Chapter 1

Introduction to data

- 1.1 Case study: using stents to prevent strokes
- 1.2 Data basics
- 1.3 Sampling principles and strategies
- 1.4 Experiments

Scientists seek to answer questions using rigorous methods and careful observations. These observations – collected from the likes of field notes, surveys, and experiments – form the backbone of a statistical investigation and are called **data**. Statistics is the study of how best to collect, analyze, and draw conclusions from data, and in this first chapter, we focus on both the properties of data and on the collection of data.

For videos, slides, and other resources, please visit www.openintro.org/os

1.1 Case study: using stents to prevent strokes

Section 1.1 introduces a classic challenge in statistics: evaluating the efficacy of a medical treatment. Terms in this section, and indeed much of this chapter, will all be revisited later in the text. The plan for now is simply to get a sense of the role statistics can play in practice.

In this section we will consider an experiment that studies effectiveness of stents in treating patients at risk of stroke. Stents are devices put inside blood vessels that assist in patient recovery after cardiac events and reduce the risk of an additional heart attack or death. Many doctors have hoped that there would be similar benefits for patients at risk of stroke. We start by writing the principal question the researchers hope to answer:

Does the use of stents reduce the risk of stroke?

The researchers who asked this question conducted an experiment with 451 at-risk patients. Each volunteer patient was randomly assigned to one of two groups:

Treatment group. Patients in the treatment group received a stent and medical management. The medical management included medications, management of risk factors, and help in lifestyle modification.

Control group. Patients in the control group received the same medical management as the treatment group, but they did not receive stents.

Researchers randomly assigned 224 patients to the treatment group and 227 to the control group. In this study, the control group provides a reference point against which we can measure the medical impact of stents in the treatment group.

Researchers studied the effect of stents at two time points: 30 days after enrollment and 365 days after enrollment. The results of 5 patients are summarized in Figure 1.1. Patient outcomes are recorded as "stroke" or "no event", representing whether or not the patient had a stroke at the end of a time period.

Patient	group	0-30 days	0-365 days
1	treatment	no event	no event
2	treatment	stroke	stroke
3	treatment	no event	no event
:	:	:	
450	control	no event	no event
451	control	no event	no event

Figure 1.1: Results for five patients from the stent study.

Considering data from each patient individually would be a long, cumbersome path towards answering the original research question. Instead, performing a statistical data analysis allows us to consider all of the data at once. Figure 1.2 summarizes the raw data in a more helpful way. In this table, we can quickly see what happened over the entire study. For instance, to identify the number of patients in the treatment group who had a stroke within 30 days, we look on the left-side of the table at the intersection of the treatment and stroke: 33.

	0-30	0 days	0-36	5 days
	stroke	no event	stroke	no event
treatment	33	191	45	179
control	13	214	28	199
Total	46	405	73	378

Figure 1.2: Descriptive statistics for the stent study.

GUIDED PRACTICE 1.1

Of the 224 patients in the treatment group, 45 had a stroke by the end of the first year. Using these two numbers, compute the proportion of patients in the treatment group who had a stroke by the end of their first year. (Please note: answers to all Guided Practice exercises are provided using footnotes.)¹

We can compute summary statistics from the table. A **summary statistic** is a single number summarizing a large amount of data. For instance, the primary results of the study after 1 year could be described by two summary statistics: the proportion of people who had a stroke in the treatment and control groups.

Proportion who had a stroke in the treatment (stent) group: 45/224 = 0.20 = 20%.

Proportion who had a stroke in the control group: 28/227 = 0.12 = 12%.

These two summary statistics are useful in looking for differences in the groups, and we are in for a surprise: an additional 8% of patients in the treatment group had a stroke! This is important for two reasons. First, it is contrary to what doctors expected, which was that stents would *reduce* the rate of strokes. Second, it leads to a statistical question: do the data show a "real" difference between the groups?

This second question is subtle. Suppose you flip a coin 100 times. While the chance a coin lands heads in any given coin flip is 50%, we probably won't observe exactly 50 heads. This type of fluctuation is part of almost any type of data generating process. It is possible that the 8% difference in the stent study is due to this natural variation. However, the larger the difference we observe (for a particular sample size), the less believable it is that the difference is due to chance. So what we are really asking is the following: is the difference so large that we should reject the notion that it was due to chance?

While we don't yet have our statistical tools to fully address this question on our own, we can comprehend the conclusions of the published analysis: there was compelling evidence of harm by stents in this study of stroke patients.

Be careful: Do not generalize the results of this study to all patients and all stents. This study looked at patients with very specific characteristics who volunteered to be a part of this study and who may not be representative of all stroke patients. In addition, there are many types of stents and this study only considered the self-expanding Wingspan stent (Boston Scientific). However, this study does leave us with an important lesson: we should keep our eyes open for surprises.

¹The proportion of the 224 patients who had a stroke within 365 days: 45/224 = 0.20.

Exercises

1.1 Migraine and acupuncture, Part I. A migraine is a particularly painful type of headache, which patients sometimes wish to treat with acupuncture. To determine whether acupuncture relieves migraine pain, researchers conducted a randomized controlled study where 89 females diagnosed with migraine headaches were randomly assigned to one of two groups: treatment or control. 43 patients in the treatment group received acupuncture that is specifically designed to treat migraines. 46 patients in the control group received placebo acupuncture (needle insertion at non-acupoint locations). 24 hours after patients received acupuncture, they were asked if they were pain free. Results are summarized in the contingency table below.²

Pain free Yes No Total 33 Treatment 10 43 Group2 Control 44 4612 77 Total 89

Figure from the original paper displaying the appropriate area (M) versus the inappropriate area (S) used in the treatment of migraine attacks.

- (a) What percent of patients in the treatment group were pain free 24 hours after receiving acupuncture?
- (b) What percent were pain free in the control group?
- (c) In which group did a higher percent of patients become pain free 24 hours after receiving acupuncture?
- (d) Your findings so far might suggest that acupuncture is an effective treatment for migraines for all people who suffer from migraines. However this is not the only possible conclusion that can be drawn based on your findings so far. What is one other possible explanation for the observed difference between the percentages of patients that are pain free 24 hours after receiving acupuncture in the two groups?
- 1.2 Sinusitis and antibiotics, Part I. Researchers studying the effect of antibiotic treatment for acute sinusitis compared to symptomatic treatments randomly assigned 166 adults diagnosed with acute sinusitis to one of two groups: treatment or control. Study participants received either a 10-day course of amoxicillin (an antibiotic) or a placebo similar in appearance and taste. The placebo consisted of symptomatic treatments such as acetaminophen, nasal decongestants, etc. At the end of the 10-day period, patients were asked if they experienced improvement in symptoms. The distribution of responses is summarized below.³

Self-reported improvement in symptoms No Total YesTreatment 19 66 85 GroupControl 65 16 81 131 166 Total 35

- (a) What percent of patients in the treatment group experienced improvement in symptoms?
- (b) What percent experienced improvement in symptoms in the control group?
- (c) In which group did a higher percentage of patients experience improvement in symptoms?
- (d) Your findings so far might suggest a real difference in effectiveness of antibiotic and placebo treatments for improving symptoms of sinusitis. However, this is not the only possible conclusion that can be drawn based on your findings so far. What is one other possible explanation for the observed difference between the percentages of patients in the antibiotic and placebo treatment groups that experience improvement in symptoms of sinusitis?

²G. Allais et al. "Ear acupuncture in the treatment of migraine attacks: a randomized trial on the efficacy of appropriate versus inappropriate acupoints". In: *Neurological Sci.* 32.1 (2011), pp. 173–175.

³J.M. Garbutt et al. "Amoxicillin for Acute Rhinosinusitis: A Randomized Controlled Trial". In: *JAMA: The Journal of the American Medical Association* 307.7 (2012), pp. 685–692.

1.2 Data basics

Effective organization and description of data is a first step in most analyses. This section introduces the *data matrix* for organizing data as well as some terminology about different forms of data that will be used throughout this book.

1.2.1 Observations, variables, and data matrices

Figure 1.3 displays rows 1, 2, 3, and 50 of a data set for 50 randomly sampled loans offered through Lending Club, which is a peer-to-peer lending company. These observations will be referred to as the loan50 data set.

Each row in the table represents a single loan. The formal name for a row is a **case** or **observational unit**. The columns represent characteristics, called **variables**, for each of the loans. For example, the first row represents a loan of \$7,500 with an interest rate of 7.34%, where the borrower is based in Maryland (MD) and has an income of \$70,000.

GUIDED PRACTICE 1.2

(G)

What is the grade of the first loan in Figure 1.3? And what is the home ownership status of the borrower for that first loan? For these Guided Practice questions, you can check your answer in the footnote.⁴

In practice, it is especially important to ask clarifying questions to ensure important aspects of the data are understood. For instance, it is always important to be sure we know what each variable means and the units of measurement. Descriptions of the loan50 variables are given in Figure 1.4.

	$terest_rate$	term	grade	state	${ t total_income}$	homeownership
7500	7.34	36	A	MD	70000	rent
25000	9.43	60	В	OH	254000	mortgage
14500	6.08	36	A	MO	80000	mortgage
:	:	:	:	:	:	:
	7 96	36	Δ	CA	34000	rent
	25000 14500	25000 9.43 14500 6.08 : :	25000 9.43 60 14500 6.08 36 : : :	25000 9.43 60 B 14500 6.08 36 A : : : :	25000 9.43 60 B OH 14500 6.08 36 A MO : : : : :	25000 9.43 60 B OH 254000 14500 6.08 36 A MO 80000 : : : : : :

Figure 1.3: Four rows from the loan50 data matrix.

variable	description
loan_amount	Amount of the loan received, in US dollars.
$interest_rate$	Interest rate on the loan, in an annual percentage.
term	The length of the loan, which is always set as a whole number of months.
grade	Loan grade, which takes a values A through G and represents the quality
	of the loan and its likelihood of being repaid.
state	US state where the borrower resides.
$total_income$	Borrower's total income, including any second income, in US dollars.
homeownership	Indicates whether the person owns, owns but has a mortgage, or rents.

Figure 1.4: Variables and their descriptions for the loan50 data set.

The data in Figure 1.3 represent a **data matrix**, which is a convenient and common way to organize data, especially if collecting data in a spreadsheet. Each row of a data matrix corresponds to a unique case (observational unit), and each column corresponds to a variable.

⁴The loan's grade is A, and the borrower rents their residence.

1.2. DATA BASICS

When recording data, use a data matrix unless you have a very good reason to use a different structure. This structure allows new cases to be added as rows or new variables as new columns.

GUIDED PRACTICE 1.3

G

The grades for assignments, quizzes, and exams in a course are often recorded in a gradebook that takes the form of a data matrix. How might you organize grade data using a data matrix?⁵

GUIDED PRACTICE 1.4

We consider data for 3,142 counties in the United States, which includes each county's name, the state where it resides, its population in 2017, how its population changed from 2010 to 2017, poverty rate, and six additional characteristics. How might these data be organized in a data matrix?⁶

The data described in Guided Practice 1.4 represents the county data set, which is shown as a data matrix in Figure 1.5. The variables are summarized in Figure 1.6.

⁵There are multiple strategies that can be followed. One common strategy is to have each student represented by a row, and then add a column for each assignment, quiz, or exam. Under this setup, it is easy to review a single line to understand a student's grade history. There should also be columns to include student information, such as one column to list student names.

 $^{^6}$ Each county may be viewed as a case, and there are eleven pieces of information recorded for each case. A table with 3,142 rows and 11 columns could hold these data, where each row represents a county and each column represents a particular piece of information.

	name	state	dod	bob_cnange	Ճ,	nomeownership	mult1_unit	unemp_rate	metro	medlan_edu	medlan_hh_income
1	Autauga	Alabama	55504	1.48		77.5	7.2	3.86	yes	some_college	55317
2	Baldwin	Alabama	212628	9.19		7.97	22.6	3.99	yes	$some_college$	52562
က	$\operatorname{Barbour}$	Alabama	25270	-6.22		68.0	11.1	5.90	ou	hs_diploma	33368
4	Bibb	Alabama	22668	0.73		82.9	9.9	4.39	yes	hs_diploma	43404
ಬ	Blount	Alabama	58013	89.0		82.0	3.7	4.02	yes	hs_diploma	47412
9	$\operatorname{Bullock}$	Alabama	10309	-2.28		6.92	6.6	4.93	ou	hs_diploma	29655
7	Butler	Alabama	19825	-2.69		69.0	13.7	5.49	ou	hs_diploma	36326
∞	Calhoun	Alabama	114728	-1.51		70.7	14.3	4.93	yes	$some_college$	43686
6	Chambers	Alabama	33713	-1.20		71.4	8.7	4.08	ou	hs_diploma	37342
10	Cherokee	Alabama	25857	-0.60	16.1	77.5	4.3	4.05	ou	hs_diploma	40041
3142	Weston	Wyoming	6927	-2.93	14.4	77.9	6.5	3.98	ou	some_college	59605

Figure 1.5: Eleven rows from the county data set.

variable	description
name	County name.
state	State where the county resides, or the District of Columbia.
dod	Population in 2017.
pop_change	Percent change in the population from 2010 to 2017. For example, the value
	1.48 in the first row means the population for this county increased by 1.48%
	from 2010 to 2017.
poverty	Percent of the population in poverty.
homeownership	Percent of the population that lives in their own home or lives with the owner,
	e.g. children living with parents who own the home.
multi_unit	Percent of living units that are in multi-unit structures, e.g. apartments.
unemp_rate	Unemployment rate as a percent.
metro	Whether the county contains a metropolitan area.
median_edu	Median education level, which can take a value among below_hs, hs_diploma,
	some_college, and bachelors.
median_hh_income	Median household income for the county, where a household's income equals
	the total income of its occupants who are 15 years or older.

Figure 1.6: Variables and their descriptions for the ${\tt county}$ data set.

1.2. DATA BASICS

1.2.2 Types of variables

Examine the unemp_rate, pop, state, and median_edu variables in the county data set. Each of these variables is inherently different from the other three, yet some share certain characteristics.

First consider unemp_rate, which is said to be a numerical variable since it can take a wide range of numerical values, and it is sensible to add, subtract, or take averages with those values. On the other hand, we would not classify a variable reporting telephone area codes as numerical since the average, sum, and difference of area codes doesn't have any clear meaning.

The pop variable is also numerical, although it seems to be a little different than unemp_rate. This variable of the population count can only take whole non-negative numbers (0, 1, 2, ...). For this reason, the population variable is said to be **discrete** since it can only take numerical values with jumps. On the other hand, the unemployment rate variable is said to be **continuous**.

The variable state can take up to 51 values after accounting for Washington, DC: AL, AK, ..., and WY. Because the responses themselves are categories, state is called a **categorical** variable, and the possible values are called the variable's **levels**.

Finally, consider the median_edu variable, which describes the median education level of county residents and takes values below_hs, hs_diploma, some_college, or bachelors in each county. This variable seems to be a hybrid: it is a categorical variable but the levels have a natural ordering. A variable with these properties is called an **ordinal** variable, while a regular categorical variable without this type of special ordering is called a **nominal** variable. To simplify analyses, any ordinal variable in this book will be treated as a nominal (unordered) categorical variable.

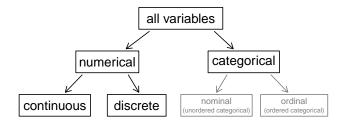


Figure 1.7: Breakdown of variables into their respective types.

EXAMPLE 1.5

Data were collected about students in a statistics course. Three variables were recorded for each student: number of siblings, student height, and whether the student had previously taken a statistics course. Classify each of the variables as continuous numerical, discrete numerical, or categorical.

The number of siblings and student height represent numerical variables. Because the number of siblings is a count, it is discrete. Height varies continuously, so it is a continuous numerical variable. The last variable classifies students into two categories – those who have and those who have not taken a statistics course – which makes this variable categorical.

GUIDED PRACTICE 1.6

An experiment is evaluating the effectiveness of a new drug in treating migraines. A group variable is used to indicate the experiment group for each patient: treatment or control. The num_migraines variable represents the number of migraines the patient experienced during a 3-month period. Classify each variable as either numerical or categorical?⁷

⁷There group variable can take just one of two group names, making it categorical. The num_migraines variable describes a count of the number of migraines, which is an outcome where basic arithmetic is sensible, which means this is numerical outcome; more specifically, since it represents a count, num_migraines is a discrete numerical variable.

1.2.3 Relationships between variables

Many analyses are motivated by a researcher looking for a relationship between two or more variables. A social scientist may like to answer some of the following questions:

- (1) If homeownership is lower than the national average in one county, will the percent of multi-unit structures in that county tend to be above or below the national average?
- (2) Does a higher than average increase in county population tend to correspond to counties with higher or lower median household incomes?
- (3) How useful a predictor is median education level for the median household income for US counties?

To answer these questions, data must be collected, such as the county data set shown in Figure 1.5. Examining summary statistics could provide insights for each of the three questions about counties. Additionally, graphs can be used to visually explore data.

Scatterplots are one type of graph used to study the relationship between two numerical variables. Figure 1.8 compares the variables homeownership and multi_unit, which is the percent of units in multi-unit structures (e.g. apartments, condos). Each point on the plot represents a single county. For instance, the highlighted dot corresponds to County 413 in the county data set: Chattahoochee County, Georgia, which has 39.4% of units in multi-unit structures and a homeownership rate of 31.3%. The scatterplot suggests a relationship between the two variables: counties with a higher rate of multi-units tend to have lower homeownership rates. We might brainstorm as to why this relationship exists and investigate each idea to determine which are the most reasonable explanations.

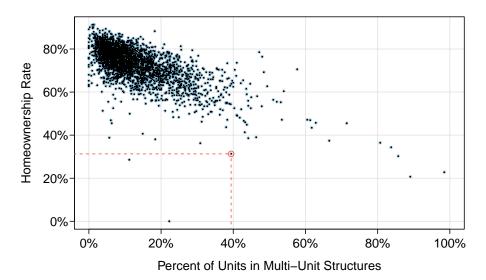


Figure 1.8: A scatterplot of homeownership versus the percent of units that are in multi-unit structures for US counties. The highlighted dot represents Chattahoochee County, Georgia, which has a multi-unit rate of 39.4% and a homeownership rate of 31.3%.

The multi-unit and homeownership rates are said to be associated because the plot shows a discernible pattern. When two variables show some connection with one another, they are called **associated** variables. Associated variables can also be called **dependent** variables and vice-versa.

1.2. DATA BASICS

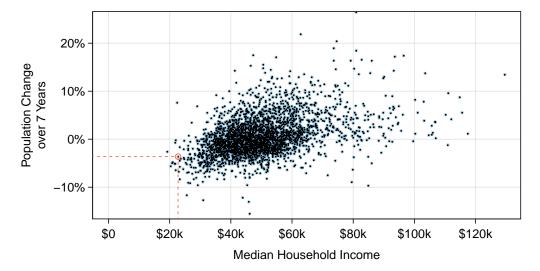


Figure 1.9: A scatterplot showing pop_change against median_hh_income. Owsley County of Kentucky, is highlighted, which lost 3.63% of its population from 2010 to 2017 and had median household income of \$22,736.

GUIDED PRACTICE 1.7

Examine the variables in the loan50 data set, which are described in Figure 1.4 on page 12. Create two questions about possible relationships between variables in loan50 that are of interest to you.⁸

EXAMPLE 1.8

This example examines the relationship between a county's population change from 2010 to 2017 and median household income, which is visualized as a scatterplot in Figure 1.9. Are these variables associated?

The larger the median household income for a county, the higher the population growth observed for the county. While this trend isn't true for every county, the trend in the plot is evident. Since there is some relationship between the variables, they are associated.

Because there is a downward trend in Figure 1.8 – counties with more units in multi-unit structures are associated with lower homeownership – these variables are said to be **negatively associated**. A **positive association** is shown in the relationship between the median_hh_income and pop_change in Figure 1.9, where counties with higher median household income tend to have higher rates of population growth.

If two variables are not associated, then they are said to be **independent**. That is, two variables are independent if there is no evident relationship between the two.

ASSOCIATED OR INDEPENDENT, NOT BOTH

A pair of variables are either related in some way (associated) or not (independent). No pair of variables is both associated and independent.

⁸Two example questions: (1) What is the relationship between loan amount and total income? (2) If someone's income is above the average, will their interest rate tend to be above or below the average?

1.2.4 Explanatory and response variables

When we ask questions about the relationship between two variables, we sometimes also want to determine if the change in one variable causes a change in the other. Consider the following rephrasing of an earlier question about the **county** data set:

If there is an increase in the median household income in a county, does this drive an increase in its population?

In this question, we are asking whether one variable affects another. If this is our underlying belief, then *median household income* is the **explanatory** variable and the *population change* is the **response** variable in the hypothesized relationship.⁹

EXPLANATORY AND RESPONSE VARIABLES

When we suspect one variable might causally affect another, we label the first variable the explanatory variable and the second the response variable.

For many pairs of variables, there is no hypothesized relationship, and these labels would not be applied to either variable in such cases.

Bear in mind that the act of labeling the variables in this way does nothing to guarantee that a causal relationship exists. A formal evaluation to check whether one variable causes a change in another requires an experiment.

1.2.5 Introducing observational studies and experiments

There are two primary types of data collection: observational studies and experiments.

Researchers perform an **observational study** when they collect data in a way that does not directly interfere with how the data arise. For instance, researchers may collect information via surveys, review medical or company records, or follow a **cohort** of many similar individuals to form hypotheses about why certain diseases might develop. In each of these situations, researchers merely observe the data that arise. In general, observational studies can provide evidence of a naturally occurring association between variables, but they cannot by themselves show a causal connection.

When researchers want to investigate the possibility of a causal connection, they conduct an **experiment**. Usually there will be both an explanatory and a response variable. For instance, we may suspect administering a drug will reduce mortality in heart attack patients over the following year. To check if there really is a causal connection between the explanatory variable and the response, researchers will collect a sample of individuals and split them into groups. The individuals in each group are *assigned* a treatment. When individuals are randomly assigned to a group, the experiment is called a **randomized experiment**. For example, each heart attack patient in the drug trial could be randomly assigned, perhaps by flipping a coin, into one of two groups: the first group receives a **placebo** (fake treatment) and the second group receives the drug. See the case study in Section 1.1 for another example of an experiment, though that study did not employ a placebo.

ASSOCIATION ≠ **CAUSATION**

In general, association does not imply causation, and causation can only be inferred from a randomized experiment.

⁹Sometimes the explanatory variable is called the **independent** variable and the response variable is called the **dependent** variable. However, this becomes confusing since a *pair* of variables might be independent or dependent, so we avoid this language.

1.2. DATA BASICS

Exercises

1.3 Air pollution and birth outcomes, study components. Researchers collected data to examine the relationship between air pollutants and preterm births in Southern California. During the study air pollution levels were measured by air quality monitoring stations. Specifically, levels of carbon monoxide were recorded in parts per million, nitrogen dioxide and ozone in parts per hundred million, and coarse particulate matter (PM_{10}) in $\mu g/m^3$. Length of gestation data were collected on 143,196 births between the years 1989 and 1993, and air pollution exposure during gestation was calculated for each birth. The analysis suggested that increased ambient PM_{10} and, to a lesser degree, CO concentrations may be associated with the occurrence of preterm births. ¹⁰

- (a) Identify the main research question of the study.
- (b) Who are the subjects in this study, and how many are included?
- (c) What are the variables in the study? Identify each variable as numerical or categorical. If numerical, state whether the variable is discrete or continuous. If categorical, state whether the variable is ordinal.
- 1.4 Buteyko method, study components. The Buteyko method is a shallow breathing technique developed by Konstantin Buteyko, a Russian doctor, in 1952. Anecdotal evidence suggests that the Buteyko method can reduce asthma symptoms and improve quality of life. In a scientific study to determine the effectiveness of this method, researchers recruited 600 asthma patients aged 18-69 who relied on medication for asthma treatment. These patients were randomly split into two research groups: one practiced the Buteyko method and the other did not. Patients were scored on quality of life, activity, asthma symptoms, and medication reduction on a scale from 0 to 10. On average, the participants in the Buteyko group experienced a significant reduction in asthma symptoms and an improvement in quality of life. ¹¹
- (a) Identify the main research question of the study.
- (b) Who are the subjects in this study, and how many are included?
- (c) What are the variables in the study? Identify each variable as numerical or categorical. If numerical, state whether the variable is discrete or continuous. If categorical, state whether the variable is ordinal.
- 1.5 Cheaters, study components. Researchers studying the relationship between honesty, age and self-control conducted an experiment on 160 children between the ages of 5 and 15. Participants reported their age, sex, and whether they were an only child or not. The researchers asked each child to toss a fair coin in private and to record the outcome (white or black) on a paper sheet, and said they would only reward children who report white. The study's findings can be summarized as follows: "Half the students were explicitly told not to cheat and the others were not given any explicit instructions. In the no instruction group probability of cheating was found to be uniform across groups based on child's characteristics. In the group that was explicitly told to not cheat, girls were less likely to cheat, and while rate of cheating didn't vary by age for boys, it decreased with age for girls." 12
- (a) Identify the main research question of the study.
- (b) Who are the subjects in this study, and how many are included?
- (c) How many variables were recorded for each subject in the study in order to conclude these findings? State the variables and their types.

¹⁰B. Ritz et al. "Effect of air pollution on preterm birth among children born in Southern California between 1989 and 1993". In: *Epidemiology* 11.5 (2000), pp. 502–511.

 ¹¹ J. McGowan. "Health Education: Does the Buteyko Institute Method make a difference?" In: Thorax 58 (2003).
 12 Alessandro Bucciol and Marco Piovesan. "Luck or cheating? A field experiment on honesty with children". In:

Journal of Economic Psychology 32.1 (2011), pp. 73–78.

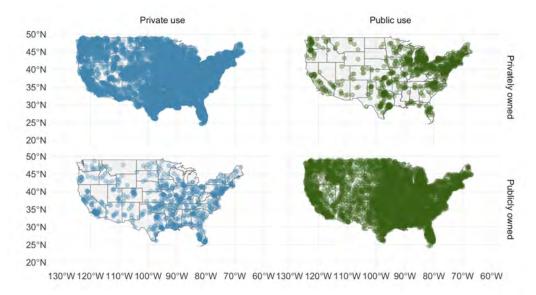
- 1.6 Stealers, study components. In a study of the relationship between socio-economic class and unethical behavior, 129 University of California undergraduates at Berkeley were asked to identify themselves as having low or high social-class by comparing themselves to others with the most (least) money, most (least) education, and most (least) respected jobs. They were also presented with a jar of individually wrapped candies and informed that the candies were for children in a nearby laboratory, but that they could take some if they wanted. After completing some unrelated tasks, participants reported the number of candies they had taken. 13
- (a) Identify the main research question of the study.
- (b) Who are the subjects in this study, and how many are included?
- (c) The study found that students who were identified as upper-class took more candy than others. How many variables were recorded for each subject in the study in order to conclude these findings? State the variables and their types.
- 1.7 Migraine and acupuncture, Part II. Exercise 1.1 introduced a study exploring whether acupuncture had any effect on migraines. Researchers conducted a randomized controlled study where patients were randomly assigned to one of two groups: treatment or control. The patients in the treatment group received acupuncture that was specifically designed to treat migraines. The patients in the control group received placebo acupuncture (needle insertion at non-acupoint locations). 24 hours after patients received acupuncture, they were asked if they were pain free. What are the explanatory and response variables in this study?
- 1.8 Sinusitis and antibiotics, Part II. Exercise 1.2 introduced a study exploring the effect of antibiotic treatment for acute sinusitis. Study participants either received either a 10-day course of an antibiotic (treatment) or a placebo similar in appearance and taste (control). At the end of the 10-day period, patients were asked if they experienced improvement in symptoms. What are the explanatory and response variables in this study?
- 1.9 Fisher's irises. Sir Ronald Aylmer Fisher was an English statistician, evolutionary biologist, and geneticist who worked on a data set that contained sepal length and width, and petal length and width from three species of iris flowers (setosa, versicolor and virginica). There were 50 flowers from each species in the data set. 14
- (a) How many cases were included in the data?
- (b) How many numerical variables are included in the data? Indicate what they are, and if they are continuous or discrete.
- (c) How many categorical variables are included in the data, and what are they? List the corresponding levels (categories).

Photo by Ryan Claussen (http://flic.kr/p/6QTcuX) CC BY-SA 2.0 license

1.10 Smoking habits of UK residents. A survey was conducted to study the smoking habits of UK residents. Below is a data matrix displaying a portion of the data collected in this survey. Note that " \mathcal{L} " stands for British Pounds Sterling, "cig" stands for cigarettes, and "N/A" refers to a missing component of the data. ¹⁵

	sex	age	marital	grossIncome	smoke	amtWeekends	amtWeekdays
1	Female	42	Single	Under £2,600	Yes	12 cig/day	12 cig/day
2	Male	44	Single	£10,400 to £15,600	No	N/A	N/A
3	Male	53	Married	Above £36,400	Yes	6 cig/day	6 cig/day
	•			•	•	•	•
	•	•	•	•	•	•	•
1691	Male	40	Single	£2,600 to £5,200	Yes	8 cig/day	8 cig/day

- (a) What does each row of the data matrix represent?
- (b) How many participants were included in the survey?
- (c) Indicate whether each variable in the study is numerical or categorical. If numerical, identify as continuous or discrete. If categorical, indicate if the variable is ordinal.


 $^{^{13}}$ P.K. Piff et al. "Higher social class predicts increased unethical behavior". In: *Proceedings of the National Academy of Sciences* (2012).

¹⁴R.A Fisher. "The Use of Multiple Measurements in Taxonomic Problems". In: Annals of Eugenics 7 (1936), pp. 179–188.

¹⁵National STEM Centre, Large Datasets from stats4schools.

1.2. DATA BASICS 21

1.11 US Airports. The visualization below shows the geographical distribution of airports in the contiguous United States and Washington, DC. This visualization was constructed based on a dataset where each observation is an airport.¹⁶

- (a) List the variables used in creating this visualization.
- (b) Indicate whether each variable in the study is numerical or categorical. If numerical, identify as continuous or discrete. If categorical, indicate if the variable is ordinal.

1.12 UN Votes. The visualization below shows voting patterns in the United States, Canada, and Mexico in the United Nations General Assembly on a variety of issues. Specifically, for a given year between 1946 and 2015, it displays the percentage of roll calls in which the country voted yes for each issue. This visualization was constructed based on a dataset where each observation is a country/year pair.¹⁷

- (a) List the variables used in creating this visualization.
- (b) Indicate whether each variable in the study is numerical or categorical. If numerical, identify as continuous or discrete. If categorical, indicate if the variable is ordinal.

¹⁶Federal Aviation Administration, www.faa.gov/airports/airport_safety/airportdata_5010.

 $^{^{17}}$ David Robinson. unvotes: United Nations General Assembly Voting Data. R package version 0.2.0. 2017. URL: https://CRAN.R-project.org/package=unvotes.

1.3 Sampling principles and strategies

The first step in conducting research is to identify topics or questions that are to be investigated. A clearly laid out research question is helpful in identifying what subjects or cases should be studied and what variables are important. It is also important to consider *how* data are collected so that they are reliable and help achieve the research goals.

1.3.1 Populations and samples

Consider the following three research questions:

- 1. What is the average mercury content in swordfish in the Atlantic Ocean?
- 2. Over the last 5 years, what is the average time to complete a degree for Duke undergrads?
- 3. Does a new drug reduce the number of deaths in patients with severe heart disease?

Each research question refers to a target **population**. In the first question, the target population is all swordfish in the Atlantic ocean, and each fish represents a case. Often times, it is too expensive to collect data for every case in a population. Instead, a sample is taken. A **sample** represents a subset of the cases and is often a small fraction of the population. For instance, 60 swordfish (or some other number) in the population might be selected, and this sample data may be used to provide an estimate of the population average and answer the research question.

GUIDED PRACTICE 1.9

For the second and third questions above, identify the target population and what represents an individual case. 18

1.3.2 Anecdotal evidence

Consider the following possible responses to the three research questions:

- 1. A man on the news got mercury poisoning from eating swordfish, so the average mercury concentration in swordfish must be dangerously high.
- 2. I met two students who took more than 7 years to graduate from Duke, so it must take longer to graduate at Duke than at many other colleges.
- 3. My friend's dad had a heart attack and died after they gave him a new heart disease drug, so the drug must not work.

Each conclusion is based on data. However, there are two problems. First, the data only represent one or two cases. Second, and more importantly, it is unclear whether these cases are actually representative of the population. Data collected in this haphazard fashion are called **anecdotal evidence**.

ANECDOTAL EVIDENCE

Be careful of data collected in a haphazard fashion. Such evidence may be true and verifiable, but it may only represent extraordinary cases.

¹⁸(2) The first question is only relevant to students who complete their degree; the average cannot be computed using a student who never finished her degree. Thus, only Duke undergrads who graduated in the last five years represent cases in the population under consideration. Each such student is an individual case. (3) A person with severe heart disease represents a case. The population includes all people with severe heart disease.

Figure 1.10: In February 2010, some media pundits cited one large snow storm as valid evidence against global warming. As comedian Jon Stewart pointed out, "It's one storm, in one region, of one country."

Anecdotal evidence typically is composed of unusual cases that we recall based on their striking characteristics. For instance, we are more likely to remember the two people we met who took 7 years to graduate than the six others who graduated in four years. Instead of looking at the most unusual cases, we should examine a sample of many cases that represent the population.

1.3.3 Sampling from a population

We might try to estimate the time to graduation for Duke undergraduates in the last 5 years by collecting a sample of students. All graduates in the last 5 years represent the *population*, and graduates who are selected for review are collectively called the *sample*. In general, we always seek to *randomly* select a sample from a population. The most basic type of random selection is equivalent to how raffles are conducted. For example, in selecting graduates, we could write each graduate's name on a raffle ticket and draw 100 tickets. The selected names would represent a random sample of 100 graduates. We pick samples randomly to reduce the chance we introduce biases.

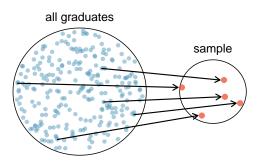


Figure 1.11: In this graphic, five graduates are randomly selected from the population to be included in the sample.

EXAMPLE 1.10

(E)

Suppose we ask a student who happens to be majoring in nutrition to select several graduates for the study. What kind of students do you think she might collect? Do you think her sample would be representative of all graduates?

Perhaps she would pick a disproportionate number of graduates from health-related fields. Or perhaps her selection would be a good representation of the population. When selecting samples by hand, we run the risk of picking a **biased** sample, even if their bias isn't intended.

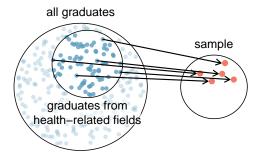


Figure 1.12: Asked to pick a sample of graduates, a nutrition major might inadvertently pick a disproportionate number of graduates from health-related majors.

If someone was permitted to pick and choose exactly which graduates were included in the sample, it is entirely possible that the sample could be skewed to that person's interests, which may be entirely unintentional. This introduces **bias** into a sample. Sampling randomly helps resolve this problem. The most basic random sample is called a **simple random sample**, and which is equivalent to using a raffle to select cases. This means that each case in the population has an equal chance of being included and there is no implied connection between the cases in the sample.

The act of taking a simple random sample helps minimize bias. However, bias can crop up in other ways. Even when people are picked at random, e.g. for surveys, caution must be exercised if the **non-response rate** is high. For instance, if only 30% of the people randomly sampled for a survey actually respond, then it is unclear whether the results are **representative** of the entire population. This **non-response bias** can skew results.

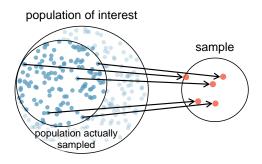


Figure 1.13: Due to the possibility of non-response, surveys studies may only reach a certain group within the population. It is difficult, and often times impossible, to completely fix this problem.

Another common downfall is a **convenience sample**, where individuals who are easily accessible are more likely to be included in the sample. For instance, if a political survey is done by stopping people walking in the Bronx, this will not represent all of New York City. It is often difficult to discern what sub-population a convenience sample represents.

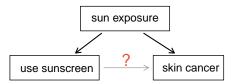
GUIDED PRACTICE 1.11

G

We can easily access ratings for products, sellers, and companies through websites. These ratings are based only on those people who go out of their way to provide a rating. If 50% of online reviews for a product are negative, do you think this means that 50% of buyers are dissatisfied with the product?

¹⁹Answers will vary. From our own anecdotal experiences, we believe people tend to rant more about products that fell below expectations than rave about those that perform as expected. For this reason, we suspect there is a negative bias in product ratings on sites like Amazon. However, since our experiences may not be representative, we also keep an open mind.

1.3.4 Observational studies


Data where no treatment has been explicitly applied (or explicitly withheld) is called **observational data**. For instance, the loan data and county data described in Section 1.2 are both examples of observational data. Making causal conclusions based on experiments is often reasonable. However, making the same causal conclusions based on observational data can be treacherous and is not recommended. Thus, observational studies are generally only sufficient to show associations or form hypotheses that we later check using experiments.

GUIDED PRACTICE 1.12

Suppose an observational study tracked sunscreen use and skin cancer, and it was found that the more sunscreen someone used, the more likely the person was to have skin cancer. Does this mean sunscreen causes skin cancer?²⁰

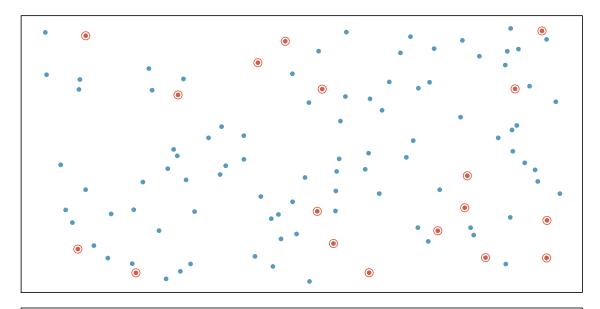
Some previous research tells us that using sunscreen actually reduces skin cancer risk, so maybe there is another variable that can explain this hypothetical association between sunscreen usage and skin cancer. One important piece of information that is absent is sun exposure. If someone is out in the sun all day, she is more likely to use sunscreen *and* more likely to get skin cancer. Exposure to the sun is unaccounted for in the simple investigation.

Sun exposure is what is called a **confounding variable**,²¹ which is a variable that is correlated with both the explanatory and response variables. While one method to justify making causal conclusions from observational studies is to exhaust the search for confounding variables, there is no guarantee that all confounding variables can be examined or measured.

GUIDED PRACTICE 1.13

Figure 1.8 shows a negative association between the homeownership rate and the percentage of multiunit structures in a county. However, it is unreasonable to conclude that there is a causal relationship between the two variables. Suggest a variable that might explain the negative relationship.²²

Observational studies come in two forms: prospective and retrospective studies. A **prospective study** identifies individuals and collects information as events unfold. For instance, medical researchers may identify and follow a group of patients over many years to assess the possible influences of behavior on cancer risk. One example of such a study is The Nurses' Health Study, started in 1976 and expanded in 1989. This prospective study recruits registered nurses and then collects data from them using questionnaires. **Retrospective studies** collect data after events have taken place, e.g. researchers may review past events in medical records. Some data sets may contain both prospectively- and retrospectively-collected variables.


1.3.5 Four sampling methods

Almost all statistical methods are based on the notion of implied randomness. If observational data are not collected in a random framework from a population, these statistical methods – the estimates and errors associated with the estimates – are not reliable. Here we consider four random sampling techniques: simple, stratified, cluster, and multistage sampling. Figures 1.14 and 1.15 provide graphical representations of these techniques.

 $^{^{20}}$ No. See the paragraph following the exercise for an explanation.

²¹Also called a lurking variable, confounding factor, or a confounder.

²²Answers will vary. Population density may be important. If a county is very dense, then this may require a larger fraction of residents to live in multi-unit structures. Additionally, the high density may contribute to increases in property value, making homeownership infeasible for many residents.

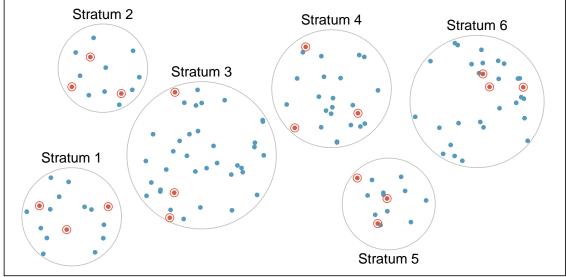


Figure 1.14: Examples of simple random and stratified sampling. In the top panel, simple random sampling was used to randomly select the 18 cases. In the bottom panel, stratified sampling was used: cases were grouped into strata, then simple random sampling was employed within each stratum.

Simple random sampling is probably the most intuitive form of random sampling. Consider the salaries of Major League Baseball (MLB) players, where each player is a member of one of the league's 30 teams. To take a simple random sample of 120 baseball players and their salaries, we could write the names of that season's several hundreds of players onto slips of paper, drop the slips into a bucket, shake the bucket around until we are sure the names are all mixed up, then draw out slips until we have the sample of 120 players. In general, a sample is referred to as "simple random" if each case in the population has an equal chance of being included in the final sample and knowing that a case is included in a sample does not provide useful information about which other cases are included.

Stratified sampling is a divide-and-conquer sampling strategy. The population is divided into groups called **strata**. The strata are chosen so that similar cases are grouped together, then a second sampling method, usually simple random sampling, is employed within each stratum. In the baseball salary example, the teams could represent the strata, since some teams have a lot more money (up to 4 times as much!). Then we might randomly sample 4 players from each team for a total of 120 players.

Stratified sampling is especially useful when the cases in each stratum are very similar with respect to the outcome of interest. The downside is that analyzing data from a stratified sample is a more complex task than analyzing data from a simple random sample. The analysis methods introduced in this book would need to be extended to analyze data collected using stratified sampling.

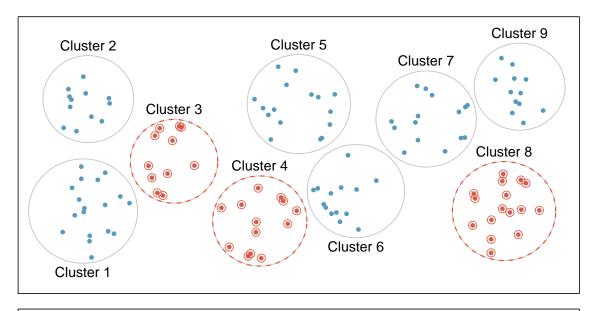
EXAMPLE 1.14

Why would it be good for cases within each stratum to be very similar?

E

We might get a more stable estimate for the subpopulation in a stratum if the cases are very similar, leading to more precise estimates within each group. When we combine these estimates into a single estimate for the full population, that population estimate will tend to be more precise since each individual group estimate is itself more precise.

In a **cluster sample**, we break up the population into many groups, called **clusters**. Then we sample a fixed number of clusters and include all observations from each of those clusters in the sample. A **multistage sample** is like a cluster sample, but rather than keeping all observations in each cluster, we collect a random sample within each selected cluster.


Sometimes cluster or multistage sampling can be more economical than the alternative sampling techniques. Also, unlike stratified sampling, these approaches are most helpful when there is a lot of case-to-case variability within a cluster but the clusters themselves don't look very different from one another. For example, if neighborhoods represented clusters, then cluster or multistage sampling work best when the neighborhoods are very diverse. A downside of these methods is that more advanced techniques are typically required to analyze the data, though the methods in this book can be extended to handle such data.

EXAMPLE 1.15

Suppose we are interested in estimating the malaria rate in a densely tropical portion of rural Indonesia. We learn that there are 30 villages in that part of the Indonesian jungle, each more or less similar to the next. Our goal is to test 150 individuals for malaria. What sampling method should be employed?

A simple random sample would likely draw individuals from all 30 villages, which could make data collection extremely expensive. Stratified sampling would be a challenge since it is unclear how we would build strata of similar individuals. However, cluster sampling or multistage sampling seem like very good ideas. If we decided to use multistage sampling, we might randomly select half of the villages, then randomly select 10 people from each. This would probably reduce our data collection costs substantially in comparison to a simple random sample, and the cluster sample would still give us reliable information, even if we would need to analyze the data with slightly more advanced methods than we discuss in this book.

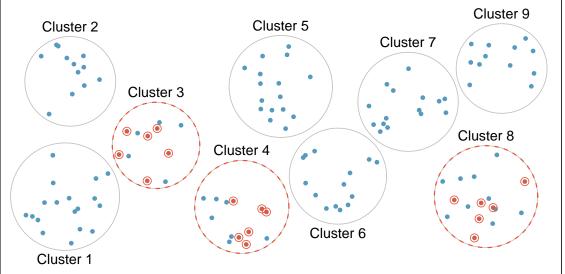
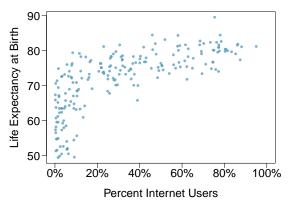



Figure 1.15: Examples of cluster and multistage sampling. In the top panel, cluster sampling was used: data were binned into nine clusters, three of these clusters were sampled, and all observations within these three cluster were included in the sample. In the bottom panel, multistage sampling was used, which differs from cluster sampling only in that we randomly select a subset of each cluster to be included in the sample rather than measuring every case in each sampled cluster.

Exercises

- 1.13 Air pollution and birth outcomes, scope of inference. Exercise 1.3 introduces a study where researchers collected data to examine the relationship between air pollutants and preterm births in Southern California. During the study air pollution levels were measured by air quality monitoring stations. Length of gestation data were collected on 143,196 births between the years 1989 and 1993, and air pollution exposure during gestation was calculated for each birth.
- (a) Identify the population of interest and the sample in this study.
- (b) Comment on whether or not the results of the study can be generalized to the population, and if the findings of the study can be used to establish causal relationships.
- 1.14 Cheaters, scope of inference. Exercise 1.5 introduces a study where researchers studying the relationship between honesty, age, and self-control conducted an experiment on 160 children between the ages of 5 and 15. The researchers asked each child to toss a fair coin in private and to record the outcome (white or black) on a paper sheet, and said they would only reward children who report white. Half the students were explicitly told not to cheat and the others were not given any explicit instructions. Differences were observed in the cheating rates in the instruction and no instruction groups, as well as some differences across children's characteristics within each group.
- (a) Identify the population of interest and the sample in this study.
- (b) Comment on whether or not the results of the study can be generalized to the population, and if the findings of the study can be used to establish causal relationships.
- 1.15 Buteyko method, scope of inference. Exercise 1.4 introduces a study on using the Buteyko shallow breathing technique to reduce asthma symptoms and improve quality of life. As part of this study 600 asthma patients aged 18-69 who relied on medication for asthma treatment were recruited and randomly assigned to two groups: one practiced the Buteyko method and the other did not. Those in the Buteyko group experienced, on average, a significant reduction in asthma symptoms and an improvement in quality of life.
- (a) Identify the population of interest and the sample in this study.
- (b) Comment on whether or not the results of the study can be generalized to the population, and if the findings of the study can be used to establish causal relationships.
- 1.16 Stealers, scope of inference. Exercise 1.6 introduces a study on the relationship between socio-economic class and unethical behavior. As part of this study 129 University of California Berkeley undergraduates were asked to identify themselves as having low or high social-class by comparing themselves to others with the most (least) money, most (least) education, and most (least) respected jobs. They were also presented with a jar of individually wrapped candies and informed that the candies were for children in a nearby laboratory, but that they could take some if they wanted. After completing some unrelated tasks, participants reported the number of candies they had taken. It was found that those who were identified as upper-class took more candy than others.
- (a) Identify the population of interest and the sample in this study.
- (b) Comment on whether or not the results of the study can be generalized to the population, and if the findings of the study can be used to establish causal relationships.
- 1.17 Relaxing after work. The General Social Survey asked the question, "After an average work day, about how many hours do you have to relax or pursue activities that you enjoy?" to a random sample of 1,155 Americans. The average relaxing time was found to be 1.65 hours. Determine which of the following is an observation, a variable, a sample statistic (value calculated based on the observed sample), or a population parameter.
- (a) An American in the sample.
- (b) Number of hours spent relaxing after an average work day.
- (c) 1.65.
- (d) Average number of hours all Americans spend relaxing after an average work day.

- 1.18 Cats on YouTube. Suppose you want to estimate the percentage of videos on YouTube that are cat videos. It is impossible for you to watch all videos on YouTube so you use a random video picker to select 1000 videos for you. You find that 2% of these videos are cat videos. Determine which of the following is an observation, a variable, a sample statistic (value calculated based on the observed sample), or a population parameter.
- (a) Percentage of all videos on YouTube that are cat videos.
- (b) 2%.
- (c) A video in your sample.
- (d) Whether or not a video is a cat video.
- 1.19 Course satisfaction across sections. A large college class has 160 students. All 160 students attend the lectures together, but the students are divided into 4 groups, each of 40 students, for lab sections administered by different teaching assistants. The professor wants to conduct a survey about how satisfied the students are with the course, and he believes that the lab section a student is in might affect the student's overall satisfaction with the course.
- (a) What type of study is this?
- (b) Suggest a sampling strategy for carrying out this study.
- 1.20 Housing proposal across dorms. On a large college campus first-year students and sophomores live in dorms located on the eastern part of the campus and juniors and seniors live in dorms located on the western part of the campus. Suppose you want to collect student opinions on a new housing structure the college administration is proposing and you want to make sure your survey equally represents opinions from students from all years.
- (a) What type of study is this?
- (b) Suggest a sampling strategy for carrying out this study.
- 1.21 Internet use and life expectancy. The following scatterplot was created as part of a study evaluating the relationship between estimated life expectancy at birth (as of 2014) and percentage of internet users (as of 2009) in 208 countries for which such data were available. 23
- (a) Describe the relationship between life expectancy and percentage of internet users.
- (b) What type of study is this?
- (c) State a possible confounding variable that might explain this relationship and describe its potential effect.

- 1.22 Stressed out, Part I. A study that surveyed a random sample of otherwise healthy high school students found that they are more likely to get muscle cramps when they are stressed. The study also noted that students drink more coffee and sleep less when they are stressed.
- (a) What type of study is this?
- (b) Can this study be used to conclude a causal relationship between increased stress and muscle cramps?
- (c) State possible confounding variables that might explain the observed relationship between increased stress and muscle cramps.
- 1.23 Evaluate sampling methods. A university wants to determine what fraction of its undergraduate student body support a new \$25 annual fee to improve the student union. For each proposed method below, indicate whether the method is reasonable or not.
- (a) Survey a simple random sample of 500 students.
- (b) Stratify students by their field of study, then sample 10% of students from each stratum.
- (c) Cluster students by their ages (e.g. 18 years old in one cluster, 19 years old in one cluster, etc.), then randomly sample three clusters and survey all students in those clusters.

²³CIA Factbook, Country Comparisons, 2014.

- **1.24** Random digit dialing. The Gallup Poll uses a procedure called random digit dialing, which creates phone numbers based on a list of all area codes in America in conjunction with the associated number of residential households in each area code. Give a possible reason the Gallup Poll chooses to use random digit dialing instead of picking phone numbers from the phone book.
- 1.25 Haters are gonna hate, study confirms. A study published in the Journal of Personality and Social Psychology asked a group of 200 randomly sampled men and women to evaluate how they felt about various subjects, such as camping, health care, architecture, taxidermy, crossword puzzles, and Japan in order to measure their attitude towards mostly independent stimuli. Then, they presented the participants with information about a new product: a microwave oven. This microwave oven does not exist, but the participants didn't know this, and were given three positive and three negative fake reviews. People who reacted positively to the subjects on the dispositional attitude measurement also tended to react positively to the microwave oven, and those who reacted negatively tended to react negatively to it. Researchers concluded that "some people tend to like things, whereas others tend to dislike things, and a more thorough understanding of the psychology of attitudes." ²⁴
- (a) What are the cases?
- (b) What is (are) the response variable(s) in this study?
- (c) What is (are) the explanatory variable(s) in this study?
- (d) Does the study employ random sampling?
- (e) Is this an observational study or an experiment? Explain your reasoning.
- (f) Can we establish a causal link between the explanatory and response variables?
- (g) Can the results of the study be generalized to the population at large?
- 1.26 Family size. Suppose we want to estimate household size, where a "household" is defined as people living together in the same dwelling, and sharing living accommodations. If we select students at random at an elementary school and ask them what their family size is, will this be a good measure of household size? Or will our average be biased? If so, will it overestimate or underestimate the true value?
- 1.27 Sampling strategies. A statistics student who is curious about the relationship between the amount of time students spend on social networking sites and their performance at school decides to conduct a survey. Various research strategies for collecting data are described below. In each, name the sampling method proposed and any bias you might expect.
- (a) He randomly samples 40 students from the study's population, gives them the survey, asks them to fill it out and bring it back the next day.
- (b) He gives out the survey only to his friends, making sure each one of them fills out the survey.
- (c) He posts a link to an online survey on Facebook and asks his friends to fill out the survey.
- (d) He randomly samples 5 classes and asks a random sample of students from those classes to fill out the survey.
- **1.28** Reading the paper. Below are excerpts from two articles published in the *NY Times*:
- (a) An article titled Risks: Smokers Found More Prone to Dementia states the following: ²⁵
 - "Researchers analyzed data from 23,123 health plan members who participated in a voluntary exam and health behavior survey from 1978 to 1985, when they were 50-60 years old. 23 years later, about 25% of the group had dementia, including 1,136 with Alzheimer's disease and 416 with vascular dementia. After adjusting for other factors, the researchers concluded that pack-a-day smokers were 37% more likely than nonsmokers to develop dementia, and the risks went up with increased smoking; 44% for one to two packs a day; and twice the risk for more than two packs."

Based on this study, can we conclude that smoking causes dementia later in life? Explain your reasoning.

- (b) Another article titled *The School Bully Is Sleepy* states the following: ²⁶
 - "The University of Michigan study, collected survey data from parents on each child's sleep habits and asked both parents and teachers to assess behavioral concerns. About a third of the students studied were identified by parents or teachers as having problems with disruptive behavior or bullying. The researchers found that children who had behavioral issues and those who were identified as bullies were twice as likely to have shown symptoms of sleep disorders."

A friend of yours who read the article says, "The study shows that sleep disorders lead to bullying in school children." Is this statement justified? If not, how best can you describe the conclusion that can be drawn from this study?

²⁴Justin Hepler and Dolores Albarracín. "Attitudes without objects - Evidence for a dispositional attitude, its measurement, and its consequences". In: *Journal of personality and social psychology* 104.6 (2013), p. 1060.

²⁵R.C. Rabin. "Risks: Smokers Found More Prone to Dementia". In: New York Times (2010).

²⁶T. Parker-Pope. "The School Bully Is Sleepy". In: New York Times (2011).

1.4 Experiments

Studies where the researchers assign treatments to cases are called **experiments**. When this assignment includes randomization, e.g. using a coin flip to decide which treatment a patient receives, it is called a **randomized experiment**. Randomized experiments are fundamentally important when trying to show a causal connection between two variables.

1.4.1 Principles of experimental design

Randomized experiments are generally built on four principles.

Controlling. Researchers assign treatments to cases, and they do their best to control any other differences in the groups.²⁷ For example, when patients take a drug in pill form, some patients take the pill with only a sip of water while others may have it with an entire glass of water. To control for the effect of water consumption, a doctor may ask all patients to drink a 12 ounce glass of water with the pill.

Randomization. Researchers randomize patients into treatment groups to account for variables that cannot be controlled. For example, some patients may be more susceptible to a disease than others due to their dietary habits. Randomizing patients into the treatment or control group helps even out such differences, and it also prevents accidental bias from entering the study.

Replication. The more cases researchers observe, the more accurately they can estimate the effect of the explanatory variable on the response. In a single study, we **replicate** by collecting a sufficiently large sample. Additionally, a group of scientists may replicate an entire study to verify an earlier finding.

Blocking. Researchers sometimes know or suspect that variables, other than the treatment, influence the response. Under these circumstances, they may first group individuals based on this variable into blocks and then randomize cases within each block to the treatment groups. This strategy is often referred to as blocking. For instance, if we are looking at the effect of a drug on heart attacks, we might first split patients in the study into low-risk and high-risk blocks, then randomly assign half the patients from each block to the control group and the other half to the treatment group, as shown in Figure 1.16. This strategy ensures each treatment group has an equal number of low-risk and high-risk patients.

It is important to incorporate the first three experimental design principles into any study, and this book describes applicable methods for analyzing data from such experiments. Blocking is a slightly more advanced technique, and statistical methods in this book may be extended to analyze data collected using blocking.

1.4.2 Reducing bias in human experiments

Randomized experiments are the gold standard for data collection, but they do not ensure an unbiased perspective into the cause and effect relationship in all cases. Human studies are perfect examples where bias can unintentionally arise. Here we reconsider a study where a new drug was used to treat heart attack patients. In particular, researchers wanted to know if the drug reduced deaths in patients.

These researchers designed a randomized experiment because they wanted to draw causal conclusions about the drug's effect. Study volunteers²⁸ were randomly placed into two study groups. One group, the **treatment group**, received the drug. The other group, called the **control group**, did not receive any drug treatment.

 $^{^{27}}$ This is a different concept than a *control group*, which we discuss in the second principle and in Section 1.4.2.

²⁸Human subjects are often called **patients**, **volunteers**, or **study participants**.

1.4. EXPERIMENTS 33

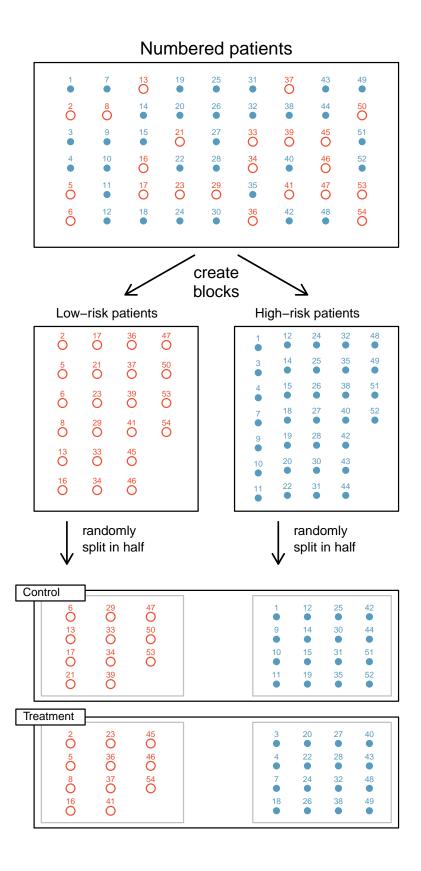


Figure 1.16: Blocking using a variable depicting patient risk. Patients are first divided into low-risk and high-risk blocks, then each block is evenly separated into the treatment groups using randomization. This strategy ensures an equal representation of patients in each treatment group from both the low-risk and high-risk categories.

Put yourself in the place of a person in the study. If you are in the treatment group, you are given a fancy new drug that you anticipate will help you. On the other hand, a person in the other group doesn't receive the drug and sits idly, hoping her participation doesn't increase her risk of death. These perspectives suggest there are actually two effects: the one of interest is the effectiveness of the drug, and the second is an emotional effect that is difficult to quantify.

Researchers aren't usually interested in the emotional effect, which might bias the study. To circumvent this problem, researchers do not want patients to know which group they are in. When researchers keep the patients uninformed about their treatment, the study is said to be blind. But there is one problem: if a patient doesn't receive a treatment, she will know she is in the control group. The solution to this problem is to give fake treatments to patients in the control group. A fake treatment is called a **placebo**, and an effective placebo is the key to making a study truly blind. A classic example of a placebo is a sugar pill that is made to look like the actual treatment pill. Often times, a placebo results in a slight but real improvement in patients. This effect has been dubbed the **placebo effect**.

The patients are not the only ones who should be blinded: doctors and researchers can accidentally bias a study. When a doctor knows a patient has been given the real treatment, she might inadvertently give that patient more attention or care than a patient that she knows is on the placebo. To guard against this bias, which again has been found to have a measurable effect in some instances, most modern studies employ a double-blind setup where doctors or researchers who interact with patients are, just like the patients, unaware of who is or is not receiving the treatment.²⁹

GUIDED PRACTICE 1.16

Look back to the study in Section 1.1 where researchers were testing whether stents were effective at reducing strokes in at-risk patients. Is this an experiment? Was the study blinded? Was it double-blinded?³⁰

GUIDED PRACTICE 1.17

For the study in Section 1.1, could the researchers have employed a placebo? If so, what would that placebo have looked like?³¹

You may have many questions about the ethics of sham surgeries to create a placebo after reading Guided Practice 1.17. These questions may have even arisen in your mind when in the general experiment context, where a possibly helpful treatment was withheld from individuals in the control group; the main difference is that a sham surgery tends to create additional risk, while withholding a treatment only maintains a person's risk.

There are always multiple viewpoints of experiments and placebos, and rarely is it obvious which is ethically "correct". For instance, is it ethical to use a sham surgery when it creates a risk to the patient? However, if we don't use sham surgeries, we may promote the use of a costly treatment that has no real effect; if this happens, money and other resources will be diverted away from other treatments that are known to be helpful. Ultimately, this is a difficult situation where we cannot perfectly protect both the patients who have volunteered for the study and the patients who may benefit (or not) from the treatment in the future.

²⁹There are always some researchers involved in the study who do know which patients are receiving which treatment. However, they do not interact with the study's patients and do not tell the blinded health care professionals who is receiving which treatment.

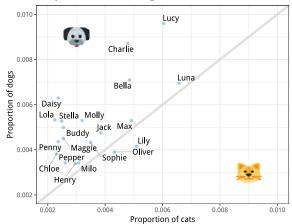
³⁰The researchers assigned the patients into their treatment groups, so this study was an experiment. However, the patients could distinguish what treatment they received, so this study was not blind. The study could not be double-blind since it was not blind.

³¹Ultimately, can we make patients think they got treated from a surgery? In fact, we can, and some experiments use what's called a sham surgery. In a sham surgery, the patient does undergo surgery, but the patient does not receive the full treatment, though they will still get a placebo effect.

1.4. EXPERIMENTS 35

Exercises

1.29 Light and exam performance. A study is designed to test the effect of light level on exam performance of students. The researcher believes that light levels might have different effects on males and females, so wants to make sure both are equally represented in each treatment. The treatments are fluorescent overhead lighting, yellow overhead lighting, no overhead lighting (only desk lamps).


- (a) What is the response variable?
- (b) What is the explanatory variable? What are its levels?
- (c) What is the blocking variable? What are its levels?
- 1.30 Vitamin supplements. To assess the effectiveness of taking large doses of vitamin C in reducing the duration of the common cold, researchers recruited 400 healthy volunteers from staff and students at a university. A quarter of the patients were assigned a placebo, and the rest were evenly divided between 1g Vitamin C, 3g Vitamin C, or 3g Vitamin C plus additives to be taken at onset of a cold for the following two days. All tablets had identical appearance and packaging. The nurses who handed the prescribed pills to the patients knew which patient received which treatment, but the researchers assessing the patients when they were sick did not. No significant differences were observed in any measure of cold duration or severity between the four groups, and the placebo group had the shortest duration of symptoms.³²
- (a) Was this an experiment or an observational study? Why?
- (b) What are the explanatory and response variables in this study?
- (c) Were the patients blinded to their treatment?
- (d) Was this study double-blind?
- (e) Participants are ultimately able to choose whether or not to use the pills prescribed to them. We might expect that not all of them will adhere and take their pills. Does this introduce a confounding variable to the study? Explain your reasoning.
- 1.31 Light, noise, and exam performance. A study is designed to test the effect of light level and noise level on exam performance of students. The researcher believes that light and noise levels might have different effects on males and females, so wants to make sure both are equally represented in each treatment. The light treatments considered are fluorescent overhead lighting, yellow overhead lighting, no overhead lighting (only desk lamps). The noise treatments considered are no noise, construction noise, and human chatter noise.
- (a) What type of study is this?
- (b) How many factors are considered in this study? Identify them, and describe their levels.
- (c) What is the role of the sex variable in this study?
- **1.32** Music and learning. You would like to conduct an experiment in class to see if students learn better if they study without any music, with music that has no lyrics (instrumental), or with music that has lyrics. Briefly outline a design for this study.
- **1.33** Soda preference. You would like to conduct an experiment in class to see if your classmates prefer the taste of regular Coke or Diet Coke. Briefly outline a design for this study.
- **1.34** Exercise and mental health. A researcher is interested in the effects of exercise on mental health and he proposes the following study: Use stratified random sampling to ensure representative proportions of 18-30, 31-40 and 41-55 year olds from the population. Next, randomly assign half the subjects from each age group to exercise twice a week, and instruct the rest not to exercise. Conduct a mental health exam at the beginning and at the end of the study, and compare the results.
- (a) What type of study is this?
- (b) What are the treatment and control groups in this study?
- (c) Does this study make use of blocking? If so, what is the blocking variable?
- (d) Does this study make use of blinding?
- (e) Comment on whether or not the results of the study can be used to establish a causal relationship between exercise and mental health, and indicate whether or not the conclusions can be generalized to the population at large.
- (f) Suppose you are given the task of determining if this proposed study should get funding. Would you have any reservations about the study proposal?

³²C. Audera et al. "Mega-dose vitamin C in treatment of the common cold: a randomised controlled trial". In: *Medical Journal of Australia* 175.7 (2001), pp. 359–362.

Chapter exercises

1.35 Pet names. The city of Seattle, WA has an open data portal that includes pets registered in the city. For each registered pet, we have information on the pet's name and species. The following visualization plots the proportion of dogs with a given name versus the proportion of cats with the same name. The 20 most common cat and dog names are displayed. The diagonal line on the plot is the x = y line; if a name appeared on this line, the name's popularity would be exactly the same for dogs and cats.

- (a) Are these data collected as part of an experiment or an observational study?
- (b) What is the most common dog name? What is the most common cat name?
- (c) What names are more common for cats than dogs?
- (d) Is the relationship between the two variables positive or negative? What does this mean in context of the data?

1.36 Stressed out, Part II. In a study evaluating the relationship between stress and muscle cramps, half the subjects are randomly assigned to be exposed to increased stress by being placed into an elevator that falls rapidly and stops abruptly and the other half are left at no or baseline stress.

- (a) What type of study is this?
- (b) Can this study be used to conclude a causal relationship between increased stress and muscle cramps?

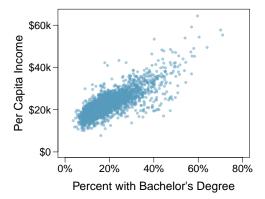
1.37 Chia seeds and weight loss. Chia Pets – those terra-cotta figurines that sprout fuzzy green hair – made the chia plant a household name. But chia has gained an entirely new reputation as a diet supplement. In one 2009 study, a team of researchers recruited 38 men and divided them randomly into two groups: treatment or control. They also recruited 38 women, and they randomly placed half of these participants into the treatment group and the other half into the control group. One group was given 25 grams of chia seeds twice a day, and the other was given a placebo. The subjects volunteered to be a part of the study. After 12 weeks, the scientists found no significant difference between the groups in appetite or weight loss. 33

- (a) What type of study is this?
- (b) What are the experimental and control treatments in this study?
- (c) Has blocking been used in this study? If so, what is the blocking variable?
- (d) Has blinding been used in this study?
- (e) Comment on whether or not we can make a causal statement, and indicate whether or not we can generalize the conclusion to the population at large.

1.38 City council survey. A city council has requested a household survey be conducted in a suburban area of their city. The area is broken into many distinct and unique neighborhoods, some including large homes, some with only apartments, and others a diverse mixture of housing structures. For each part below, identify the sampling methods described, and describe the statistical pros and cons of the method in the city's context.

- (a) Randomly sample 200 households from the city.
- (b) Divide the city into 20 neighborhoods, and sample 10 households from each neighborhood.
- (c) Divide the city into 20 neighborhoods, randomly sample 3 neighborhoods, and then sample all households from those 3 neighborhoods.
- (d) Divide the city into 20 neighborhoods, randomly sample 8 neighborhoods, and then randomly sample 50 households from those neighborhoods.
- (e) Sample the 200 households closest to the city council offices.

³³D.C. Nieman et al. "Chia seed does not promote weight loss or alter disease risk factors in overweight adults".
In: Nutrition Research 29.6 (2009), pp. 414–418.


1.4. EXPERIMENTS 37

1.39 Flawed reasoning. Identify the flaw(s) in reasoning in the following scenarios. Explain what the individuals in the study should have done differently if they wanted to make such strong conclusions.

- (a) Students at an elementary school are given a questionnaire that they are asked to return after their parents have completed it. One of the questions asked is, "Do you find that your work schedule makes it difficult for you to spend time with your kids after school?" Of the parents who replied, 85% said "no". Based on these results, the school officials conclude that a great majority of the parents have no difficulty spending time with their kids after school.
- (b) A survey is conducted on a simple random sample of 1,000 women who recently gave birth, asking them about whether or not they smoked during pregnancy. A follow-up survey asking if the children have respiratory problems is conducted 3 years later. However, only 567 of these women are reached at the same address. The researcher reports that these 567 women are representative of all mothers.
- (c) An orthopedist administers a questionnaire to 30 of his patients who do not have any joint problems and finds that 20 of them regularly go running. He concludes that running decreases the risk of joint problems.

1.40 Income and education in US counties. The scatterplot below shows the relationship between per capita income (in thousands of dollars) and percent of population with a bachelor's degree in 3,143 counties in the US in 2010.

- (a) What are the explanatory and response variables?
- (b) Describe the relationship between the two variables. Make sure to discuss unusual observations, if any.
- (c) Can we conclude that having a bachelor's degree increases one's income?

1.41 Eat better, feel better? In a public health study on the effects of consumption of fruits and vegetables on psychological well-being in young adults, participants were randomly assigned to three groups: (1) dietas-usual, (2) an ecological momentary intervention involving text message reminders to increase their fruits and vegetable consumption plus a voucher to purchase them, or (3) a fruit and vegetable intervention in which participants were given two additional daily servings of fresh fruits and vegetables to consume on top of their normal diet. Participants were asked to take a nightly survey on their smartphones. Participants were student volunteers at the University of Otago, New Zealand. At the end of the 14-day study, only participants in the third group showed improvements to their psychological well-being across the 14-days relative to the other groups.³⁴

- (a) What type of study is this?
- (b) Identify the explanatory and response variables.
- (c) Comment on whether the results of the study can be generalized to the population.
- (d) Comment on whether the results of the study can be used to establish causal relationships.
- (e) A newspaper article reporting on the study states, "The results of this study provide proof that giving young adults fresh fruits and vegetables to eat can have psychological benefits, even over a brief period of time." How would you suggest revising this statement so that it can be supported by the study?

³⁴Tamlin S Conner et al. "Let them eat fruit! The effect of fruit and vegetable consumption on psychological well-being in young adults: A randomized controlled trial". In: *PloS one* 12.2 (2017), e0171206.

- 1.42 Screens, teens, and psychological well-being. In a study of three nationally representative large-scale data sets from Ireland, the United States, and the United Kingdom (n = 17,247), teenagers between the ages of 12 to 15 were asked to keep a diary of their screen time and answer questions about how they felt or acted. The answers to these questions were then used to compute a psychological well-being score. Additional data were collected and included in the analysis, such as each child's sex and age, and on the mother's education, ethnicity, psychological distress, and employment. The study concluded that there is little clear-cut evidence that screen time decreases adolescent well-being.³⁵
- (a) What type of study is this?
- (b) Identify the explanatory variables.
- (c) Identify the response variable.
- (d) Comment on whether the results of the study can be generalized to the population, and why.
- (e) Comment on whether the results of the study can be used to establish causal relationships.

1.43 Stanford Open Policing. The Stanford Open Policing project gathers, analyzes, and releases records from traffic stops by law enforcement agencies across the United States. Their goal is to help researchers, journalists, and policymakers investigate and improve interactions between police and the public. ³⁶ The following is an excerpt from a summary table created based off of the data collected as part of this project.

		Driver's	No. of stops	% of	stopped
County	State	race	per year	cars searched	drivers arrested
Apaice County	Arizona	Black	266	0.08	0.02
Apaice County	Arizona	Hispanic	1008	0.05	0.02
Apaice County	Arizona	White	6322	0.02	0.01
Cochise County	Arizona	Black	1169	0.05	0.01
Cochise County	Arizona	Hispanic	9453	0.04	0.01
Cochise County	Arizona	White	10826	0.02	0.01
			• • •		
Wood County	Wisconsin	Black	16	0.24	0.10
Wood County	Wisconsin	Hispanic	27	0.04	0.03
Wood County	Wisconsin	White	1157	0.03	0.03

- (a) What variables were collected on each individual traffic stop in order to create to the summary table above?
- (b) State whether each variable is numerical or categorical. If numerical, state whether it is continuous or discrete. If categorical, state whether it is ordinal or not.
- (c) Suppose we wanted to evaluate whether vehicle search rates are different for drivers of different races. In this analysis, which variable would be the response variable and which variable would be the explanatory variable?

1.44 Space launches. The following summary table shows the number of space launches in the US by the type of launching agency and the outcome of the launch (success or failure).³⁷

	1957	- 1999	2000	- 2018
	Failure	Success	Failure	Success
Private	13	295	10	562
State	281	3751	33	711
Startup	-	-	5	65

- (a) What variables were collected on each launch in order to create to the summary table above?
- (b) State whether each variable is numerical or categorical. If numerical, state whether it is continuous or discrete. If categorical, state whether it is ordinal or not.
- (c) Suppose we wanted to study how the success rate of launches vary between launching agencies and over time. In this analysis, which variable would be the response variable and which variable would be the explanatory variable?

³⁵Amy Orben and AK Baukney-Przybylski. "Screens, Teens and Psychological Well-Being: Evidence from three time-use diary studies". In: *Psychological Science* (2018).

³⁶Emma Pierson et al. "A large-scale analysis of racial disparities in police stops across the United States". In: arXiv preprint arXiv:1706.05678 (2017).

³⁷JSR Launch Vehicle Database, A comprehensive list of suborbital space launches, 2019 Feb 10 Edition.