences of PLE using the given 
symbolization key.

 UD: The set of positive integers
 Lxy: x is less than y
 Gxy: x is greater than y
 Ex: x is even
 Ox: x is odd
 Px: x is prime
 f(x,y): the product of x and y
 t: 2
 f: 5
 n: 9

 a. (∀x)(∃y)Lxy
 *b. (∃x)(∀y)(∼ x � y ⊃ Lxy)
 c. (∃x)(∀y) ∼ Lyx
 *d. ∼ (∃x)(Ex & Lxt)
 e. (Pt & Et) & (∀x)[(Px & Ex) ⊃ x � t]
 *f. ∼ (∃x)(∃y)[(Px & Py) & Pf(x,y)]
 g. (∀y)(∀z)[(Oy & Oz) ⊃ Of(y,z)]
 *h. (∀y)(∀z)[(Ey & Ez) ⊃ Ef(z,y)]
 i. (∀y)(∀z)[(Ey ∨ Ez) ⊃ Ef(y,z)]
 *j. (∀x)[Ex ⊃ (∃y)(Oy & Gxy)] & ∼ (∀x)[Ox ⊃ (∃y)(Ey & Gxy)]
 k. (∃x)[[Px & (Gxf & Lxn)] & (∀y)([Py & (Gyf & Lyn)] ⊃ y � x)]

 3. For a–p, decide whether the specifi ed relation is refl exive, whether it is symmet-
ric, and whether it is transitive (in suitably restricted universes of discourse). 
In each case give the sentences of PL that assert the appropriate properties 
of the relation in question. If the relation is refl exive, symmetric, or transitive 
only in a restricted universe of discourse, specify such a universe of discourse.

 a. Nxy: x is a neighbor of y
 *b. Mxy: x is married to y
 c. Axy: x admires y
 *d. Nxy: x is north of y
 e. Rxy: x is a relative of y
 *f. Sxy: x is the same size as y
 g. Txy: x is at least as tall as y
 *h. Cxy: x coauthors a book with y
 i. Exy: x enrolls in the same course as y
 *j. Fxy: x fi ghts y
 k. Wxy: x weighs the same as y
 *l. Cxy: x contracts with y
 m. Axy: x is an ancestor of y
 *n. Cxy: x is a cousin of y
 o. Lxy: x and y have the same taste in food
 *p. Rxy: x respects y
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 4. Symbolize the following sentences in PLE using the given symbolization key.

 UD: The set of people in Doreen’s hometown
 Dxy: x is a daughter of y
 Sxy: x is a son of y
 Bxy: x is a brother of y
 Oxy: x is older than y
 Mxy: x is married to y
 Txy: x is taller than y
 Px: x is a physician
 Bx: x is a baseball player
 Mx: x is a marine biologist
 d: Doreen
 c: Cory
 j: Jeremy
 h: Hal

 a. Jeremy is Cory’s son.
 *b. Jeremy is Cory’s only son.
 c. Jeremy is Cory’s oldest son.
 *d. Doreen’s only daughter is a physician.
 e. Doreen’s eldest daughter is a physician.
 *f. Doreen is a physician and so is her eldest daughter.
 g. Cory is Doreen’s eldest daughter.
 *h. Cory is married to Hal’s only son.
 i. Cory is married to Hal’s tallest son.
 *j. Doreen’s eldest daughter is married to Hal’s only son.
 k. The only baseball player in town is the only marine biologist in town.
 *l. The only baseball player in town is married to one of Jeremy’s daughters.
 m. Cory’s husband is Jeremy’s only brother.

 5. Symbolize the following sentences in PLE using the given symbolization key.

 UD: The set of positive integers
 Ox: x is odd
 Ex: x is even
 Px: x is prime
 a: 1
 b: 2
 f(x): the successor of x
 q(x): x squared
 t(x,y): the product of x and y
 s(x,y): the sum of x and y

 a. One is not the successor of any integer.
 *b. One is not prime but its successor is.
 c. There is a prime that is even.
 *d. There is one and only one even prime.
 e. Every integer has a successor.
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 *f. The square of a prime is not prime.
 g. The successor of an odd integer is even.
 *h. The successor of an even integer is odd.
 i. If the product of a pair of positive integers is odd, then the product of the 

successors of those integers is even.
 *j. If the product of a pair of positive integers is even, then one of those integers 

is even.
 k. If the sum of a pair of positive integers is odd, then one member of the pair 

is odd and the other member is even.
 *l. If the sum of a pair of positive integers is even, then either both members of 

the pair are even or both members are odd.
 m. The product of a pair of prime integers is not prime.
 *n. There are no primes such that their product is prime.
 o. The square of an even number is even and the square of an odd number 

is odd.
 *p. The successor of the square of an even number is odd.
 q. The successor of the square of an odd number is even.
 *r. 2 is the only even prime.
 s. The sum of 2 and a prime other than 2 is odd.
 *t. There is exactly one integer that is prime and is the successor of a prime.
 u. There is a pair of primes such that their product is the successor of their sum.
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