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146  SENTENTIAL LOGIC: DERIVATIONS

Chapter 5

In Section 5.1 we introduce the derivation system SD and the concept of a 
derivation. In Section 5.2 we introduce syntactic analogues of core logical 
concepts: derivable in SD, valid in SD, theorem in SD, equivalent in SD, and 
inconsistent in SD. Section 5.3 is devoted to developing strategies for con-
structing derivations in SD, and Section 5.4 introduces the derivation system 
SD�, which is an expansion of SD.

SENTENTIAL LOGIC: 
DERIVATIONS

 5.1 THE DERIVATION SYSTEM SD

In Chapter 3 we presented semantic accounts of consistency, validity, equiva-
lence, entailment, logical truth, and logical falsity. The semantic truth-table and 
truth-tree tests we developed for these properties in Chapters 3 and 4 show 
whether there is or is not a truth-value assignment of a particular kind for a 
particular sentence or group of sentences. These test procedures can hardly be 
said to refl ect the reasoning we do in everyday discourse when we are trying 
to show, for example, that an argument is valid or that a set of sentences is 
inconsistent. In this chapter we develop techniques that do, at least in broad 
outline, parallel the kind of reasoning we do make use of in everyday discourse. 
These techniques rely on the form or structure of sentences of SL and are 
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5.1 THE DERIVATION SYSTEM SD  147

not intended to reveal whether there is or is not a truth-value assignment of a 
certain sort. These are therefore syntactic techniques.

Consider the following argument:

If Marshall survives the current scandal and if her opponent doesn’t 
outspend her then Marshall will be reelected. If it continues to be poli-
tics as usual Marshall will survive the latest scandal. The scandal is no 
longer front page news, so it is going to be politics as usual. Marshall’s 
opponent will not outspend her. So Marshall will be reelected.

How might we, in everyday discourse, convince ourselves that the foregoing 
argument is valid? We will start by providing an explicit paraphrase of the 
premises and conclusion of this argument:

If (Marshall will survive the current scandal and it is not the case 
that Marshall’s opponent outspends Marshall) then Marshall will be 
reelected.

If it continues to be politics as usual then Marshall will survive the 
current scandal.

It is not the case that the scandal is still front page news and it 
 continues to be politics as usual.

It is not the case that Marshall’s opponent outspends Marshall.

Marshall will be reelected.

Note that we paraphrased the third premise as a conjunction. The task before 
us is to show that starting with the premises as assumptions we can, by a series 
of obvious inferences, reach the conclusion. We can do this as follows.

1 If (Marshall will survive the current
scandal and it is not the case that
Marshall’s opponent outspends Marshall)
then Marshall will be reelected. Assumption

2 If it continues to be politics as usual
then Marshall will survive the current
scandal. Assumption

3 It is not the case that the scandal is
still front page news and it continues
to be politics as usual. Assumption

4 It is not the case that Marshall’s
opponent outspends Marshall. Assumption

5 It continues to be politics as usual. From 3
6 Marshall will survive the current scandal. From 2 and 5
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148  SENTENTIAL LOGIC: DERIVATIONS

7 Marshall will survive the current scandal
and it is not the case that Marshall’s
opponent outspends Marshall. From 6 and 4

8 Marshall will be reelected. From 1 and 7

The structure of our reasoning may be more apparent when we symbolize these 
paraphrases in SL and indicate how each step of our reasoning is justifi ed:

1 (S & ~ O) ⊃ R Assumption
2 C ⊃ S Assumption
3 ~ F & C Assumption
4 ~ O Assumption
5 C From 3
6 S From 2 and 5
7 S & ~ O From 6 and 4
8 R From 1 and 7

In this section we develop the derivation system SD (‘SD’ for ‘Sentential 
Derivation’), which consists of eleven derivation rules. Each of the inferences rep-
resented by lines 5 through 8 above will be justifi ed by a syntactic rule of SD. These 
rules specify that if we have a sentence or sentences of such and such form or 
forms, then we may infer a sentence of a specifi ed form. The rules are called ‘deri-
vation rules’ and the structures we construct using them are called ‘derivations’.

The simplest derivation rule of SD is Reiteration:

Reiteration (R)

 P

� P

Here, and in the rule schema presented below, the ‘�’ sign indicates the sen-
tence that can be inferred or derived using the rule in question. Here is a 
simple and admittedly uninteresting use of Reiteration:

1 C Assumption

2 C 1 R

Reiteration is often used in strategies that involve subderivations, which we 
introduce later in this section.

The language SL includes fi ve kinds of compound sentences: Negations, 
Conjunctions, Disjunctions, Material Conditionals, and Material Biconditionals—
and there are two derivation rules of SD associated with each kind of compound. 
One rule is for deriving a sentence from a compound of the specifi ed sort and 
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5.1 THE DERIVATION SYSTEM SD  149

the other is for deriving a compound of the specifi ed sort. The former are 
elimination rules. A sentence derived by an elimination rule may have a main 
connective other than that after which the rule is named, or no main connec-
tive. The latter are introduction rules, so called because they yield an SL sen-
tence whose main connective is the one after which the rule is named. Some 
of these ten rules make use of subderivations. We fi rst present the rules that 
do not use subderivations.

5.1.1 THE NON-SUBDERIVATION RULES OF SD

The derivation rules that do not make use of subderivations are

Reiteration (R)

 P

� P

Conjunction Elimination (&E) Conjunction Introduction (&I)

 P & Q  P & Q P

� P �  Q Q

    � P & Q

Disjunction Introduction (∨I) Conditional Elimination (⊃E)

 P  P P ⊃ Q

� P ∨ Q �  Q ∨ P P

    � Q

Biconditional Elimination (�E)

 P � Q  P � Q

 P  Q

� Q � P

These rules are all quite straightforward. The abbreviation for each rule is given 
in parentheses following the rule name. In each case the sentence the ‘�’ 
symbol points to can be derived if the one or two sentences occurring above it 
have already been derived. Some of these rules have two versions.

Conjunction Elimination specifi es that if a conjunction occurs on an 
earlier line of a derivation then we may enter on a subsequent line 
either the left conjunct or the right conjunct of the conjunction.
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150  SENTENTIAL LOGIC: DERIVATIONS

Conjunction Introduction specifi es that if P and Q occur on earlier 
lines of a derivation then we may enter P & Q on a subsequent line. 
Here the rule template should not be taken as specifying the order in 
which P and Q must be derived before P & Q can be entered.

Disjunction Introduction specifi es that if a sentence P occurs on an 
earlier line of a derivation then we may enter on a subsequent line 
either P ∨ Q or Q ∨ P, where Q is any sentence of SL.

Conditional Elimination specifi es that if P ⊃ Q and P occur on earlier lines 
of a derivation, in either order, then we may enter Q on a subsequent line.

Biconditional Elimination specifi es that if a sentence of the form P � Q 
and one of its immediate components (P or Q) occur on earlier lines 
of a derivation, in either order, then we may enter on a subsequent 
line the other immediate component.

Reiteration, which may seem to be a somewhat strange rule, is often used 
in strategies that involve subderivations, which we introduce later in this section.

Here is a derivation that uses both Conjunction Introduction and Con-
junction Elimination:

1 B   Assumption
2 C & ~ D  Assumption

3 ~ D   2 &E
4 B & ~ D  1, 3 &I

The sentences on lines 1 and 2 are assumptions, as is indicated in the justifi ca-
tion column. The sentence on line 3 is obtained from line 2 by Conjunction 
Elimination. And the sentence on line 4 is obtained from lines 1 and 3 by 
Conjunction Introduction.

Disjunction Introduction may seem to be an odd rule, for given a sen-
tence P why would we want to obtain P ∨ Q or Q ∨ P, both of which are clearly 
weaker than the sentence from which they can be obtained? The following 
derivation illustrates an application of Disjunction Introduction and why it is 
useful, as well as an application of Conditional Elimination:

Derive: H

1 F   Assumption
2 (F ∨ G) ⊃ H Assumption

3 F ∨ G  1 ∨I
4 H   2, 3 ⊃E

In this derivation our goal was to obtain ‘H’ from our two assumptions. We indi-
cated this by entering the word ‘Derive:’ followed by the sentence to be derived, 
in this case ‘H’, at the top of the derivation. Hereafter we will always so specify 
the sentence to be derived. The sentence on line 2 is a material conditional whose 
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5.1 THE DERIVATION SYSTEM SD  151

consequent is ‘H’. We saw that we could derive ‘H’ from this line if we also had 
the antecedent, ‘F ∨ G’. This was not one of our assumptions. We did have ‘F’, at 
line 1. But from ‘F’ we knew we could derive ‘F ∨ G’ by Disjunction Introduction, 
and we did so on line 3. ‘H’ then followed by Conditional Elimination on line 4.

The following derivation uses Biconditional Elimination and Conjunc-
tion Elimination (each twice) as well as Disjunction Introduction and Conjunc-
tion Introduction.

Derive: ~ A & (B ∨ C)

1 B � (D � ~ A) Assumption
2 B & D  Assumption

3 B   2 &E
4 D � ~ A  1, 3 �E
5 D   2 &E
6 ~ A  4, 5 �E
7 B ∨ C  3 ∨I
8 ~ A & (B ∨ C) 6, 7 &I

We will discuss strategies for constructing derivations at length later in this chapter. 
Here we note that the overall strategy we use in constructing derivations is to try to 
fi gure out how the desired sentence might be derived—which sentences we need to 
derive in order to derive that sentence, and then which sentences we need to derive 
to obtain those sentences, and so on, until we see a path from the given assumptions 
to the desired sentence. In the foregoing derivation we noted that the sentence to 
be derived is a conjunction and that conjunctions can be obtained by Conjunction 
Introduction. So we set about trying to derive the conjuncts of that conjunction,
‘~ A’ and ‘B ∨ C’. We reasoned that ‘~ A’ could be derived from line 1 by two uses 
of Biconditional Elimination if we could derive both ‘B’ and ‘D’, and we saw that we 
could derive both from line 2, by two uses of Conjunction Elimination. And once we 
had ‘B’ on line 3 it was easy to derive ‘B ∨ C’ on line 7 by Disjunction Introduction.

Our next derivation uses all of the Introduction and Elimination rules 
of SD we have so far introduced:

Derive: ~ C

1 ~ A � (B & ~ C) Assumption
2 B & D   Assumption
3 (D ∨ C) ⊃ ~ A Assumption

4 D     2 &E
5 D ∨ C   4 ∨I
6 ~ A    3, 5 ⊃E
7 B & ~ C   1, 6 �E
8 ~ C 7 &E

Our goal in this derivation was to derive ‘~ C’, and ‘~ C’ is a component of the 
sentence on line 1. We realized that ‘~ C’ could be derived from line 1 in two 
steps if we could fi rst derive ‘~ A’ and that because ‘~ A’ is the consequent of 
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152  SENTENTIAL LOGIC: DERIVATIONS

the material conditional on line 3, it could be derived by Conditional Elimina-
tion if we could fi rst derive ‘D ∨ C’. The latter sentence follows from ‘D’ by 
Disjunction Introduction, and ‘D’ follows from the sentence on line 2, ‘B & D’, 
by Conjunction Elimination.

 5.1.1E EXERCISES

 1. Complete the following derivations by entering justifi cations for the derived 
sentences:

 a. Derive: A & B

1 A Assumption
2 A ⊃ B   Assumption

3 B
4 A & B

 *b. Derive: ~ C

1 A ⊃ (B & ~ C) Assumption
2 A & B   Assumption

3 A
4 B & ~ C
5 ~ C

 c. Derive: ~ (A � ~ B)

1 ~ (A � ~ B) � (~ C ∨ ~ D) Assumption
2 A ⊃ (~ D & C) Assumption
3 D & A   Assumption

4 A
5 ~ D & C
6 ~ D
7 ~ C ∨ ~ D
8 ~ (A � ~ B)

 *d. Derive: (E & D) & (~ B & C)

1 ~ B ⊃ (D & E) Assumption
2 (A & ~ B) & C Assumption

3 A & ~ B
4 ~ B
5 D & E
6 D
7 E
8 E & D
9 C

10 ~ B & C
11 (E & D) & (~ B & C)
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5.1 THE DERIVATION SYSTEM SD  153

 e. Derive: F ⊃ ~ G

1 (E ∨ H) ⊃ (F ⊃ ~ G) Assumption
2 (C ∨ D) � (E & ~ H) Assumption
3 C     Assumption

4 C ∨ D
5 E & ~ H
6 E
7 E ∨ H
8 F ⊃ ~ G

 *f. Derive: ~ G

1 (H & ~ I) ⊃ ~ G Assumption
2 (F ∨ ~ G) � H Assumption
3 F & ~ I   Assumption

4 F
5 F ∨ ~ G
6 H
7 ~ I
8 H & ~ I
9 ~ G

 g. Derive: D � ~ B

1 (A & ~ B) ⊃ C Assumption
2 (C ∨ D) ⊃ (D � ~ B) Assumption
3 ~ B & A   Assumption

4 A
5 ~ B
6 A & ~ B
7 C
8 C ∨ D
9 D � ~ B

 *h. Derive: M & ~ N

1 (K & ~ L) & (~ I & J) Assumption
2 ~ L ⊃ M   Assumption
3 (K & ~ I) ⊃ ~ N Assumption

4 K & ~ L
5 ~ L
6 M
7 K
8 ~ I & J
9 ~ I

10 K & ~ I
11 ~ N
12 M & ~ N
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154  SENTENTIAL LOGIC: DERIVATIONS

 i. Derive: ~ D & ~ F

1 (A ∨ ~ B) � (A & ~ F) Assumption
2 C � ~ B   Assumption
3 C & ~ D   Assumption

4 ~ D
5 C
6 ~ B
7 A ∨ ~ B
8 A & ~ F
9 ~ F

10 ~ D & ~ F

 *j. Derive: ~ (A ∨ B)

1 A ⊃ [~ B ⊃ ~ (A ∨ B)] Assumption
2 C � (A & ~ B) Assumption
3 ~ D & C   Assumption

4 C
5 A & ~ B
6 A
7 ~ B ⊃ ~ (A ∨ B)
8 ~ B
9 ~ (A ∨ B)

 2. Complete the following derivations.
 a. Derive: D & ~ B

1 A & ~ B Assumption
2 (A ∨ ~ C) ⊃ D Assumption

 *b. Derive: F & ~ H

1 F � ~ G Assumption
2 D ⊃ ~ G   Assumption
3 ~ H & D   Assumption

 c. Derive: ~ D ∨ E

1 A & ~ B Assumption
2 ~ B � (A � ~ D) Assumption

 *d. Derive: ~ E ∨ (G & ~ F)

1 D � (C & ~ E) Assumption
2 F & (F � D) Assumption
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5.1 THE DERIVATION SYSTEM SD  155

 e. Derive: H & ~ I

1 ~ F & ~ G Assumption
2 ~ G ⊃ H   Assumption
3 (H & ~ F) � ~ I Assumption

 f. Derive: D & ~ D

*1 (~ A & B) ⊃ (B � D) Assumption
2 B ⊃ (C & ~ A) Assumption
3 ~ D & B   Assumption

 g. Derive: F & ~ G

1 (F ∨ ~ G) ⊃ (F & ~ H) Assumption
2 ~ H ⊃ ~ G  Assumption
3 (~ H ⊃ ~ G) � F Assumption

5.1.2 THE SUBDERIVATION RULES OF SD

All fi ve of the derivation rules we are about to introduce make use of sub-
derivations. A subderivation is useful when we want to show that if we add an 
assumption to those we already made then we can derive a sentence that we 
may not be able to derive without the additional assumption. But every time 
we use a subderivation—which adds a new assumption—we must eventually end 
that subderivation and discontinue reliance on the assumption that starts that 
subderivation. Each subderivation rule provides a way of ending the subderiva-
tion it relies on. Once the way subderivations work is understood, it is fairly easy 
to master the subderivation rules. Our explication of Conditional Introduction 
will illustrate how subderivations work.

Conditional Introduction (⊃I)

 P

 Q
� P ⊃ Q

Suppose we are trying to complete the following derivation:

Derive: A ⊃ H

1 A ⊃ G   Assumption
2 G ⊃ H   Assumption

 A ⊃ H

Here we have entered the sentence we want to derive, ‘A ⊃ H’, some distance 
below our assumptions—because we want the last line of our derivation to be 
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156  SENTENTIAL LOGIC: DERIVATIONS

‘A ⊃ H’ but we don’t yet know how we can get from our assumptions to ‘A ⊃ H’. 
Intuitively, we might reason as follows. We have ‘A ⊃ G’ as an assumption. If 
we also had ‘A’, we could derive ‘G’ by Conditional Elimination. And once we 
have ‘G’, we can derive ‘H’ by Conditional Elimination. That is, given ‘A ⊃ G’ 
and ‘G ⊃ H’ we can derive ‘H’ if we also have ‘A’. We can encapsulate this 
reasoning in a subderivation:

Derive: A ⊃ H

1 A ⊃ G   Assumption
2 G ⊃ H Assumption

3 A A / ⊃I

4 G 1, 3 ⊃E
5 H 2,4 ⊃E
6 A ⊃ H 3–5 ⊃I

At line 3 we started a derivation within our existing derivation—hence the 
name ‘subderivation’. In this case our purpose in doing so was to show that 
once we assume ‘A’ we can derive ‘H’ (in two steps), using our original 
assumptions and the assumption that starts our subderivation. Lines 3–5 show 
that, given our original assumptions, if we have ‘A’ we can derive ‘H’. Note 
that this does not show that ‘H’ is a consequence of our original assumptions. 
Rather, we have shown that the conditional ‘A ⊃ H’ is a consequence of the 
original assumptions because we have shown how to derive ‘H’ given ‘A’. It is 
the entire subderivation, which occupies lines 3–5, that justifi es our entering 
‘A ⊃ C’ on line 6. We indicate this by entering, in the justifi cation column, 
‘3–5 ⊃I’, not ‘3,5 ⊃I’. This notation references the entire subderivation, not 
just lines 3 and 5.

We often use the reasoning process that is captured by Conditional 
Introduction in everyday reasoning. For example, suppose we know that if 
Jean gets an A in Biology 400 her grade point average will be 3.8, and that 
if her grade point average is 3.8 she will graduate with honors. If we assume 
she does get an A in Biology 400 it follows that she will have a grade point 
average of 3.8, and from this and what we know about the requirements for 
graduating with honors, it follows that Jean will graduate with honors. Of 
course, we do not conclude that Jean will graduate with honors, but rather 
that if she gets an A in Biology 400 then she will graduate with honors. If 
we use ‘A’ to symbolize ‘Jean will get an A in Biology 400’, ‘G’ to symbol-
ize ‘Jean will have a grade point average of 3.8’, and ‘H’ to symbolize ‘Jean 
will graduate with honors’, the derivation we constructed using Conditional 
Introduction formalizes this reasoning about Jean and her graduating with 
honors.

There are several points to note before introducing the remaining 
subderivation rules. First, the vertical lines in a derivation are called ‘scope 
lines’. Assumptions with just one scope line to their left are the primary 
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5.1 THE DERIVATION SYSTEM SD  157

assumptions of a derivation. Primary assumptions hold and are available for 
the entire derivation, as is indicated by the scope line to their immediate 
left that continues to the end of the derivation. Each subderivation begins 
with an auxiliary assumption, and the scope line to the immediate left of the 
auxiliary assumption indicates how far the scope of that assumption extends; 
the auxiliary assumption may be appealed to only so long as the scope line 
to its immediate left continues. In the above example there is one subderiva-
tion, occupying lines 3 through 5. The assumption of that subderivation is in 
force only through line 5.

We construct subderivations so that we can use rules that require sub-
derivations. In the above example we constructed the subderivation so that we 
could use the rule Conditional Introduction. This rule calls for assuming, as 
an auxiliary assumption, the antecedent of the material conditional we wish to 
derive, and then deriving the consequent of that material conditional within 
the subderivation. In the justifi cation column for a sentence entered as an aux-
iliary assumption, we write ‘A’ (for ‘Assumption’) and the abbreviation for the 
rule that calls for a subderivation of the sort we are constructing (here ‘⊃I’), 
separated by a slash (‘/’).

We end a subderivation by using the rule indicated on the assumption 
line of the subderivation to derive a sentence outside the scope of the subderi-
vation, citing the entire subderivation. It is the entire subderivation that justi-
fi es applying a subderivation rule. When a subderivation is ended (by using 
a rule that cites the entire subderivation) we say that the assumption of that 
subderivation has been discharged and is closed. The scope of an assumption 
includes the assumption itself and all sentences and subderivations that occur 
subsequent to the assumption but before it is discharged. Once an assumption 
is discharged, neither it nor any sentence or subderivation lying within its scope 
can be appealed to in justifying subsequent lines of a derivation. We refer to 
assumptions that have not been discharged as being open, and to those that 
have been discharged as being closed. In our example, the scope of the assump-
tion on line 3 extends only to line 5.

We can now give an informal account of accessibility: A sentence or 
subderivation is accessible at line n of a derivation (can be appealed to in 
justifying line n) if and only if every scope line to the left of the sentence or 
subderivation is also to the left of the sentence on line n.

Thus, scope lines, the vertical lines to the left of the sentences of a 
derivation, provide a visual way of telling when a sentence or subderivation is 
accessible. The leftmost vertical line is the scope line for the entire derivation. 
Primary assumptions, if any, appear to the immediate right of this scope line 
at the top of the derivation. Every auxiliary assumption has its own scope line, 
a line that continues only so long as that assumption remains open. A sen-
tence is accessible only as long as the scope lines to its left continue. Primary 
assumptions, of course, are never discharged. If a sentence or subderivation is 
accessible at a given line of a derivation then it can be appealed to in justify-
ing the sentence entered on that line.
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158  SENTENTIAL LOGIC: DERIVATIONS

Here is another derivation that uses Conditional Introduction:

Derive: A ⊃ (B ⊃ C)

1 C Assumption

2 A A / ⊃I

3 B A / ⊃I

4 C 1 R
5 B ⊃ C 3–4 ⊃I
6 A ⊃ (B ⊃ C) 2–5 ⊃I

This derivation contains two subderivations, one nested within the other. 
The innermost subderivation occupies lines 3–4; the outer subderivation 
lines 2–5. At line 4 we were able to use Reiteration to derive ‘C’ because 
every scope line to the left of ‘C’ on line 1 (there is only one) is also to 
the left of the sentence we entered on line 4. And on line 5 we were able 
to enter ‘B ⊃ C’ by Horseshoe Introduction because every scope line to the 
left of ‘B ⊃ C’ at line 5 (there are two) is also to the left of the subderiva-
tion occupying lines 3–4. Note that while there are three scope lines to the 
left of the sentences on lines 3 and 4, the rightmost of these is part of the 
subderivation occupying lines 3–4. So there are 2, not 3, scope lines to the 
left of that subderivation. Neither ‘A’, the auxiliary assumption that begins 
the subderivation occupying lines 2–5, nor ‘B’, the auxiliary assumption that 
begins the subderivation occupying lines 3–4, was appealed to in deriving 
the sentences ‘B ⊃ C’ and ‘C’ within those subderivations. It is often the case 
that the auxiliary assumption that begins a subderivation is not appealed 
to until the subderivation is ended (when it is appealed to as part of the 
entire subderivation).

The following variant of the previous derivation is also constructed in 
accordance with the rules of SD.

Derive: A ⊃ (B ⊃ C)

1 C Assumption

2 A A / ⊃I

3 B A / ⊃I

4 B & C 1, 3 &I
5  C 4 &E
6 B ⊃ C 3–5 ⊃I
7 A ⊃ (B ⊃ C) 2–6 ⊃I

At line 4 both ‘C’ on line 1 and ‘B’ on line 3 are accessible, so our use of Conjunc-
tion Introduction is allowed. However, we did not choose to construct this deriva-
tion, because it is one line longer than our earlier derivation of ‘A ⊃ (B ⊃ C)’ from 
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5.1 THE DERIVATION SYSTEM SD  159

‘C’. On the other hand, the following variation is not constructed in accordance 
with the rules of SD.

Derive: A ⊃ (B ⊃ C)

1 C Assumption

2 A A / ⊃I

3 B A / ⊃I

4 C 1 R
5 B ⊃ C 3–4 ⊃I
6 A ⊃ (B ⊃ C) 2–5 ⊃I
7 B & C 3, 4 &I MISTAKE!

Neither the sentence on line 3 nor that on line 4 is accessible from line 7. 
There are two scope lines to the left of the sentences on lines 3 and 4 that do 
not extend to the left of the sentence we tried to enter on line 7 (the assump-
tions on lines 2 and 3 were closed before line 7, so sentences falling within the 
scope of either assumption cannot be appealed to on line 7).

The remaining four subderivation rules are as follows:

Negation Introduction (~ I) Negation Elimination (~ E)

P ~ P

Q Q

~ Q ~ Q

� ~ P � P

Disjunction Elimination (∨E) Biconditional Introduction (�I)

P ∨ Q P

P Q

R Q

Q P

R � P � Q

� R

Negation Introduction specifi es that if we can derive a sentence and 
its negation, Q and ~ Q, within the scope of an auxiliary assumption 
P, then we may end the subderivation and enter ~ P on the following 
line. Here and with the remaining subderivation rules the template 
should not be taken as specifying the order in which sentences must 
be derived within the subderivation.
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Negation Elimination specifi es that if we can derive a sentence and 
its negation, Q and ~ Q, within the scope of an auxiliary assump-
tion ~ P, then we may end the subderivation and enter P on a sub-
sequent line.

Disjunction Elimination specifi es that if P ∨ Q occurs on an earlier 
line of a derivation and subsequent to it there are two subderivations, 
one of R from P and the other of R from Q, then R may be entered 
on a subsequent line.

Biconditional Introduction specifi es that if the derivation contains two 
subderivations, one of Q from P and one of P from Q, then P � Q 
may be entered on a subsequent line.

Negation Introduction and Negation Elimination both parallel a pat-
tern of reasoning we often use in everyday life, reductio ad absurdum reasoning. 
In this reasoning, we make an assumption and then show that an absurd result 
follows from that assumption and whatever other assumptions we may already 
have made. To avoid the absurdity we reject one of our assumptions. Here is 
an example of reductio ad absurdum reasoning. Suppose we know the following:

Billings was shot to death in New York City during the evening hours 
of October 25. Billings’ partner, Jenkins, became sole owner of their 
company as a result of Billing’s death, and Jenkins is in dire fi nancial 
straits and has always hated his partner.

We want to explore the possibility that Jenkins shot Billings, and we do so by 
assuming that he did. Further investigation reveals that Jenkins was seen sitting 
in a Pizza Uno restaurant in Chicago the entire evening of the shooting. We 
now reason as follows:

Suppose Jenkins shot Billings. Then Jenkins was in New York on the 
evening of the 25th. But we know he was in Chicago that entire evening, 
so he was not in New York. Therefore, Jenkins did not shoot Billings.

The assumption that Jenkins shot Billings, along with our knowledge that 
he was in Chicago the entire evening of October 25, leads to the absurd-
ity the Billings was both in New York City and not in New York City that 
evening. So we rejected our assumption and concluded that Jenkins did not 
shoot Billings.

Both Negation Introduction and Negation Elimination mirror this kind 
of reasoning. In both cases we make an assumption and then derive a sentence 
and its negation (Q and ~ Q). It would be absurd to remain committed to both 
a sentence and its negation. But we are so committed as long as we can derive 
both. So we reject the assumption that starts the subderivation—we close the 
subderivation and enter P (if our assumption was ~ P) or ~ P (if our assump-
tion was P).
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Here are some fairly simple derivations in which Negation Introduction 
and Negation Elimination are used:

Derive: ~ H

1 H ⊃ F Assumption
2 ~ F Assumption

3 H A / ~ I

4 F 1, 3 ⊃E
5 ~F 2 R
6 ~ H 3–5 ~ I

Derive: N

1 ~ N ⊃ S Assumption
2 S ⊃ C Assumption
3 C ⊃ N Assumption

4 ~ N A / ~ E

5 S 1, 4 ⊃E
6 C 2, 5 ⊃E
7 N 3, 6 ⊃E
8 ~N 4 R
9 N 4–8 ~ E

We noted when we introduced the rule Reiteration that it would often be useful 
in derivations involving subderivations, and we have used Reiteration in both 
of these derivations (as we did in an earlier use of Conditional Introduction). 
Next we present a derivation that uses both Negation Introduction and Nega-
tion Elimination:

Derive: ~ A & B

1 ~ (A ~∨ B) Assumption

2 A A / ~ I

3 A ~∨ B 2 ∨I
4 ~ (A ~∨ B) 1 R
5 ~ A 2–4 ~ I
6 ~ B A / ~ E

7 A ~∨ B 6 ∨I
8 ~ (A ~∨ B) 1 R
9 B 6–8 ~ E

10 ~ A & B 5, 9 &I

In this derivation the sentence to be derived is a conjunction, so we opted to 
derive it by Conjunction Introduction. Having made that decision, we were left 
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162  SENTENTIAL LOGIC: DERIVATIONS

with two goals: deriving ‘~ A’ and deriving ‘B’. We derived ‘~ A’ by Negation 
Introduction and ‘B’ by Negation Elimination. One key to constructing this 
derivation was recognizing that our primary assumption, ‘~ (A ∨ ~ B)’, was a 
negation and hence was a candidate for serving as the negation ~ Q that would 
be needed within both our Negation Introduction and our Negation Elimina-
tion subderivations. The other key was recognizing that the sentence Q in this 
case, ‘A ∨ ~ B’, could be derived by Disjunction Introduction from the assump-
tion ‘A’ in the fi rst subderivation and from ‘~ B’ in the second.

Disjunction Elimination also parallels a pattern of reasoning we use in 
everyday life. Here is an example:

The CEO is incompetent and will either resign or be fi red. If she resigns 
she will move to Boston to be near her son. If she is fi red she will move 
to Boston to live with her son. So the CEO will move to Bostson.

In this example we know the CEO will either resign or be fi red. If the fi rst 
happens, she will end up in Boston, and if the second happens, she will also 
end up in Boston. So whichever happens, the CEO will end up in Boston. The 
following derivation formalizes this reasoning:

Derive: B

1 I & (R ∨ F) Assumption
2 R ⊃ (B & N) Assumption
3 F ⊃ (B & L) Assumption

4 R ∨ F 1 & E
5  R A / ∨E

6  B & N 2, 5 ⊃E
7  B 6 &E

8  F A / ∨E

9  B & L 3, 8 ⊃E
10  B 9 &E
11 B  4, 5–7, 8–10 ∨E

In this derivation we derived a disjunction on line 4 and then constructed two 
subderivations. The fi rst has ‘R’, the left disjunct of ‘R ∨ F’, as its auxiliary 
assumption. The subderivation shows that given ‘R’, ‘B’ can be derived. The 
second subderivation shows that ‘B’ can also be derived from the right disjunct, 
‘F’. Having derived ‘B’ from each disjunct, we entered ‘B’ on line 11. The jus-
tifi cation for line 11 cites the disjunction on line 4 and the two subderivations, 
one occupying lines 5–7 and the other lines 8–10.

Material biconditionals of SL, sentences of the form P � Q, have the 
force of two material conditionals, (P ⊃ Q) and (Q ⊃ P). Hence it should not 
be surprising that Biconditional Introduction requires two subderivations, one 
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in which Q is derived from P and one in which P is derived from Q. Here is 
a simple use of Biconditional Introduction:

Derive: A � B

1 A ⊃ B Assumption
2 B ⊃ A Assumption

3  A A / �I

4  B    1, 3 ⊃E

5  B A / �I

6  A    2, 5 ⊃E
7 A � B 3–4, 5–6 �I

The following derivation uses both Biconditional Elimination and Biconditional 
Introduction:

Derive: A � C

1 A � B Assumption
2 B � C Assumption

3  A A / �I

4  B    1, 3 �E
5  C    2, 4 �E
6  C A / �I

7  B    2, 6 �E
8  A    1, 7 �E
9 A � C 3–5, 6–8 �I

 5.1.2E EXERCISES

 1. Complete the following derivations by entering the appropriate justifi cations:
 a. Derive: (A ⊃ B) & (A ⊃ ~ D)

1 A ⊃ (B & ~ D) Assumption

2  A

3  B & ~ D
4  B
5 A ⊃ B
6  A

7  B & ~ D
8  ~ D
9 A ⊃ ~ D

10 (A ⊃ B) & (A ⊃ ~ D)
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164  SENTENTIAL LOGIC: DERIVATIONS

 *b. Derive: A ⊃ [B ⊃ (C ∨ D)]

1 (A & B) ⊃ C Assumption

2  A

3  B

4  A & B
5  C
6  C ∨ D
7  B ⊃ (C ∨ D)
8 A ⊃ [B ⊃ (C ∨ D)]

 c. Derive: B

1 ~ B ⊃ B Assumption

2  ~ B

3  B
4  ~ B
5 B

 *d. Derive: A ⊃ ~ B

1 A ⊃ (B ⊃ C) Assumption
2 ~ C Assumption

3  A

4  B ⊃ C
5  B

6  C
7  ~ C
8  ~ B
9 A ⊃ ~ B

 e. Derive: E ∨ D

1 A ∨ (B & ~ C) Assumption
2 A ⊃ D Assumption
3 ~ C ⊃ E Assumption

4  A

5  D
6  E ∨ D
7  B & ~ C

8  ~ C
9  E

10  E ∨ D
11 E ∨ D
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 *f. Derive: E

1 F ⊃ (~ G ∨ ~ H) Assumption
2 (~ G ⊃ E) & (~ E ⊃ H) Assumption
3 F Assumption

4 ~ G ∨ ~ H
5  ~ G

6  ~ G ⊃ E
7  E
8  ~ H

9  ~ E ⊃ H
10  ~ E

11  H
12  ~ H
13  E
14 E

 g. Derive: F � ~ G

1 (F ⊃ ~ G) & (~ G ⊃ F) Assumption

2  F

3  F ⊃ ~ G
4  ~ G
5  ~ G

6  ~ G ⊃ F
7  F
8 F � ~ G

 *h. Derive: H � J

1 (H & I) � J Assumption
2 H � I Assumption

3  H

4  I
5  H & I
6  J
7  J

8  H & I
9  H

10 H � J
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 2. Complete the following derivations.
 a. Derive: A � B

1 A  Assumption
2 B  Assumption

 *b. Derive: ~ B

1 B ⊃ ~ B Assumption

 c. Derive: A

1 ~ ~ A Assumption

 *d. Derive: H & ~ I

1 I & ~ I Assumption

 e. Derive: B

1 ~ B ⊃ C Assumption
2 ~ C � A Assumption
3 A  Assumption

 *f. Derive: A � C

1 A � ~ B Assumption
2 ~ B � C Assumption

 g. Derive: ~ H

1 H ⊃ I Assumption
2 ~ I  Assumption

 *h. Derive: ~ G

1 ~ F ⊃ ~ G Assumption
2 ~ F ∨ H Assumption
3 H � ~ G Assumption

 i. Derive: ~ (F ∨ G)

1 (F ∨ G) ⊃ (H & I) Assumption
2 ~ H Assumption

 *j. Derive: ~ (F & G)

1 F � (~ G & H) Assumption
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5.1.3 CONCLUDING COMMENTS

All the derivation rules of SD have been introduced. We repeat them here, for easy 
reference. Rather than listing the rules that do not use subderivations separately 
from those that do use subderivations, we here arrange the derivation rules by the 
kind of compound that is either appealed to or introduced. The rules can also be 
found on the inside front cover of this text.

Reiteration (R)

P

�  P

Conjunction Introduction (&I) Conjunction Elimination (&E)

P  P & Q  P & Q

Q  � P � Q

� P & Q

Conditional Introduction (⊃I) Conditional Elimination (⊃E)

P P ⊃ Q

Q P

� P ⊃ Q � Q

Negation Introduction (~ I) Negation Elimination (~ E)

P  ~ P

Q  Q

~ Q ~ Q

� ~ P  �  P

Disjunction Introduction (∨I) Disjunction Elimination (∨E)

P  P P ∨ Q

� P ∨ Q � Q ∨ P P

R

Q

R
� R
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Biconditional Introduction (�I) Biconditional Elimination (�E)

 P   P � Q P � Q

 Q   P Q

 Q  � Q � P

 P
 P � Q

We have presented the derivation rules of SD and constructed a fair 
number of derivations. But we haven’t actually defi ned the term ‘derivation in 
SD’. We do so now:

A derivation in SD is a series of sentences of SL, each of which is either 
an assumption or is obtained from previous sentences by one of the rules 
of SD.

We will continue to annotate our derivations with line numbers, scope and 
assumption lines, and line justifi cations. However, these annotations are not, 
as the above defi nition makes clear, offi cially parts of derivations.

There are many truth-preserving templates we do not include as rules 
of either SD or SD�. Why are some included and others not? For SD the 
answer is fairly simple. We want a derivation system to be truth-preserving 
(include no rule that ever takes us from truths to a falsehood). A system 
that has this property, never taking us from truths to a falsehood, is said to 
be sound. We also want our derivation systems to be complete. A derivation 
system is complete if and only if every sentence that is truth-functionally 
entailed by a set of sentences can be derived from that set. SD is complete 
in this sense and it is a fairly minimalist derivation system—it includes only 
two rules for each connective.1 SD� will also be complete but includes addi-
tional derivation rules, some because they mirror reasoning patterns that are 
common in everyday discourse, some because they have historically been 
included in derivation systems. We prove that both SD and SD� are complete 
in Chapter 6.

Before ending this section we will take time to caution against some 
mistakes that are commonly made while constructing derivations. First, the 
derivation rules of SD are rules of inference, which is to say that when they 
appeal to a line earlier in the derivation they appeal to the entire sentence on 
that line, not to a sentence that is a component of a longer sentence. Here is 

1Two rules of SD, Reiteration and Negation Introduction, could be dropped without making the system incom-
plete. This is not true of any of the other rules of SD.
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5.1 THE DERIVATION SYSTEM SD  169

an attempt at a derivation that misuses Conjunction Elimination by appealing 
to a component of a longer sentence.

Derive A ⊃ C

1 A ⊃ (B & C) Assumption

2  A A / ⊃I

3  C l &E MISTAKE!
4 A ⊃ C 2–3 ⊃I

The mistake at line 3 results from trying to apply Conjunction Elimination to 
a component of a longer sentence. The sentence on line 1 is not of the form 
P & Q, and while a component of that sentence, ‘B & C’, is of that form, rules 
of inference work, again, on sentences that are not themselves parts of longer 
sentences. A correct derivation for this problem is

Derive A ⊃ C

1 A ⊃ (B & C) Assumption

2  A A / ⊃I

3  B & C 1, 2 ⊃E
4  C 3 &E
5 A ⊃ C 2–4 ⊃I

The sentence on line 3 is of the form P & Q. It is not part of a longer sen-
tence on that line. So we can apply Conjunction Elimination to it and obtain 
‘C’ at line 4.

Here is a similar misuse of a derivation rule.

Derive: C

1 B ⊃ (A ⊃ C) Assumption
2 A Assumption

3 C 1, 2 ⊃E MISTAKE!

Here an attempt has been made to apply Conditional Elimination to a com-
ponent, ‘A ⊃ C’ of the longer sentence ‘B ⊃ (A ⊃ C)’ and this cannot be 
done. In this case there is no correct derivation. ‘C’ does not follow from the 
assumptions on lines 1 and 2.

Another common mistake is to appeal to lines or subderivations that 
are not accessible. In a derivation a sentence or subderivation is accessible 
at line n (it can be appealed to when justifying a sentence on line n) if 
and only if that sentence or subderivation does not lie within the scope of 
a closed assumption, that is, an assumption that has been discharged prior 
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to line n. Here is an attempt at a derivation that twice violates the acces-
sibility requirement:

Derive: B

1  B  A / ⊃I

2   A A / ⊃I

3   B 1 R
4  A ⊃ B 2–3 ⊃I
5 B ⊃ (A ⊃ B) 1–4 ⊃I
6 A ⊃ B  2–3 ⊃I MISTAKE!
7 B   2, 6 ⊃E MISTAKE!

Line 6 is a mistake because it appeals to a subderivation, that occurring on 
lines 2 through 3, that is no longer accessible. It is not accessible at line 6, 
because not every scope line to the left of that subderivation (there are two) 
continues to line 6. The auxiliary assumption occurring on line 2 was dis-
charged at line 4, when Conditional Introduction was used. (We also cannot 
use Reiteration to obtain A ⊃ B on line 6, because the sentence on line 4 is 
inaccessible at that point.) Line 7 is a mistake because it appeals to a line, 
line 2, which is no longer accessible. Of course, it is also a mistake because 
it appeals to a line, line 6, which is itself a mistake. In fact, neither line 6 
nor line 7 can be derived in a derivation that has no primary assumptions. 
On the other hand, part of the above attempt, namely the part consisting 
of lines 1 through 5, is correct, demonstrating that some sentences can be 
derived starting from no primary assumptions. ‘B ⊃ (A ⊃ B)’ is one such 
sentence.

The following derivation is correctly done.

Derive: ~ U ⊃ ~ S

1 ~ U ⊃ ~ W Assumption
2 ~ W ⊃ ~ S Assumption

3  ~ U A / ⊃I

4  ~W 1, 3 ⊃E
5  ~ S 2, 4 ⊃E
6 ~ U ⊃ ~S 3–5 ⊃I

Line 4 cites lines 1 and 3, which are both accessible at line 4. The sentences 
on lines 1 and 3 do not lie within the scope of an assumption that has been 
discharged prior to line 4. (Neither the sentence on line 1 nor the sentence on 
line 3 has a scope line to its left that is not also to the left of the sentence on 
line 4.) Similarly line 5 cites lines 2 and 4, which are both accessible at line 5. 
Line 6 cites the subderivation from lines 3–5. This subderivation is accessible at 
line 6 because the subderivation does not lie within the scope of an assumption 
that has been closed prior to line 6.
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Here is another example in which an inaccessible subderivation is cited:

Derive A � C

1 ~ C  Assumption
2 B ⊃ C Assumption
3 ~ A & ~ B Assumption

4  A  A / �I

5   ~ B A / ~ E

6   ~ A 3 &E
7   A 4 R
8  B  5–7 ~E
9  C  2, 8 ⊃E

10  C  A / �I

11  ~ B ⊃ A 5–7 ⊃I MISTAKE!
12  ~ B 3 &E
13  A  11, 12 ⊃E
14 A � C 4–9, 10–13 �I

The mistake at line 11 is that of citing a subderivation that is not accessible 
from line 11. That it is not accessible is indicated by there being a scope line to 
the left of the subderivation, the scope line running from line 4 through line 
9, that is not to the left of the sentence entered at line 11. More substantively, 
‘A’ was derived at line 7 by Reiteration on line 4. The assumption at line 4 is 
not accessible at line 11, and neither are results obtained while it was available.

In fact, it is possible to derive ‘A � C’ from the above primary assump-
tions. Here is a derivation that does so.

Derive A � C

1 ~ C  Assumption
2 B ⊃ C Assumption
3 ~ A & ~ B Assumption

4  A  A / �I

5   ~ C A / ~ E

6   ~ A 3 &E
7   A 4 R
8  C  5–7 ~ E
9  C  A / ~ I

10   ~ A A / ~ E

11   C 9 R
12   ~ C 1 R
13  A  10–12 ~ E
14 A � C 4–8, 9–13 �I
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It is possible to use a single auxiliary assumption to generate a sub-
derivation that allows the use of two different subderivation rules. Here is 
such a case:

Derive: C & (A ⊃ C)

1 A ∨ B  Assumption
2 A ⊃ D Assumption
3 B ⊃ D Assumption
4 ~ C ⊃ ~ D Assumption

5  A  A / ∨E / ⊃I

6   ~ C A / ~ E

7   ~ D 4, 6 ⊃E
8   D 2, 5 ⊃E
9  C  6–8 ~ E

10  B  A / ∨E

11   ~ C A / ~ E

12   ~ D 4, 11 ⊃E
13   D 3, 10 ⊃E
14  C  11–13 ~ E
15 C   1, 5–9, 10–14 ∨E
16 A ⊃ C 5–9 ⊃I
17 C & (A ⊃ C) 15, 16 &I

Notice that the subderivation occupying lines 5 through 9 is cited twice, once 
as part of an application of the rule Disjunction Elimination (at line 15) and 
once as the basis for entering a conditional at line 16. In the present case it is 
unlikely that when the assumption at line 5 is made it was foreseen that the sub-
derivation to be constructed would be used in both of the above indicated ways. 
So most likely at the time the assumption was made the only notation entered 
in the justifi cation column was ‘A / ∨E’. It is only after reaching ‘C’ at line 15 
and wondering how ‘A ⊃ C’ can be obtained that it became apparent that work 
already done, the subderivation on lines 5 through 9, could be reused. So the 
extra notation ‘/ ⊃I’ was added to line 5 when line 16 was entered.

In the above example identical subderivations occur on lines 6 through 
8 and lines 11 through 13. We had to do this work twice because when trying to 
get from ‘B’ at line 10 to ‘C’ on a subsequent line the subderivation occupying 
lines 6 through 8 is no longer accessible.

Finally, it is possible to end a subderivation at any time, without 
using one of the introduction rules that requires a subderivation. This is 
likely to occur when one decides the strategy being pursued is unproduc-
tive and simply abandons the work done within the subderivation. Here is 
an example:
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Derive: A ⊃ (B ⊃ A)

1  A  A / ⊃I

2   ~ (B ⊃ A) A / ~ E

3   A 1 R
4   B A / ⊃I

5   A 1 R
6  B ⊃ A 4–5 ⊃I
7 A ⊃ (B ⊃ A) 1–6 ⊃I

Here the subderivation on lines 2–3 is in effect wasted work, work we have 
thrown away. It does no harm, but neither does it do any good.

 5.1.3E EXERCISES

 1. Complete each of the following derivations by entering the appropriate
justifi cations.

 a. Derive: (A & C) ∨ (B & C)

1 (A ∨ B) & C

2 A ∨ B
3 C
4  A

5  A & C
6  (A & C) ∨ (B & C)

7  B

8  B & C
9  (A & C) ∨ (B & C)

10 (A & C) ∨ (B & C)

 *b. Derive: A ⊃ (B ⊃ C)

1 (A & B) ⊃ C

2  A

3   B

4   A & B
5   C
6  B ⊃ C
7 A ⊃ (B ⊃ C)

 c. Derive: ∼ B

1 B ⊃ (A & ∼ B)

2  B

3  A & ∼ B
4  ∼ B
5  B
6 ∼ B

 *d. Derive: A ⊃ B

 1 (A & ∼ B) ⊃ (∼ B & C)
 2 C ⊃ ∼ A

 3  A

 4   ∼ B

 5   A & ∼ B
 6   ∼ B & C
 7   C
 8   ∼ A
 9   A
10  B
11 A ⊃ B

ber38413_ch05_146-225.indd Page 173  12/4/12  2:49 PM ber38413_ch05_146-225.indd Page 173  12/4/12  2:49 PM F-400F-400



174  SENTENTIAL LOGIC: DERIVATIONS

 e. Derive: C ⊃ (~ A & B)

1 ∼ D
2 C ⊃ (A � B)
3 (D ∨ B) ⊃ ∼ A
4 (A � B) ⊃ (D & E)
5 ∼ B ⊃ D

6  C

7  A � B
8  D & E
9  D

10  D ∨ B
11  ∼ A
12   ∼ B

13   D
14   ∼ D
15  B
16  ∼ A & B
17 C ⊃ (∼ A & B)

 *f. Derive: A ⊃ (B ∨ C)

1 (∼ B & ∼ C) ⊃ ∼ A

2  A

3   ∼ (B ∨ C)

4    B

5    B ∨ C
6    ∼ (B ∨ C)

7   ∼ B
8    C

9    B ∨ C
10    ∼ (B ∨ C)

12   ∼ C
13   ∼ B & ∼ C
14   ∼ A
15   A
16  B ∨ C
17 A ⊃ (B ∨ C)

 g. Derive: A � B

1 ∼ A & ∼ B

2  A

3   ∼ B

4   ∼ A
5   A
6  B

7  B

8   ∼ A

9   B
10   ∼ B
11  A
12 A � B

 *h. Derive: A � (B ∨ C)

1 (A � B) & (A � C)

2  A

3  A � B
4  B
5  B ∨ C

6  B ∨ C

7   B

8   A � B
9   A

10   C

11   A � C
12   A
13  A
14 A � (B ∨ C)
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We now defi ne the key concepts of SD. These are all syntactical concepts as 
each is defi ned by reference to there being a derivation of a certain sort—no 
reference is made in any of these defi nitions either to truth-values or to truth-
value assignments.

Derivability: A sentence P of SL is derivable in SD from a set � of sen-
tences of SL if and only if there is a derivation in SD in which all the 
primary assumptions are members of � and P occurs in the scope of 
only those assumptions.

Valid in SD: An argument of SL is valid in SD if and only if the con-
clusion of the argument is derivable in SD from the set consisting of 
the premises. An argument of SL is invalid in SD if and only if it is 
not valid in SD.

Theorem in SD: A sentence P of SL is a theorem in SD if and only if P 
is derivable in SD from the empty set.

Equivalence in SD: Sentences P and Q are equivalent in SD if and only 
if Q is derivable in SD from {P} and P is derivable in SD from {Q}.

Inconsistency in SD: A set � of sentences of SL is inconsistent in SD if 
and only if there is a sentence P such that both P and ~ P are deriv-
able in SD from �. A set � is consistent in SD if and only if it is not 
inconsistent in SD.

A few additional notational conventions will be useful. We will use the 
single turnstile, ‘| ’ to assert derivability, and will read

� |  P

as ‘P is derivable from �’. We will read ‘� |/  P’ as ‘P is not derivable from �’. 
This parallels our use of the double turnstile in previous chapters, where we 
read

� |= P

as ‘� truth-functionally entails P’ and ‘� |=/  P’ as ‘� does not truth-functionally 
entail P’. The parallelism is for good reason. It will turn out that for any fi nite 
set � of sentences of SL and any sentence P of SL,

� |  P in SD if and only if � |= P.

This is a key claim of metatheory that we prove in Chapter 6. Finally, we will read

|  P

 5.2 BASIC CONCEPTS OF SD
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176  SENTENTIAL LOGIC: DERIVATIONS

as ‘P is a theorem’. This notation derives from ‘� |  P’, which is read ‘P is 
derivable from the empty set’. And of course a sentence of SL is a theorem of 
SD if and only if it is derivable in SD from the empty set. We will also refer to 
a derivation of a sentence of SL from no primary assumptions as a proof of 
the theorem that is the last line of that derivation.

The careful reader will recall that there are seven key semantical 
concepts of SL: Truth-functional consistency, truth-functional truth, truth-
functional falsity, truth-functional indeterminacy, truth-functional equivalence, 
truth-functional validity, and truth-functional entailment. We have syntactic par-
allels for only fi ve of those concepts. These pair up as follows:

Truth-functional consistency Consistency in SD

Truth-functional truth Theorem in SD

Truth-functional equivalence Equivalence in SD

Truth-functional validity Valid in SD

Truth-functional entailment Derivability in SD

There is no syntactic counterpart to either truth-functional falsity or truth-
functional indeterminacy. Introducing such counterparts is easy enough—we 
could defi ne an anti-theorem of SD as a sentence P of SL whose negation, ~ P, is 
a theorem of SD. And we could take a sentence P of SL to be syntactically unde-
termined in SD if and only if neither it nor its negation is a theorem of SD. We 
would then have syntactic counterparts to all seven central semantic concepts, 
but historically logicians have never felt the need to add these or equivalent 
defi nitions. We will follow their lead.

Below we construct a derivation that establishes that the following sim-
ple argument is valid in SD:

A ⊃ B
~ B

~ A

  Derive: ~ A

1 A ⊃ B Assumption
2 ~ B Assumption

3  A A /~ I

4  B 1, 3 ⊃E
5  ~ B 2 R
6 ~ A 3–5 ~ I

This derivation establishes that the above argument is valid in SD. (The conclu-
sion of the argument has been derived from the set consisting of the premises 
of the argument.)
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On the other hand, the following does not establish the validity of the 
above argument:

  Derive: ~ A

1 A ⊃ B Assumption
2 ~ B Assumption

3  ~ A A

4  ~ A 3 R

Here ‘~ A’, the conclusion of the argument, has not been derived from the 
set consisting of the premises of the argument. Rather, it has been derived 
from those sentences and ‘~ A’—that is, from the primary assumptions and an 
auxiliary assumption. We have not shown that ‘~ A’ is derivable from the set 
consisting of the premises A ⊃ B and ~ A.

Note that no notation has been made on line 3 as to the reason for 
assuming ‘~ A’. Someone constructing a derivation such as this may well have 
reasoned “I want to obtain ‘~ A’. Since I can assume anything, I will assume 
what I want, namely ‘~ A’, and then use Reiteration to derive my goal, ‘~ A’.” 
It is true that any sentence of SL can be assumed at any time. But there is no 
point to assuming a sentence unless one has a rule in mind for discharging 
that assumption. This is why we require the justifi cation column for auxiliary 
assumptions to include both the indication that the sentence just entered 
is an assumption (‘A’) and an indication of what rule will be used to dis-
charge the assumption. There are only fi ve rules (Conditional Introduction, 
Disjunction Elimination, Negation Introduction, Negation Elimination, and 
Biconditional Introduction) that require the construction of a subderiva-
tion. These are also the only rules that involve discharging an assumption. 
Requiring a notation that indicates what rule will be used to discharge an 
assumption largely prevents the making of assumptions that do not serve a 
strategic purpose.

A theorem of SD is a sentence of SL that can be derived from no pri-
mary assumptions. A derivation of such a sentence is said to be a proof of that 
sentence. Here is a proof of the theorem ‘[A ⊃ (B ⊃ C)] ⊃ [(A & B) ⊃ C]’:

  Derive: [A ⊃ (B ⊃ C)] ⊃ [(A & B) ⊃ C]

1 A ⊃ (B ⊃ C) A / ⊃I

2  A & B A / ⊃I

3   A 2 &E
4   B ⊃ C 1, 3 ⊃E
5   B 2 &E
6   C 4, 5 ⊃E
7 (A & B) ⊃ C 2–6 ⊃I
8 [A ⊃ (B ⊃ C)] ⊃ [(A & B) ⊃ C] 1–7 ⊃I
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There are no primary assumptions in this derivation, and every auxiliary assump-
tion has been discharged. The sentence ‘[A ⊃ (B ⊃ C)] ⊃ [(A & B) ⊃ C]’ on 
the last line does not lie within the scope of any assumption. Hence it has been 
derived from the empty set and is a theorem of SD.

As one would expect, the sentences ‘A � B’ and ‘B � A’ are equiva-
lent in SD, as the following two derivations show. Establishing the equiva-
lence in SD of two distinct sentences of SL requires two derivations because 
we must establish that each sentence is derivable from the unit set of
the other.

  Derive: B � A

1 A � B Assumption

2  B A / �I

3  A 1, 2 �E

4  A A / �I

5  B 1, 4 �I

6 B � A 2–3, 4–5 �I

Having derived ‘B � A’ from ‘A � B’, we next derive ‘A � B’ from ‘B � A’.

  Derive: A � B

1 B � A Assumption

2  A A / �I

3  B 1, 2 �E

4  B A / �I

5  A 1, 4 �I

6 A � B 2–3, 4–5 �I

These two derivations establish that ‘A � B’ and ‘B � A’ are equivalent
in SD.

When P and Q are distinct sentences we need two derivations to 
show that they are equivalent, one of Q from {P} and one of P from {Q}. 
But when P and Q are identical, the same sentence, we need only one 
derivation to show they are equivalent (the one sentence is equivalent to 
itself) because in this case the derivation of Q from {P} is also a derivation 
of P from {Q}. A sentence can be derived from its own unit set in just one 
step, using Reiteration:

1 P  Assumption

2 P  1 Reiteration
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 5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD

Derivations are unlike truth-tables and truth-trees in two important respects. First, 
when one of the syntactic properties we have defi ned holds (for a sentence, a 
pair of sentences, an argument, etc.) there is a derivation that demonstrates that 
this property holds. For example, if an argument is valid in SD it is the existence 
of a derivation of the conclusion of the argument from the set consisting of 
the argument’s premises that makes this so. But if an argument is invalid in SD 
there is no derivation that demonstrates this. Rather, it is the absence of a deriva-
tion that makes an argument invalid in SD. While one can use the derivation 
system SD to show that there is a derivation of a certain sort (by producing such 
a derivation), one cannot use it to show that there is no derivation of a certain 
sort. No number of unsuccessful attempts to construct a derivation of a certain 
sort proves that there is no such derivation. Hence, the system SD can be used 
to establish validity in SD, but not invalidity. So too for equivalence in SD, incon-
sistency in SD, and theoremhood in SD. That is, one cannot use the system SD 
to prove that the members of a pair of sentences are not equivalent in SD, that 
a set is consistent in SD, or that a sentence is not a theorem in SD. In this way 
the derivation system is unlike truth-tables and truth-trees, for those procedures 
are able to establish, for each key semantic concept of SL, whether that concept 
holds or does not hold for a sentence or set of sentences of SL.

A second important difference between truth-tables and truth-trees and 
derivations is that while it is fairly easy to see how an explicit procedure can be 
developed for constructing truth-tables and truth-trees such that following the 
procedure does not call for making any choices and always results in a truth-
table or truth-tree that yields an answer to the question being asked (e.g., is this 
set truth-functionally consistent?), it is considerably harder to specify such an 
explicit procedure for constructing derivations. Procedures that do determine 
every step of the construction process, whether for truth-tables, trees, or deri-
vations, are said to be mechanical procedures. While mechanical procedures 
for constructing derivations in systems like SD (derivation systems for senten-
tial logic)—procedures that will always produce a derivation of a certain sort 
when one does exist—have been formulated, they are very complex and we will 
make no attempt to present such a procedure here.2 There are thus two ways 
in which one’s efforts to construct a derivation of a certain sort might end in 
frustration—where there is no such derivation and where there is one but all 
attempts one makes to fi nd it fail. Of course these are very different situations; 
the fi rst results from trying to do what is impossible, the second from failing 
to fi nd a solution that does exist.

While we will not present a mechanical procedure for constructing 
derivations we will provide some useful strategies, strategies that can help avoid 

2These procedures are generally called theorem provers because what the procedure does, in the fi rst instance, 
is give mechanical instructions for constructing a proof of a theorem. These procedures are very complicated. It 
is also important to note that such procedures, when applied to a sentence that is not a theorem of the system, 
will produce no result that shows the sentence in question is not a theorem.
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frustration of the second sort just alluded to. The overarching strategy is that of 
goal analysis. In every derivation the goal is to derive a sentence, or sentences, 
from primary assumptions where there are such, otherwise from no assump-
tions. Goal analysis is the process of determining how a goal sentence can be 
derived, and involves working backward from the intended last line of the deri-
vation as well as forward from the primary assumptions, if any, of the derivation.

No matter what the goal sentence is, the derivation step that produces 
that sentence might be the application of any of the elimination rules. To see 
this one need only remember that the elimination rules tell us nothing about 
the derived sentence—in each case it might be an atomic sentence, a conjunc-
tion, a disjunction, a conditional, a negation, or a biconditional. On the other 
hand, the introduction rules do tell us a lot about the sentence derived by 
using one of these rules. First, atomic sentences cannot be derived by using 
an introduction rule, for all such rules produce truth-functionally compound 
sentences. Second, we know, for each introduction rule, what the main connec-
tive is of a sentence obtained by that rule. Conjunction Introduction produces 
conjunctions, Disjunction Introduction disjunctions, and so on.

The fi rst step in goal analysis is therefore to determine what kind of a 
sentence the goal sentence is. If it is an atomic sentence it must be obtained 
by one of the elimination rules (or by Reiteration). If it is a truth-functional 
compound sentence it might be obtained by any of the elimination rules or by 
the appropriate introduction rule, namely the introduction rule that produces 
sentences whose main connective is the main connective of the goal sentence. 
The bottom line, of course, is that there will always be multiple ways in which 
the goal sentence might be derived. But some ways will generally be more 
plausible than others, as we will soon see.

Having picked one way in which a goal sentence can be obtained, 
the next step is to determine whether this way of obtaining the goal sentence 
generates one or more new goal sentences, and then to ask of each of these 
how they might be obtained. The idea is that eventually the rule picked as a 
way of obtaining the current goal can be applied directly to currently available 
sentences, thus completing the derivation. Multiple examples will, we hope, 
make all of this much clearer.

We here enumerate the strategies we will use throughout the rest of 
this chapter:

• If the current goal sentence can be obtained by Reiteration, use that 
rule, otherwise

• If the current goal sentence can be obtained by using a non-subderi-
vation rule, or a series of such rules, do so; otherwise

• Try to obtain the goal sentence by using an appropriate subderivation 
rule.

• When using a negation rule, try to use an already accessible nega-
tion (if there is one) as the ~ Q that the negation rules require be 
derived.
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Most of the derivations we will construct and most of the derivations 
called for by exercises will involve using multiple strategies, as most will involve 
deriving one or more subgoals before the fi nal goal can be derived. In practice, 
this means that most of the time in constructing derivations we work both from 
the bottom up and from the top down. That is, we work from the bottom up 
by noting what sentence or sentences we need to obtain before we can obtain 
the sentence we are trying to derive, and make them subgoals. We work from the 
top down by deriving from accessible lines and subderivations sentences that will 
be useful in obtaining our fi nal goal sentence. We will shortly work through 
the construction of derivations that illustrate this process. Finally, it will often 
be the case that two or more strategies appear to be viable ways of obtaining 
a goal sentence. For example, if the current goal sentence is a material condi-
tional and one of the accessible sentences is a disjunction, then both Disjunc-
tion Elimination and Conditional Introduction suggest themselves as possible 
strategies. Rather than puzzling over which strategy is most likely to succeed 
or which will produce the shortest derivation it is often wise to just pick one 
and pursue it.

Suppose we are trying to derive ‘(A & B) ⊃ C’ from {A ⊃ C}. The 
derivation will obviously have just one primary assumption. So we start work 
as follows:

  Derive: (A & B) ⊃ C

1 A ⊃ C  Assumption

G (A & B) ⊃ C

Our current goal is the sentence ‘(A & B) ⊃ C’. We have indicated this by 
writing ‘G’ where a line number will eventually be placed. We will follow this 
convention, of indicating goal sentences by writing ‘G’ where the number of 
the line will eventually be, throughout the rest of this section. Readers should 
follow this convention when constructing their own derivations only if they 
are working in pencil and can erase these goal sentence markers and replace 
them with line numbers as appropriate. We write this goal sentence a substan-
tial distance below the primary assumptions, because we do not know, at this 
stage, how many steps it will take to derive this sentence. At this early stage 
we know neither the line number nor the justifi cation for the fi nal line of the 
derivation. We note that the goal sentence is a material conditional. Hence, in 
principle it could come by any one of the elimination rules, by Reiteration, or 
by Conditional Introduction. Reiteration is not plausible, as the goal sentence 
is not among the primary assumptions (there is only one). An elimination rule 
is not a likely way of generating the goal sentence because the only accessible 

ber38413_ch05_146-225.indd Page 181  12/4/12  2:49 PM ber38413_ch05_146-225.indd Page 181  12/4/12  2:49 PM F-400F-400



182  SENTENTIAL LOGIC: DERIVATIONS

sentence is the conditional on line 1 and Conditional Elimination requires 
that we have both a conditional and the antecedent of that conditional. In this 
case we do not have the antecedent of ‘A ⊃ C’, and even if we did the result 
of applying Conditional Elimination would be ‘C’, not ‘(A & B) ⊃ C’. So Con-
ditional Introduction seems to be the most likely rule to have produced our 
goal sentence. We now note that to use Conditional Introduction we need a 
subderivation whose assumption is the antecedent of our goal sentence, namely 
‘A & B’, and we need to derive the consequent of our goal sentence, ‘C’, within 
the scope of that assumption. That is, we know our derivation will look like this:

  Derive: (A & B) ⊃ C

1 A ⊃ C Assumption

2  A & B A / ⊃I

G  C
G (A & B) ⊃ C 2–__ ⊃I

We still do not know the line number of the last line of our derivation, but we 
do know we will use Conditional Introduction to obtain it and that we will cite 
a subderivation that begins on line 2. We note this in the justifi cation column 
for the last line by entering ‘2–__ ⊃I’ where the underscore marks the space 
where we will subsequently enter the number of the preceding line. We also 
know that line 2 will be an auxiliary assumption made for the purpose of doing 
Conditional Introduction. We are now in a position to stop wondering how
‘(A & B) ⊃ C’ will be obtained. We have a strategy for obtaining that sentence, 
Conditional Introduction. Accordingly we now switch our focus to how we can 
complete the subderivation we have started. That is, how can we get from our 
two assumptions, one primary and one auxiliary, to ‘C’? ‘C’ is an atomic sen-
tence, so we know we will not use an introduction rule to obtain this sentence. 
Nor will Reiteration generate ‘C’. So we are left with the elimination rules. 
Which elimination rule seems promising? Here it is important to learn to “see” 
what is available to us at this point in our work. We have two sentences to work 
from, ‘A ⊃ C’ and ‘A & B’. We want ‘C’. We know that ‘C’ can be obtained from 
‘A ⊃ C’ by Conditional Elimination if we have ‘A’. We do not currently have
‘A’. But we do have ‘A & B’, and ‘A’ can be obtained from ‘A & B’ by Conjunc-
tion Elimination. So we now see a path to the completion of our derivation:

  Derive: (A & B) ⊃ C

1 A ⊃ C Assumption

2  A & B A / ⊃I

3  A 2 &E
4  C 1, 3 ⊃E
5 (A & B) ⊃ C 2–4 ⊃I
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We will spend the rest of this section illustrating how the strategies we have 
enumerated can be used to construct derivations. We will fi rst construct 
derivations that establish validity in SD, then ones that establish that a sen-
tence is a theorem in SD, then ones that establish the equivalence in SD of 
a pair of sentences, and fi nally ones that establish inconsistency in SD. We 
again note that while derivations can be used to establish such results, they 
cannot be used to establish that an argument is invalid in SD, that a pair of 
sentences are not equivalent in SD, or that a set of sentences is consistent 
in SD. Nor, except in special cases, can derivations be used to show that a 
sentence is not a theorem in SD.

ARGUMENTS

Consider next the following argument.

~ N

(~ N ⊃ L) & [D � (~ N ∨ A)]

L & D

To show that this argument is valid in SD we need to derive the conclusion 
from the set consisting of the premises. So we start as follows:

  Derive: L & D

1 ~ N Assumption
2 (~ N ⊃ L) & [D � (~ N ∨ A)] Assumption

G L & D —, — &I

Our goal is a conjunction. It seems unlikely that it will be obtained by an 
elimination rule, in part because ‘L & D’ does not occur as a component 
of any accessible sentence. An introduction rule seems more promising, 
and since the main connective of our goal sentence is ‘&’ it is Conjunction 
Introduction that seems most promising. We have noted this by writing ‘&I’ 
in the justifi cation column for our goal sentence, and we have indicated with 
two underscores that two line numbers will need to be supplied later. If we 
are to use Conjunction Introduction we will need to have the two conjuncts 
‘L’ and ‘D’ available on accessible earlier lines. So we now add two subgoals 
to our derivation structure:
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  Derive: L & D

1 ~ N Assumption
2 (~ N ⊃ L) & [D � (~ N ∨ A)] Assumption

G L

G D
G L & D —, — &I

If we can obtain both ‘L’ and ‘D’ we can use Conjunction Introduction to 
obtain ‘L & D’. Our new goal sentences, ‘L’ and ‘D’ are both atomic sentences, 
so neither will come by an introduction rule. We note that ‘L’ occurs as the 
consequent of a conditional embedded in our second primary assumption. If 
we could get that conditional, ‘~ N ⊃ L’, out of line 2 we could obtain ‘L’ by 
Conditional Elimination, as we do have the antecedent of that conditional ‘~ N’ 
at line 1. Conjunction Elimination does allow us to extract ‘~ N ⊃ L’ from line 2:

  Derive: L & D

1 ~ N Assumption
2 (~ N ⊃ L) & [D � (~ N ∨ A)] Assumption

3 ~ N ⊃ L 2 &E
4 L  1, 3 ⊃E

G D
G L & D 4, — &I

The remaining task, then, is to obtain ‘D’. We note that this sentence occurs in 
the biconditional embedded in line 2. Since the main connective of the sentence 
on line 2 is ‘&’, we can obtain the biconditional by Conjunction Elimination. To 
get ‘D’ from that biconditional we can use Biconditional Elimination, if we have 
‘~ N ∨ A’. This reasoning allows us to add the following steps to our derivation:

  Derive: L & D

1 ~ N Assumption
2 (~ N ⊃ L) & [D � (~ N ∨ A)] Assumption

3 ~ N ⊃ L 2 &E
4 L  1, 3 ⊃E
5 D �(~ N ∨ A) 2 &E
G ~ N ∨ A
G D  5, — �E
G L & D 4, — &I
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Note that we have added ‘~ N ∨ A’ as a new goal sentence. The main con-
nective of this sentence is ‘∨’, so if we had either ‘~ N’ or ‘A’ we could obtain 
our current goal by Disjunction Introduction. As it happens, we do have 
‘~ N’—it occurs as a primary assumption on line 1. So we can now complete 
our derivation.

  Derive: L & D

1 ~ N Assumption
2 (~ N ⊃ L) & [D � (~ N ∨ A)] Assumption

3 ~ N ⊃ L 2 &E
4 L  1, 3 ⊃E
5 D � (~ N ∨ A) 2 &E
6 ~ N ∨ A 1 ∨I
7 D  5, 6 �E
8 L & D 4, 7 &I

We will next show that the following argument is valid in SD by deriv-
ing its conclusion from the set consisting of its premises.

~ A ∨ B

~ A ⊃ B

B � C

C

We begin as always, by taking the premises as primary assumptions and making 
the conclusion our primary goal.

  Derive: C

1 ~ A ∨ B Assumption
2 ~ A ⊃ B Assumption
3 B � C Assumption

G C

After some refl ection, two strategies suggest themselves: using Negation Elimi-
nation to obtain ‘C’ and using Disjunction Elimination to obtain ‘C’. Both will, 
in the end, work. We choose to use Disjunction Elimination.
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  Derive: C

1 ~ A ∨ B Assumption
2 ~ A ⊃ B Assumption
3 B � C Assumption

4  ~ A A / ∨E

G  C

  B A / ∨E

G  C
G C  1, 4–—, —–— ∨E

Our strategy, as the above schema indicates, is to show that the conclusion of 
the argument, ‘C’, can be derived from each disjunct of ‘~ A ∨ B’, and hence 
that ‘C’ itself can be obtained by Disjunction Elimination. Completing the sec-
ond subderivation is trivial, for ‘C’ can be obtained from line 3 and our second 
auxiliary assumption by Biconditional Elimination.

  Derive: C

1 ~ A ∨ B Assumption
2 ~ A ⊃ B Assumption
3 B � C Assumption

4  ~ A A / ∨E

G  C

  B A / ∨E

G  C 3, — �E
G C  1, 4–—, —–— ∨E

Completing the fi rst subderivation is only slightly more challenging. From lines 
4 and 2 we can obtain ‘B’ by Conditional Elimination. And we can then use 
Biconditional Elimination to obtain ‘C’.
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  Derive: C

1 ~ A ∨ B Assumption
2 ~ A ⊃ B Assumption
3 B � C Assumption

4  ~ A A / ∨E

5  B 2, 4 ⊃E
6  C 3, 5 �E
7  B A / ∨E

8  C 3, 7 �E
9 C  1, 4–6, 7–8 ∨E

THEOREMS

Next we will construct proofs of several theorems. We start with a very obvi-
ous theorem, ‘A ∨ ~ A’, whose proof is not obvious. Our task is to derive this 
sentence using no primary assumptions.

  Derive: A ∨ ~ A

1

G A ∨ ~ A

Our goal is ‘A ∨ ~ A’ and here it should be obvious that though this sentence 
is a disjunction we will not be able to obtain it by Disjunction Introduction. 
Neither ‘A’ nor ‘~ A’ is a theorem, and neither can be derived given no pri-
mary assumptions. So the only sensible strategy is to use Negation Elimination.

  Derive: A ∨ ~ A

1  ~ (A ∨ ~ A) A / ~ E

G A ∨ ~ A 1–— ~ E
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Note that the only accessible sentence, the sentence on line 1, is a negation. 
There is no rule of SD that allows us to ‘take apart’ a negation. In the present 
context, we can use Reiteration on line 1, but there is little else we can do 
with it. Fortunately, this will be useful. Our current strategy is to use Nega-
tion Elimination and to do so we need to derive a sentence and its negation. 
So we will use the assumption on line 1 as the negation and make ‘A ∨ ~ A’ 
our new goal.

  Derive: A ∨ ~ A

1  ~ (A ∨ ~ A) A / ~ E

G  A ∨ ~ A
  ~ (A ∨ ~ A) 1 R
G A ∨ ~ A 1–— ~ E

We noted above that obtaining the last line of our derivation by Disjunc-
tion Introduction will not work because neither ‘A’ nor ‘~ A’ is a theorem. 
But our current goal, which is the same sentence as that occurring on the 
last line of the derivation, is to be obtained with the help of the auxiliary 
assumption ‘~ (A ∨ ~ A)’, and here it is reasonable to hope to use Disjunc-
tion Introduction. We will make ‘A’ our new goal and try to derive it by 
Negation Elimination.

  Derive: A ∨ ~ A

1  ~ (A ∨ ~ A) A / ~ E

2   ~A A / ~ E

G  A 2–— ~E
G  A ∨ ~ A — ∨I
G  ~ (A ∨ ~ A) 1 R
G A ∨ ~ A 1–— ~ E

One of the points we have emphasized is that when using a Negation Elimi-
nation subderivation it is wise to use as the ~ Q a negation that is readily 
available. In the present instance two negations are readily available, ‘~ A’ 
and ‘~ (A ∨ ~ A)’. There may be a temptation to select ‘~ A’ as ~ Q. But 
this would be a mistake, for doing so would require that Q be ‘A’ and that 
sentence is not readily derived from the available assumptions. (We should 
take a hint from the fact that the point of our current subderivation is to 
obtain ‘A’. If there were an easy way to obtain it we would not be involved 
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in the current Negation Elimination subderivation.) But if we take ~ Q to be
‘~ (A ∨ ~ A)’ then our new goal becomes ‘A ∨ ~ A’ and this sentence is read-
ily derived—by applying Disjunction Introduction to line 2. We are now able 
to complete the derivation.

  Derive: A ∨ ~ A

1  ~ (A ∨ ~ A) A / ~ E

2   ~ A A / ~ E

3   A ∨ ~ A 2 ∨I
4   ~ (A ∨ ~ A) 1 R
5  A  2–4 ~ E
6  A ∨ ~ A 5 ∨I
7  ~ (A ∨ ~ A) 1 R
8 A ∨ ~ A 1–7 ~ E

Next we will prove the theorem ‘~ (A ∨ B) � (~ A & ~ B)’. This theo-
rem is a biconditional, so it is plausible the last line will come from Bicondi-
tional Introduction, and that rule requires two subderivations, one in which we 
derive ‘~ A & ~ B’ from {~ (A ∨ B)} and the other in which we derive ‘~ (A ∨ 
B)’ from {~ A & ~ B} .

  Derive: ~ (A ∨ B) � (~ A & ~ B)

1  ~ (A ∨ B) A / �I

G  ~ A & ~ B

  ~ A & ~ B A / �I

G  ~ (A ∨ B)
G ~(A ∨ B) � (~ A & ~ B) 1–—, —–— �I

We now have two goals, ‘~ A & ~ B’ in the fi rst subderivation and ‘~ (A ∨ B)’ 
in the second subderivation. We will work on the upper subderivation fi rst. 
Since our goal is a conjunction, we will take as new subgoals the two conjuncts 
of that conjunction, ‘~ A’ and ‘~ B’, and attempt to derive each by Negation 
Introduction.
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190  SENTENTIAL LOGIC: DERIVATIONS

  Derive: ~ (A ∨ B) � (~ A & ~ B)

1  ~ (A ∨ B) A / �I

2   A A / ~ I

3   A ∨ B 2 ∨I
4   ~ (A ∨ B) 1 R
5  ~ A 2–4 ~ I
6   B A / ~ I

7   A ∨ B 6 ∨I
8   ~ (A ∨ B) 1 R
9  ~ B 6–8 ~ I

10  ~ A & ~ B 5, 9 &I
11  ~ A & ~ B A / �I

G  ~ (A ∨ B)
G ~ (A ∨ B) � (~ A & ~ B) 1–10, 11–— �I

Note that within the fi rst of our two main subderivations we twice use Nega-
tion Introduction, and in each case use ‘A ∨ B’ and ‘~ (A ∨ B)’ as Q
and ~ Q.

Completing our second main subderivation requires deriving ‘~ (A ∨ B)’, 
and this invites a Negation Introduction subderivation, giving us a new assump-
tion, ‘A ∨ B’, which in turn invites a Disjunction Elimination strategy:

11  ~ A & ~ B   A / �I

12   A ∨ B    A / ~ I

13    A    A / ∨E

    B

G  ~ (A ∨ B)   12–— ~ I
G ~ (A ∨ B) � (~ A & ~ B)  1–10, 11–— �I
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The question now is what sentence we want to play the role of ‘R’ in our Disjunc-
tion Elimination subderivation. We need a sentence and its negation to make 
our Negation Introduction subderivation, begun at line 12, work. Two negations 
are readily available, ‘~ A’ and ‘~ B’. So we will arbitrarily select one of these, say
‘~ B’, and then make ‘B’ the sentence we try to obtain by Disjunction Elimination:

11  ~ A & ~ B A / �I

12   A ∨ B  A / ~ I

13    A  A / ∨E

G    B

    B  A / ∨E

G    B  — R
G   B   12, 13–—, —–— ∨E
G   ~ B  11 &E
G  ~ (A ∨ B) 12–— ~ I
G ~ (A ∨ B) � (~ A & ~ B) 1–10, 11–— �I

We now have two subderivations to complete. The second is, in fact, already 
complete, for it involves deriving ‘B’ from an auxiliary assumption of ‘B’, so Reit-
eration will accomplish the task. The fi rst involves deriving ‘B’ from the assump-
tions on lines 11 through 13. Fortunately a sentence, ‘A’, and its negation, ‘~ A’ 
are both readily available. So Negation Elimination will yield the desired result:

11  ~ A & ~ B A / �I

12   A ∨ B  A / ~ I

13    A  A / ∨E

14     ~ B A / ~ E

15     ~ A 11 &E
16     A 13 R
17    B  14–16 ~ E

18    B  A / ∨E

19    B  18 R
20   B   12, 13–17, 18–19 ∨E
21   ~ B  11 &E
22  ~ (A ∨ B) 12–21 ~ I
23 ~ (A ∨ B) � (~ A & ~ B) 1–10, 11–22 �I

This completes our proof of the theorem ‘~ (A ∨ B) � (~ A & ~ B)’.
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We will conclude our discussion of theorems by constructing a proof 
of what has become known as Peirce’s Law.3

[(A ⊃ B) ⊃ A] ⊃ A

Since the theorem is a conditional it is plausible that we will be using Condi-
tional Introduction as our primary strategy.

  Derive: [(A ⊃ B) ⊃ A] ⊃ A

1  (A ⊃ B) ⊃ A A / ⊃I

G  A
G [(A ⊃ B) ⊃ A] ⊃ A 1–— ⊃I

But how we should proceed next may not be obvious. We could derive our cur-
rent goal, ‘A’, from line 1 by Conditional Elimination if we also had ‘A ⊃ B’, but 
we do not. So perhaps we should take the sentence ‘A ⊃ B’ as our new goal, and 
try to obtain it by Conditional Introduction.

  Derive: [(A ⊃ B) ⊃ A] ⊃ A

1  (A ⊃ B) ⊃ A A / ⊃I

2   A  A / ⊃I

G   B
G  A ⊃ B 2–— ⊃I
G  A   1, — ⊃E
G [(A ⊃ B) ⊃ A] ⊃ A 1–— ⊃I

So far, one might think, so good. But how are we to obtain ‘B’ from the sentences 
on lines 1 and 2? We could assume ‘~ B’ and hope to use Negation Elimination.

  Derive: [(A ⊃ B) ⊃ A] ⊃ A

1  (A ⊃ B) ⊃ A A / ⊃I

2   A  A / ⊃I

3    ~ B A / ~ E

G   B
G  A ⊃ B 2–— ⊃I
G  A   1, — ⊃E
G [(A ⊃ B) ⊃ A] ⊃ A 1–— ⊃I

3The fi rst proof of this theorem was given by Charles Peirce, a nineteenth-century American philosopher.
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Unfortunately, the only negation now available is ‘~ B’, so it appears that to 
make Negation Elimination work we will have to derive ‘~ B’ (by Reiteration) 
and ‘B’. But how do we derive ‘B’? We seem to be back where we were before 
we assumed ‘~ B’. That is, ‘B’ is again our goal sentence.

We appear to be on the wrong track. Suppose that when we had ‘A’ 
as our goal, instead of planning on deriving ‘A’ by Conditional Elimination we 
try to derive it by Negation Elimination.

  Derive: [(A ⊃ B) ⊃ A] ⊃ A

1  (A ⊃ B) ⊃ A A / ⊃I

2   ~A A / ~ E

G  A  2–— ~ E
G [(A ⊃ B) ⊃ A] ⊃ A 1–— ⊃I

Since we have a negation available, ‘~ A’, perhaps we should take ‘A’ and ‘~ A’ 
as the sentences Q and ~ Q we need to use Negation Elimination and accord-
ingly make ‘A’ our new goal. This may seem no more promising than was the 
line of reasoning recently abandoned, since deriving ‘A’ was our goal before 
assuming ‘~ A’. But we are, in fact, making progress.

  Derive: [(A ⊃ B) ⊃ A] ⊃ A

1  (A ⊃ B) ⊃ A A / ⊃I

2   ~ A A / ~ E

G   A
   ~ A 2 R
G  A  2–— ~ E
G [(A ⊃ B) ⊃ A] ⊃ A 1–— ⊃I

We can obtain ‘A’ from line 1 by Conditional Elimination if we can fi rst obtain 
‘A ⊃ B’. This is, of course, the position we were in at the start of our work. But 
now we have an additional assumption available to us, namely ‘~ A’.
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  Derive: [(A ⊃ B) ⊃ A] ⊃ A

1  (A ⊃ B) ⊃ A A / ⊃I

2   ~ A  A / ~ E

3    A A / ⊃I

G    B
G   A ⊃ B 3–— ⊃I
G   A  1–— ⊃E
   ~ A  2 R
G   A  2–— ~ E
G [(A ⊃ B) ⊃ A] ⊃ A 1–— ⊃I

And now we can see our way to the end. We need ‘B’ and we have a sentence 
and its negation readily available (‘A’ and ‘~ A’), so we can assume ‘~ B’ and 
use Negation Elimination. Here is the completed derivation.

  Derive: [(A ⊃ B) ⊃ A] ⊃ A

1  (A ⊃ B) ⊃ A A / ⊃I

2   ~ A  A / ~ E

3    A  A / ⊃I

4     ~ B A / ~ E

5     A 3 R
6     ~A 2 R
7    B  4–6 ~ E
8   A ⊃ B 3–7 ⊃I
9   A   1, 8 ⊃E

10   ~A   2 R
11  A    2–10 ~ E
12 [(A ⊃ B) ⊃ A] ⊃ A 1–11 ⊃I

It is worth noting that in this example, as is frequently the case, a strategy 
that at fi rst seems obvious (using Conditional Elimination to obtain ‘A’ as the 
penultimate line of the derivation) but proves problematic can successfully 
be used as a secondary strategy inside an alternative strategy (here Negation 
Elimination).

EQUIVALENCE

Suppose we want to establish that ‘A � ~ B’ and ‘~ A � B’ are equivalent 
in SD (they are). Two derivations are required, one deriving ‘~ A � B’ from 
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{A � ~ B} and one deriving ‘A � ~ B’ from {~ A � B}. Here is a start for 
the fi rst of these:

  Derive: ~ A � B

1 A � ~ B  Assumption

G ~ A � B

It should be apparent that our goal, ‘~ A � B’, is not going to be obtained by 
an elimination rule. We have too little to work with by way of primary assump-
tions for that to be a viable strategy. Since the main connective of our goal 
sentence is ‘�’, Biconditional Introduction may be a viable strategy. So we 
continue our derivation thus:

  Derive: ~ A � B

1 A � ~ B  Assumption

2  ~ A   A / �I

G  B

  B    A / �I

G  ~ A
G ~ A � B   2–—, —–— �I
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We now have two subderivations to complete. The goal of the fi rst is ‘B’, and 
it can be obtained by Negation Elimination. The goal of the second, ‘~ A’, can 
be obtained by Negation Introduction:

  Derive: ~ A � B

1 A � ~ B  Assumption

2  ~ A   A / �I

3   ~ B  A / ~ E

4   A   1, 3 �E
5   ~ A  2 R
6  B    3–5 ~ E

7  B    A / �I

8   A   A / ~ I

9   ~ B  1, 8 �E
10   B   7 R
11  ~ A   8–10 ~ I
12 ~ A � B  2–6, 7–11 �I

The second half of our current task is to derive ‘A � ~ B’ from {~A � B}.

  Derive: A � ~ B

1 ~ A � B  Assumption

G A � ~ B

Biconditional Introduction is also a good strategy in this case.

  Derive: A � ~ B

1 ~ A � B  Assumption

2  A    A / �I

G  ~ B   A / �I

  ~ B

G  A
G A � ~ B  2–—, —–— �I
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Here, too, negation strategies will yield the desired results:

  Derive: A � ~ B

1 ~ A � B  Assumption

2  A    A / �I

3   B   A / ~ I

4   ~ A  1, 3 �E
5   A   2 R
6  ~ B   3–5 ~ I

7  ~ B   A / �I

8   ~ A  A / ~ E

9   B   1, 8 �E
10   ~ B  7 R
11  A    8–10 ~ E
12 A � ~ B  2–6, 7–11 �I

We next show that ‘A ⊃ B’ and ‘~ A ∨ B’ are equivalent in SD. To do so 
will require deriving each sentence from the unit set of the other. So we will be 
doing two derivations. Both of these derivations are rather diffi cult but also highly 
instructive as they will allow us to illustrate strategies associated with a number 
of introduction and elimination rules. We set up our fi rst derivation as follows:

  Derive: ~ A ∨ B

1 A ⊃ B Assumption

G ~ A ∨ B

Our goal sentence is ‘~ A ∨ B’, a disjunction. So we might be tempted to try 
to obtain our goal by Disjunction Introduction. While this strategy will not 
work, we will explore it anyway to illustrate how one can fall into unproductive 
strategies. If we are to use Disjunction Introduction we will need to fi rst obtain 
either ‘~ A’ or ‘B’. We will take ‘B’ as our new goal. (In fact, neither ‘B’ nor 
‘~ A’ is obtainable given just ‘A ⊃ B’.)

  Derive: ~ A ∨ B

1 A ⊃ B  Assumption

G B
G ~ A ∨ B  — ∨I
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Since our goal is now ‘B’, and we have ‘A ⊃ B’ at line 1, it might seem 
like a good idea to assume ‘A’ and then use Conditional Elimination to 
obtain ‘B’.

  Derive: ~ A ∨ B

1 A ⊃ B    Assumption

2  A    A

3  B    1, 2 ⊃E
4 B     3 R MISTAKE!
5 ~ A ∨ B   4 ∨ I

Line 4 is a mistake because it appeals to a sentence, ‘B’, on line 3 that is not 
accessible at line 4. There is a scope line to the left of ‘B’ at line 3 that does 
not continue through line 4. We had two chances to avoid going down this 
path to a mistake. First, thinking we could get ‘~ A ∨ B’ by fi rst deriving ‘B’ 
from the assumption on line 1 was a bad idea. That assumption is ‘A ⊃ B’. We 
are trying to show that ‘A ⊃ B’ and ‘~ A ∨ B’ are equivalent in SD, as indeed 
they are. Although we are here concerned with syntactic properties of sentences 
and sets of sentences, it is well to remember that for any set � of sentences of 
SL and any sentence P of SL,

� |  P in SD if and only if � |= P.

Our ill-advised strategy involved trying to show that

{A ⊃ B} |  B

where in fact ‘B’ is not derivable from {A ⊃ B}. For if this derivability claim did 
hold then it would also have to be the case that

{A ⊃ B} |= B

and this claim is false. There are truth-value assignments on which ‘A ⊃ B’ is 
true and ‘B’ false, namely every truth-value assignment on which ‘A’ and ‘B’ 
are both assigned F.

We had a second chance to avoid going down an unpromising road 
when we assumed ‘A’ at line 2. Note that there is nothing in the justifi cation 
column for line 2 indicating why we are making this assumption. Had we been 
paying attention at that time we would have realized that we have no good 
reason for assuming ‘A’. There is no subderivation strategy that will allow us to 
assume ‘A’, derive some sentence or sentences, and then end the subderivation 
and enter ‘B’ as the next line.

A more promising strategy for completing our fi rst derivation, though 
one that does not initially come to mind when one is fi rst learning to do deri-
vations, is to use Negation Elimination to obtain ‘~ A ∨ B’.
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  Derive: ~ A ∨ B

1 A ⊃ B    A / �I

2  ~ (~ A ∨ B) A / ~ E

G ~ A ∨ B   2–— ~ E

This strategy will seem unpromising if one thinks either that the Q and ~ Q 
that need to be derived to use a negation rule must be an atomic sentence and 
its negation, or that a negation must be among or easily obtained from the 
sentences that are accessible before one makes the auxiliary assumption that 
begins a negation subderivation. Neither is the case. The Q and ~ Q that both 
negation rules require deriving can be a compound sentence and its negation 
as well as an atomic sentence and its negation. And the ~ Q that is derived 
can occur as the auxiliary assumption that initiates the negation subderivation. 
Keeping this in mind we proceed as follows:

  Derive: ~ A ∨ B

1 A ⊃ B    Assumption

2  ~ (~ A ∨ B) A / ~ E

G  ~ A ∨ B
  ~ (~ A ∨ B) 2 R
G ~ A ∨ B   2–— ~ E

It certainly might appear that we are making no progress. The goal of 
this derivation is ‘~ A ∨ B’. And this same sentence is now our goal within 
the subderivation begun at line 2. But in fact we are making progress. We 
noted earlier that we cannot derive ‘~ A ∨ B’ by Disjunction Introduction 
when the only accessible sentence is ‘A ⊃ B’. But we now have two acces-
sible sentences to appeal to, those at lines 1 and 2. If we can use these two 
assumptions to derive ‘~ A’, we can obtain our current goal, ‘~ A ∨ B’ by 
Disjunction Introduction. This suggests we try to obtain ‘~ A’ by Negation 
Introduction.
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  Derive: ~ A ∨ B

1 A ⊃ B    Assumption

2  ~ (~ A ∨ B) A / ~ E

3   A   A / ~ I

G  ~ A    3–— ~ I
G  ~ A ∨ B
  ~ (~ A ∨ B) 2 R
G ~ A ∨ B   2–— ~ E

We are again at the point where it is essential to be able to ‘see’ what 
we can obtain from the sentences that are accessible at the point where we are 
working (inside the subderivation that we began at line 3). The accessible sen-
tences are those on lines 1–3. At line 3 we have ‘A’. At line 1 we have ‘A ⊃ B’. 
From these two sentences we can obtain ‘B’ by Conditional Elimination. From 
‘B’ we can obtain ‘~ A ∨ B’ by Disjunction Introduction, and we can derive the 
negation of this sentence, ‘~ (~ A ∨ B)’ by Reiteration on line 2. These steps 
will complete the fi rst half of our current task, that of showing that ‘A ⊃ B’ 
and ‘~ A ∨ B’ are equivalent in SD.

  Derive: ~ A ∨ B

1 A ⊃ B    Assumption

2  ~ (~ A ∨ B) A / ~ E

3   A   A / ~ I

4   B   1, 3 ⊃E
5   ~ A ∨ B 4 ∨I
6   ~ (~ A ∨ B) 2 R
7  ~ A    3–6 ~ I
8  ~ A ∨ B  7 ∨I
9  ~ (~ A ∨ B) 2 R

10 ~ A ∨ B   2–9 ~ E

This derivation of ‘~ A ∨ B’ from ‘A ⊃ B’ is instructive in several ways. First, given 
that a disjunction is derivable, it does not follow that the last step in that deriva-
tion is Disjunction Introduction. Second, in picking a goal sentence it is wise 
to consider whether it is plausible that the selected sentence is derivable from 
the currently accessible sentences. Third, when using a negation rule the Q and 
~ Q to be derived within the scope of the assumption called for by the rule may 
well both be compound sentences. Fourth, it does sometimes happen that one 
sentence is a goal in multiple parts of a derivation. Fifth, in using a negation 
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rule it is advisable to use as ~ Q a sentence that is readily available, and it may 
be available as the assumption of the very subderivation in which we are working. 
Finally, there is nothing wrong with using two or more instances of negation rules 
within which the same sentences (on different lines) play the roles of Q and ~ Q.

The second part of our proof that ‘A ⊃ B’ and ‘~ A ∨ B’ are equivalent 
in SD, a derivation of ‘A ⊃ B’ from {~ A ∨ B}, is also instructive.

  Derive: A ⊃ B

1 ~ A ∨ B   Assumption

G A ⊃ B

We now need a strategy for getting from ‘~ A ∨ B’ to ‘A ⊃ B’. A little refl ec-
tion suggests two alternative strategies. Since the goal sentence is a material 
conditional, we could use Conditional Introduction, and accordingly assume 
‘A’ at line 2 for the purpose of using Conditional Introduction. Alternatively, 
since the only accessible sentence, the one at line 1, is a disjunction, we could 
plan to work to the conditional we want by using Disjunction Elimination. That 
is, in this case we can either let our goal sentence drive our strategy, working 
from the bottom up, or we can let our one accessible sentence drive our strat-
egy, working from the top down. Here, as is often the case, both strategies will 
work. Moreover, whichever strategy we pick as our primary strategy we will end 
up using the other strategy within the fi rst strategy. This is also often the case. 
Picking Disjunction Elimination as our primary strategy yields the following:

  Derive: A ⊃ B

1 ~ A ∨ B   Assumption

2  ~ A    A / ∨E

G  A ⊃ B

  B    A / ∨E

G  A ⊃ B
G A ⊃ B    1, 2–—, —–— ∨E

Lines 1 and 2, by themselves, don’t suggest a strategy for deriving
‘A ⊃ B’. But ‘A ⊃ B’ is a material conditional and this suggests we use Condi-
tional Introduction to obtain it.
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  Derive: A ⊃ B

1 ~ A ∨ B   Assumption

2  ~ A   A / ∨E

3   A   A / ⊃I

G   B
G  A ⊃ B   3–— ⊃I

  B    A / ∨E

G  A ⊃ B
G A ⊃ B   1, 2–—, —–— ∨E

Our goal within the subderivation beginning on line 3 is ‘B’. We now note 
that the three accessible sentences include both ‘A’ and ‘~ A’. Their availability 
invites a negation strategy. To obtain ‘B’ we thus assume ‘~ B’ and derive ‘A’ 
and ‘~ A’, both by Reiteration.

  Derive: A ⊃ B

1 ~ A ∨ B   Assumption

2  ~ A   A / ∨E

3   A   A / ⊃I

4    ~ B A / ~ E

5    A  3 R
6    ~ A 2 R
7   B   4–6 ~ E
8  A ⊃ B   3–7 ⊃I

9  B    A / ∨E

G  A ⊃ B
G A ⊃ B   l, 2–8, 9–— ∨E

What remains is to derive ‘A ⊃ B’ from ‘B’. This is actually quite easy. We can use 
Conditional Introduction, assuming ‘A’ and deriving ‘B’ by Reiteration on line 9.
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  Derive: A ⊃ B

1 ~ A ∨ B   Assumption

2  ~ A   A / ∨E

3   A   A / ⊃I

4    ~B  A / ~ E

5    A  3 R
6    ~ A  2 R
7   B   4–6 ~ E
8  A ⊃ B   3–7 ⊃I
9  B    A / ∨E

10   A   A / ⊃I

11   B   9 R
12  A ⊃ B   10–11 ⊃I
13 A ⊃ B   1, 2–8, 9–12 ∨E

We have derived ‘~ A ∨ B’ from {A ⊃ B} and ‘A ⊃ B’ from {~ A ∨ B}, 
thus demonstrating that these sentences are equivalent in SD. Two important 
lessons about material conditionals are illustrated in our last derivation. The 
fi rst is that a conditional can be derived from the negation of its antecedent, 
as we did in lines 2 through 8 above. The second is that a material conditional 
can be derived from its consequent as we did in lines 9–12 above.

In our last derivation we used Disjunction Elimination as our primary 
strategy. Using Conditional Introduction as the primary strategy works just as well:

  Derive: A ⊃ B

1 ~ A ∨ B   Assumption

2  A    A / ⊃I

3   ~ A   A / ∨E

4    ~ B A / ~ E

5    A  2 R
6    ~ A 3 R
7   B   4–6 ~ E
8   B   A / ∨E

9   B   8 R
10  B    1, 3–7, 8–9 ∨E
11 A ⊃ B   2–10 ⊃I

INCONSISTENCY

We will conclude our illustration of strategies for constructing derivations in 
SD by doing several derivations that demonstrate the inconsistency of given 
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sets. Consider fi rst the set {~ (A ⊃ B), B}. To show this set is inconsistent in SD 
we need to derive from it some sentence Q and its negation ~ Q. In planning 
a strategy it helps to remember that Q need not be an atomic sentence, and 
that it is often useful to use as ~ Q a sentence that is readily available. In the 
present case the only readily available negation is ‘~ (A ⊃ B)’. This suggests 
the following strategy:

  Derive: A ⊃ B, ~ (A ⊃ B)

1 ~ (A ⊃ B)  Assumption

2 B     Assumption

G A ⊃ B
G ~ (A ⊃ B)  1 R

Our goal is now to derive ‘A ⊃ B’ from our two assumptions. Since this goal 
sentence is a conditional, we will plan on using Conditional Introduction:

  Derive: A ⊃ B, ~ (A ⊃ B)

1 ~ (A ⊃ B)  Assumption
2 B     Assumption

3  A    A / ⊃I

G  B
G A ⊃ B   3–— ⊃I
G ~ (A ⊃ B)  1 R

It is now apparent that our derivation is effectively done. Our only remaining 
goal, ‘B’, can be obtained by Reiteration on line 2:

  Derive: A ⊃ B, ~ (A ⊃ B)

1 ~ (A ⊃ B)  Assumption
2 B     Assumption

3  A    A / ⊃I

4  B    2 R
5 A ⊃ B   3–4 ⊃I
6 ~ (A ⊃ B)  1 R

Establishing that the following set is inconsistent in SD is only modestly 
more challenging:

{A � ~ B, B � C, A � C}
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In this example the only negation that occurs as a component of any of the 
members of the set is ‘~ B’. So perhaps our goal should be to derive both ‘B’ 
and ‘~ B’, even though neither can be derived by Reiteration or by any other 
rule in a single step.

  Derive: B, ~ B

1 A � ~ B   Assumption
2 B � C   Assumption
3 A � C   Assumption

G B

G ~ B

To obtain our fi rst goal, ‘B’, we might try using Negation Elimination:

  Derive: B, ~ B

1 A � ~ B   Assumption
2 B � C   Assumption
3 A � C   Assumption

4  ~ B   A / ~ E

G B     4–— ~ E

G ~ B    4–— ~ I
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A cursory inspection of the sentences on lines 1–4 reveals that we can obtain 
‘~ B’ by Reiteration and ‘B’ by repeated uses of Biconditional Elimination:

  Derive: B, ~ B

1 A � ~ B   Assumption
2 B � C   Assumption
3 A � C   Assumption

4  ~ B   A / ~ E

5  A    1, 4 �E
6  C    3, 5 �E
7  B    2, 6 �E
8  ~ B   4 R
9 B     4–8 ~ E

G ~ B

The remaining task is to derive ‘~ B’, and this too can be accomplished by 
repeated applications of Biconditional Elimination:

  Derive: B, ~ B

1 A � ~ B   Assumption
2 B � C   Assumption
3 A � C   Assumption

4  ~ B   A / ~ I

5  A    1, 4 �E
6  C    3, 5 �E
7  B    2, 6 �E
8  ~ B   4 R
9 B     4–8 ~ I

10 C     2, 9 �E
11 A     3, 10 �E
12 ~ B    1, 11 �E

Finally, we will show that the set {~ (A ⊃ B), ~ (B ⊃ C)} is inconsistent 
in SD. This is a challenging exercise. We do have two negations immediately 
available, so we will probably use one of them as ~ Q; which one makes no 
difference. So we set up our derivation this way:
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  Derive: A ⊃ B, ~ (A ⊃ B)

1 ~ (A ⊃ B)  Assumption
2 ~ (B ⊃ C)  Assumption

G A ⊃ B
 ~ (A ⊃ B)  1 R

We cannot apply any elimination rule to either assumption since they are both 
negations. So we proceed by asking how our current goal, ‘A ⊃ B’, could be 
obtained by an introduction rule, and the answer is of course by Conditional 
Introduction:

  Derive: A ⊃ B, ~ (A ⊃ B)

1 ~ (A ⊃ B)  Assumption
2 ~ (B ⊃ C)  Assumption

3  A    A / ⊃I

G  B
G A ⊃ B   3–— ⊃I
 ~ (A ⊃ B)  1 R

Our new goal is ‘B’. The only strategy for obtaining ‘B’ that seems remotely 
promising is that of Negation Elimination:

  Derive: A ⊃ B, ~ (A ⊃ B)

1 ~ (A ⊃ B)  Assumption
2 ~ (B ⊃ C)  Assumption

3  A    A / ⊃I

4   ~ B   A / ~ E

G  B    4–— ~ E
G A ⊃ B   3–— ⊃I
 ~ (A ⊃ B)  1 R
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We need to derive, within the subderivation beginning on line 4, a sentence 
Q and its negation ~ Q. Three negations, ‘~ (A ⊃ B)’, ‘~ (B ⊃ C)’, and ‘~B’ 
are readily available. Since the presumed inconsistency of the set we are test-
ing fairly clearly derives from the interplay of those two assumptions—that is, 
neither assumption by itself is problematic—we will eventually have to appeal 
to both assumptions. And we are already using ‘~ (A ⊃ B)’ (as the last line of 
our derivation), so perhaps it is time to fi nd a role for ‘~ (B ⊃ C)’. Accordingly 
we will try to obtain ‘B ⊃ C’ and ‘~ (B ⊃ C)’.

  Derive: A ⊃ B, ~ (A ⊃ B)

1 ~ (A ⊃ B)  Assumption
2 ~ (B ⊃ C)  Assumption

3  A    A / ⊃I

4   ~ B   A / ~ E

   B ⊃ C
   ~ (B ⊃ C) 2 R
  B    4–— ~ E
 A ⊃ B   3–— ⊃I
 ~ (A ⊃ B)  1 R

Our new goal, ‘B ⊃ C’, is a conditional, so Conditional Introduction seems 
appropriate:

  Derive: A ⊃ B, ~ (A ⊃ B)

1 ~ (A ⊃ B)  Assumption
2 ~ (B ⊃ C)  Assumption

3  A    A / ⊃I

4   ~B   A / ~ E

5    B  A / ⊃I

    C
   B ⊃ C  5–— ⊃I
   ~ (B ⊃ C) 2 R
  B    4–— ~ E
 A ⊃ B   3–— ⊃I
 ~ (A ⊃ B)  1 R

At this point, as is often the case, the ‘trick’ is to be aware of what sentences 
are available to us—in this case the sentences on lines 1–5—and what we can 
do with those sentences. Note that we have both ‘B’ (at line 5) and ‘~ B’ (at 
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line 4), and we know that whenever we can obtain a sentence and its negation 
we can obtain any sentence whatsoever by the appropriate negation strategy. 
We want ‘C’, so we will obtain it by Negation Elimination.

  Derive: A ⊃ B, ~ (A ⊃ B)

1 ~ (A ⊃ B)  Assumption
2 ~ (B ⊃ C)  Assumption

3  A    A / ⊃I

4   ~ B   A / ~ E

5    B  A / ⊃I

6     ~ C A / ~ E

7     B 5 R
8     ~ B 4 R
9    C  6–8 ~ E

10   B ⊃ C  5–9 ⊃I
11   ~ (B ⊃ C) 2 R
12  B    4–11 ~ E
13 A ⊃ B   3–12 ⊃I
14 ~ (A ⊃ B)  1 R

 5.3E EXERCISES

 1. Construct derivations that establish the following derivability claims. In each 
case start by setting up the main structure of the derivation—with the primary 
assumption or assumptions at the top and the sentence to be derived at the 
bottom, and then identify the initial subgoal or goals. Complete the derivation, 
remembering to consider both the form of the current goal sentence and the 
content of the accessible sentences in selecting appropriate subgoals.

 a. {A ⊃ B} |  A ⊃ (A & B)
 *b. {~ B � A} |  A ⊃ ~ B
 c. {(K ⊃ L) & (L ⊃ K)} |  L � K
 *d. {M � T, ~ T} |  ~ M
 e. {B & ~ B} |  C
 *f. {D} |  A ⊃ (B ⊃ D)
 g. {A ⊃ C, (~ A ∨ C) ⊃ (D ⊃ B)} |  D ⊃ B
 *h. {~ A ⊃ ~ B, A ⊃ C, B ∨ D, D ⊃ E} |  E ∨ C
 i. {A ⊃ B, ~ (B & ~ C) ⊃ A} |  B
 *j. {~ A ⊃ B, C ⊃ ~ B, ~ (~ C & ~ A)} |  A
 k. {A ∨ (B & C), C ⊃ ~ A} |  B ∨ ~ C
 *l. {(A ⊃ B) ⊃ ~ B} |  ~ B
 m. {(A ∨ B) ⊃ C, (D ∨ E) ⊃ [(F ∨ G) ⊃ A]} |  D ⊃ (F ⊃ C)
 *n. {(F ∨ G) ⊃ (H & I)} |  ~ F ∨ H
 o. {A ⊃ ~ (B ∨ C), (C ∨ D) ⊃ A, ~ F ⊃ (D & ~ E)} |  B ⊃ F
 *p. {(A & B) � (A ∨ B), C & (C � ~ ~ A)} |  B
 q. {F ⊃ (G ∨ H), ~ (~ F ∨ H), ~ G} |  H
 *r. {~ (A ⊃ B) & (C & ~ D), (B ∨ ~ A) ∨ [(C & E) ⊃ D]} |  ~ E
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 2. Show that each of the following arguments is valid in SD.

 a. A ⊃ ~ B

  ~ B ⊃ C

  A ⊃ C

 *b. B ⊃ (A & ~ B)

  ~ B

 c. A � B

  ~ A

  ~ B

 *d. A ⊃ (B & C)

 ~ C

 ~ A

 e. D

  A ⊃ [B ⊃ (C ⊃ D)]

 *f. A � B

  B � C

  A � C

 g. A ⊃ (B ⊃ C)

  D ⊃ B

  A ⊃ (D ⊃ C)

 *h. ~ B ⊃ A

  C ∨ ~ B

  ~ C

  A

 i. ~ A ∨ B

  B ⊃ C

  A ⊃ C

 *j. (E ⊃ T) & (T ⊃ O)

  O ⊃ E

  (E � O) & (O � E)

 k. A ⊃ (C ⊃ B)

  ~ C ⊃ ~ A

  A

  B

 *l. ~ F

  ~ G

  ~ (F ∨ G)

 m. F � G

  F ∨ G

  F & G

 3. Prove that each of the following is a theorem in SD.
 a. A ⊃ (A ∨ B)
 *b. A ⊃ (B ⊃ A)
 c. A ⊃ [B ⊃ (A & B)]
 *d. (A & B) ⊃ [(A ∨ C) & (B ∨ C)]
 e. (A � B) ⊃ (A ⊃ B)
 *f. (A & ~ A) ⊃ (B & ~ B)
 g. (A ⊃ B) ⊃ [(C ⊃ A) ⊃ (C ⊃ B)]
 *h. (A & B) ∨ (~ A ∨ ~ B)
 i. [(A ⊃ B) & ~ B] ⊃ ~ A
 *j. (A & A) � A
 k. A ⊃ [B ⊃ (A ⊃ B)]
 *l. ~ A ⊃ [(B & A) ⊃ C]
 m. (A ⊃ B) ⊃ [~B ⊃ ~ (A & D)]
 *n. [~ A ⊃ ~(A ⊃ B)] ⊃ A
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 4. Show that the members of each of the following pairs of sentences are equiva-
lent in SD.

 a. A & ~ A B & ~ B
 *b. A & A A ∨ A
 c. (A ∨ B) ⊃ A B ⊃ A
 *d. ~ (A ⊃ B) A & ~ B
 e. ~ (A � B) (A & ~ B) ∨ (B & ~ A)
 *f. A � ~ B ~ (A � B)

 5. Show that each of the following sets of sentences is inconsistent in SD.
 a. {~ (A ⊃ A)}
 *b. {A ⊃ (B & ~ B), A}
 c. {A � B, B ⊃ ~ A, A}
 *d. {A � ~ (A � A ), A}
 e. {A ⊃ ~ A, ~ A ⊃ A}
 *f. {A ⊃ (C ⊃ B), ~ C ⊃ B, A & ~ B}
 g. {~ (A ∨ B), C ⊃ A, ~ C ⊃ B}
 *h. {~ (B � A), ~ B, ~ A}
 i. {~ (F ∨ G) � (A ⊃ A), H ⊃ F, ~ H ⊃ F}

 6. Show that the following derivability claims hold in SD.
 a. {A ⊃ B, ~ A ⊃ ~ B} |  A � B
 *b. {F � ~ (G � ~ H), ~ (F ∨ G)} |  H
 c. {A � (~B ∨ C), B ⊃ C} |  A
 *d. {G ∨ ~ H, ~ G ∨ ~ H} |  ~ H
 e. {B ∨ (C ∨ D), C ⊃ A, A ⊃ ~ C} |  B ∨ D
 *f. {(A ⊃ B) ⊃ C, (A ⊃ B) ∨ ~ C |  ~ C � ~ (A ⊃ B)
 g. {A ⊃ (D & B), (~ D � B) & (C ⊃ A)} |  (A ∨ B) ⊃ ~ C
 *h. {~ (A � B)} |  (A & ~ B) ∨ (B & ~ A)

 7. Show that each of the following 
arguments is valid in SD.

 a. ~ (C ∨ A)

  ~ (C � ~ A)

 *b. C ∨ ~ D

  C ⊃ E

  D

  E

 c. ~ A & ~ B

  A � B

 *d. ~ (F ∨ ~ G) � ~ (H ∨ I)

  F ∨ I

  H ∨ I

 e. H � ~ (I & ~ J)

  ~ I � ~ H

  J ⊃ ~ I

  ~ H

 *f. ~ (F ⊃ G)

  ~ (G ⊃ H)

  I

 g. (F ∨ G) ∨ (H ∨ ~ I)

  F ⊃ H

  I ⊃ ~ G

  H ∨ ~ I

 *h. ~ D
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  C ⊃ (A � B)

  (D ∨ B) ⊃ ~ A

  (A � B) ⊃ (D & E)

  ~ B ⊃ D

  C ⊃ (~ A & B)

 i. ~ (F ∨ ~ G) � ~ (H ∨ I)

  F ∨ I

  F ∨ (I & ~ G)

 *j. (A ∨ ~ B) ⊃ (C & D)

  A � ~ D

  ~ B � ~ C

  ~ (A ∨ ~ B)

 k. (~ A � ~ C) � (B � ~ D)

  ~ A ⊃ ~ B

  C ⊃ ~ D

  (~ A � ~ C) ⊃ (~ A � D)

 *l. F ⊃ (G ∨ H)

  ~ (~ F ∨ H)

  ~ G

  H

 m. ~ (A ⊃ B) & (C & ~ D)

  (B ∨ ~ A) ∨ [(C & E) ⊃ D]

  ~ E

 8. Prove that each of the following is a theorem in SD.
 a. ~ (A ⊃ B) ⊃ ~ (A � B)
 *b. ~ (A � B) ⊃ ~ (A & B)
 c. (A ⊃ B) ∨ (B ⊃ A)
 *d. [A ⊃ (B ⊃ C)] � [(A ⊃ B) ⊃ (A ⊃ C)]
 e. [(A ∨ B) ⊃ C] � [(A ⊃ C) & (B ⊃ C)]
 *f. [A ∨ (B ∨ C)] ⊃ [(D ⊃ A) ∨ ((D ⊃ B) ∨ (D ⊃ C))]
 g. ~ (A � B) � (A � ~ B)

 9. Show that the members of each of the following pairs of sentences are equiva-
lent in SD.

 a. A  ~ ~ A Double Negation
 *b. A  A & A Idempotence
 c. A  A ∨ A Idempotence
 *d. A & B B & A Commutation
 e. A ∨ B  B ∨ A Commutation
 *f. A & (B & C) (A & B) & C Association
 g. A ∨ (B ∨ C) (A ∨ B) ∨ C Association
 *h. A ⊃ (B ⊃ C) (A & B) ⊃ C Exportation
 i. A ⊃ B ~ B ⊃ ~ A Transposition
 *j. A � B (A ⊃ B) & (B ⊃ A) Equivalence
 k. A � B (A & B) ∨ (~ A & ~ B) Equivalence
 *l. A & (B ∨ C) (A & B) ∨ (A & C) Distribution
 m. A ∨ (B & C) (A ∨ B) & (A ∨ C) Distribution
 *n. ~ (A & B) ~ A ∨ ~ B De Morgan

 10. Show that each of the following sets of sentences of SL is inconsistent in SD.
 a. {(A ⊃ B) & (A ⊃ ~ B), (C ⊃ A) & (~ C ⊃ A)}
 *b. {B � (A & ~ A), ~ B ⊃ (A & ~ A)}
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 c. {C � ~ A, C � A}
 *d. {~ (F ∨ G) � (~ F ⊃ ~ F), ~ G ⊃ F}
 e. {~ [A ∨ (B ∨ C)], A � ~ C}
 *f. {F ∨ (G ⊃ H), ~ H & ~ (F ∨ ~ G)}
 g. {A & (B ∨ C), (~ C ∨ H) & (H ⊃ ~ H), ~ B}
 *h. {[(A � B) � (D & ~ D)] � B, A}

 11. Symbolize the following arguments in SL. Then show that the symbolized argu-
ments are valid in SD.

 a. Spring has sprung, and the fl owers are blooming. If the fl owers are blooming, 
the bees are happy. If the bees are happy but aren’t making honey, then spring 
hasn’t sprung. So the bees are making honey.

 *b. If Luscious Food Industries goes out of business, then food processing won’t 
be improved. And if they go out of business, canned beans will be available 
if and only if Brockport Company stays in business. But Brockport Company 
is going out of business, and canned beans will be available. Hence Luscious 
Food Industries is staying in business unless food processing is improved.

 c. If civil disobedience is moral, then not all resistance to the law is morally pro-
hibited, although our legal code is correct if all resistance to the law is morally 
prohibited. But civil disobedience is moral if and only if either civil disobedi-
ence is moral or our legal code is correct. Our judges have acted well only if 
all resistance to the law is morally prohibited. So our judges haven’t acted well.

 *d. If oranges contain citric acid so do lemons, or if lemons don’t contain citric 
acid neither do grapefruit. Thus, if oranges and grapefruit contain citric acid, 
so do lemons.

 e. Neither rubber nor wood is a good conductor of electricity. But either rubber 
is a good conductor if and only if metal is, or if metal or glass is a good con-
ductor then wood is a good conductor if and only if metal is. So metal isn’t a 
good conductor of electricity.

 *f. If the trains stop running then airline prices will increase, and buses will reduce 
their fares provided that trains don’t stop running. If airline prices increase, 
then buses won’t lose their customers. Hence buses will lose their customers 
only if they reduce their fares.

 g. If the house is built and taxes increase, Jones will go bankrupt. If Smith becomes 
mayor, then the tax director will quit; and Smith will become mayor unless the 
tax director quits. But taxes won’t increase if but only if the tax director doesn’t 
quit and Smith becomes mayor. So if the house is built, Jones will go bankrupt.

 *h. Jim is a Democrat only if Howard or Rhoda is. If Howard is a Democrat, so 
are Barbara and Allen. If Barbara is a Democrat, then Allen is a Democrat 
only if Freda is. But not both Freda and Jim are Democrats. Therefore Jim is 
a Democrat only if Rhoda is too.

 i. If life is a carnival, then I’m a clown or a trapeze artist. But either life isn’t a 
carnival or there are balloons, and either there aren’t any balloons or I’m not 
a clown. So, if life is a carnival, then I’m a trapeze artist.

 12. Symbolize the following passages in SL and show that the resulting sets of 
sentences are inconsistent in SD.

 a. If motorcycling is dangerous sailboating is also dangerous, and if sailboating is 
dangerous parachuting is dangerous. Motorcycling is dangerous but parachut-
ing is not.
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214  SENTENTIAL LOGIC: DERIVATIONS

 *b. If the recipe doesn’t call for fl avoring or it doesn’t call for eggs, it’s not a 
recipe for tapioca. If the recipe calls for eggs, then it’s a tapioca recipe and it 
doesn’t call for fl avoring. But this recipe calls for eggs.

 c. Bach is popular only if Beethoven is ignored. If Bach is unpopular and 
Beethoven isn’t ignored, then current musical tastes are hopeless. Current 
musical tastes aren’t hopeless, and Beethoven isn’t ignored.

 *d. Historians are right just in case theologians are mistaken, if and only if Darwin’s 
theory is correct. And if historians or philosophers are right, then Darwinian theory 
is correct and theologians are mistaken. Historians are right if and only if philoso-
phers are wrong. But if Darwinian theory is correct, then historians are mistaken.

 e. Either Martha was commissioned to write the ballet or, if the fund-raising sale 
was a failure, Tony was commissioned. Nancy will dance if and only if Tony 
wasn’t commissioned. But the fund-raiser was a failure, Nancy will dance, and 
Martha wasn’t commissioned.

 13. Explain:
 a. Why we would not want to include the following derivation rule in SD.

   P ∨ Q
   
   P

 *b. Why Negation Introduction is a dispensable rule in SD. We take a rule to be 
dispensable in SD if and only if the last line of every derivation that makes use 
of the rule in question can also be derived from the given assumptions without 
using that rule.

 c. Why Reiteration is a dispensable rule in SD.
 *d. Why deriving a sentence and its negation within the scope of an auxilliary 

assumption does not show that the primary assumptions constitute an inconsist-
ent set but does show that the set that consists of the primary assumptions and 
the assumptions of all open subderivations is inconsistent.

 e. Why an argument of SL that has as one of its premises the negation of a theo-
rem is valid in SD.

 14. In Chapter 6 (see Sections 6.3 and 6.4) we prove that, for any sentence P and 
set � of sentences of SL,

� |  P in SD if and only if � |= P.

  Show that a-c below follow from this result.
 a. An argument of SL is valid in SD if and only if the argument is truth-functionally 

valid.
 *b. A sentence P of SL is a theorem in SD if and only if P is truth-functionally true.
 c. Sentences P and Q of SL are equivalent in SD if and only if P and Q are truth-

functionally equivalent.

 5.4 THE DERIVATION SYSTEM SD�

In this section we introduce a new natural deduction system, SD�, which con-
tains all the derivation rules of SD plus some additional rules. However, SD� is 
not a stronger system than SD in the sense that more arguments of SL can be 
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shown to be valid or that more sentences of SL are theorems in SD than are 
in SD�. That is

� |  P in SD

if and only if

� |  P in SD�

However, historically a larger set of rules, such as those constituting SD�, have 
been used in many derivation systems. This larger set contains some rules 
absent from SD that do correspond to reasoning patterns commonly used in 
ordinary discourse, and often derivations in SD� are shorter than correspond-
ing derivations in SD.

RULES OF INFERENCE

Suppose that prior to line n of a derivation two accessible lines, i and j, contain 
P ⊃ Q and ~ Q, respectively. In SD we can derive ~ P as follows:

 i P ⊃ Q

 j ~ Q

 n  P A / ~ I

 n � 1  Q i, n ⊃E
 n � 2  ~ Q j R
 n � 3 ~ P n � (n � 2) ~ I

To avoid going through this routine every time such a situation arises, we 
introduce the rule Modus Tollens:

Modus Tollens (MT)

 P ⊃ Q

 ∼ P

� ∼ P

Now suppose that prior to line n of a derivation two accessible lines, i and j, contain 
P ⊃ Q and Q ⊃ R. A routine to derive P ⊃ R in SD beginning at line i is as follows:

 i P ⊃ Q

 j Q ⊃ R

 n  P A / ∼ Ι

 n � 1  Q i, n ⊃E
 n � 2  R j, n � 1 ⊃E
 n � 3 P ⊃ R n � (n � 2) ⊃I
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To avoid this routine, we introduce the rule Hypothetical Syllogism:

Hypothetical Syllogism (HS)

 P ⊃ Q

 Q ⊃ R

� P ⊃ R

Finally suppose that prior to the line n of a derivation two accessible lines, 
i and j, contain P ∨ Q and ~ P and that we wish to derive Q. A routine for 
accomplishing this in SD is as follows:

 i P ∨ Q

 j ∼ P

 n  P  A / ∨E

 n � 1   ∼ Q A / ∼ E

 n � 2   P n R
 n � 3   ∼ P j R
 n � 4  Q  n � 1 � n � 3 ∼ E

 n � 5  Q  A / ∨E

 n � 6  Q  n � 5 R
 n � 7 Q   i, n � n � 4, n � 5 � n � 6 ∨E

The rule of Disjunctive Syllogism allows us to avoid going through this routine 
for this and similar cases.

Disjunctive Syllogism (DS)

 P ∨ Q   P ∨ Q

 ~ P or  ~ Q

 Q   P

The three rules of inference just introduced can be thought of as 
derived rules. They are added for convenience only; whatever we can derive 
with them, we can derive without them, using only the rules of SD.

RULES OF REPLACEMENT

In addition to rules of inference, there are also derivation rules known as rules 
of replacement. Rules of replacement, as their name suggests, allow us to derive 
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some sentences from other sentences by replacing sentential components. For 
example, from the sentence

G ∨ (H & K)

we can certainly infer

G ∨ (~ ~ H & K)

In this instance the sentential component ‘H’ has been replaced with ‘~ ~ H’. 
Similarly from

G ∨ (~ ~ H & K)

we can certainly infer

G ∨ (H & K)

Double Negation is the rule of replacement that licenses such moves within a 
derivation.

Double Negation (DN)

P � � ~ ~ P

That is, by using Double Negation, we can derive from a sentence Q that 
contains P as a sentential component another sentence that is like Q, except 
that one occurrence of the sentential component P has been replaced with 
~ ~ P. And, by using Double Negation, we can derive from a sentence Q 
that contains ~ ~ P as a sentential component another sentence that is like 
Q, except that one occurrence of the sentential component ~ ~ P has been 
replaced with P.

Double Negation can be applied to any of the sentential components 
of a sentence. For instance, from

G ∨ (H & K)

Double Negation permits us to derive

G ∨ ~ ~ (H & K)

And from

G ∨ ~ ~ (H & K)
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218  SENTENTIAL LOGIC: DERIVATIONS

Double Negation allows us to derive

G ∨ (H & K)

Since every sentence is a sentential component of itself, Double Negation 
applies to the entire sentence as well. In a derivation Double Negation per-
mits us to go from

G ∨ (H & K)

to

~ ~ [G ∨ (H & K)]

and from

~ ~ [G ∨ (H & K)]

to

G ∨ (H & K)

Here are the rules of replacement for SD�:

Commutation (Com)

P & Q � � Q & P
P ∨ Q � � Q ∨ P

Implication (Impl)

P ⊃ Q � � ~ P ∨ Q

De Morgan (DeM)

~ (P & Q) � � ~ P ∨ ~ Q
~ (P ∨ Q) � � ~ P & ~ Q

Transposition (Trans)

P ⊃ Q � � ~ Q ⊃ ~ P

Association (Assoc)

P & (Q & R) � � (P & Q) & R
P ∨ (Q ∨ R) � � (P ∨ Q) ∨ R

Double Negation (DN)

P � � ~ ~ P

Idempotence (Idem)

P � � P & P
P � � P ∨ P

Exportation (Exp)

P ⊃ (Q ⊃ R) � � (P & Q) ⊃ R

Distribution (Dist)

P & (Q ∨ R) � � (P & Q) ∨ (P & R)
P ∨ (Q & R) � � (P ∨ Q) & (P ∨ R)

Equivalence (Equiv)

P � Q � � (P ⊃ Q) & (Q ⊃ P)
P � Q � � (P & Q) ∨ (~ P & ~ Q)
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Rules of replacement always allow the replacement of sentential components. 
In addition, all these rules of replacement are two-way rules; that is, a senten-
tial component that has the form of the sentence on the left of ‘� �’ can be 
replaced with a sentential component that has the form of the sentence on the 
right of ‘� �’, and vice versa.

Consider the following derivation:

  Derive: J ⊃ [M ∨ (G ∨ I)]

1 J ⊃ [K ∨ (L ∨ H)] Assumption
2 [(K ∨ L) ∨ H] ⊃ [(M ∨ G) ∨ I] Assumption

3 J ⊃ [(K ∨ L) ∨ H] 1 Assoc
4 J ⊃ [(M ∨ G) ∨ I] 2, 3 HS
5 J ⊃ [M ∨ (G ∨ I)] 4 Assoc

Here the replacement rule Association has been used twice—fi rst to replace a 
sentential component of the form P ∨ (Q ∨ R) with a sentential component of 
the form (P ∨ Q) ∨ R and then to replace a sentential component of the form 
(P ∨ Q) ∨ R with a sentential component of the form P ∨ (Q ∨ R).

Since all the derivation rules of SD are derivation rules of SD�, the 
procedures for properly applying the rules of SD apply to SD� as well. The rules 
of inference of SD�, including Modus Tollens, Hypothetical Syllogism, and 
Disjunctive Syllogism, must be applied to entire sentences on a line. Rules of 
replacement, on the other hand, can be applied to all sentential components. 
The following derivation illustrates the proper use of several of the rules of 
replacement:

  Derive: ~ C � E

1 (D ∨ B) ∨ (E ⊃ ~ C) Assumption
2 ~ B & [~ D & (~ E ⊃ C)] Assumption

3 (~ B & ~ D) & (~ E ⊃ C) 2 Assoc
4 ~ (B ∨ D) & (~ E ⊃ C) 3 DeM
5 ~ (B ∨ D)  4 &E
6 ~ (D ∨ B)  5 Com
7 E ⊃ ~ C   1, 6 DS
8 ~ E ⊃ C   3 &E
9 ~ C ⊃ ~ ~ E  8 Trans
10 ~ C ⊃ E   9 DN
11 (~ C ⊃ E) & (E ⊃ ~ C) 7, 10 &I
12 ~ C � E   11 Equiv

Notice that each application of a derivation rule requires a separate line. More-
over, care must be taken to apply each derivation rule only to sentences that 
have the proper form (or, in the case of rules of replacement, sentences that 
have components that have the proper form).
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Here is an example in which these points are ignored:

  Derive: ~ A ⊃ [B ⊃ (G ∨ D)]

1 (A ∨ ~ B) ∨ ~ C Assumption
2 (D ∨ G) ∨ C Assumption

3 ~ (~ A & B) ∨ ~ C 1 DeM MISTAKE!
4 (~ A & B) ⊃ ~ C 3 Impl
5 C ∨ (G ∨ D) 2 Com MISTAKE!
6 ~ C ⊃ (G ∨ D) 5 Impl MISTAKE!
7 (~ A & B) ⊃ (G ∨ D) 4, 6 HS
8 ~ A ⊃ [B ⊃ (G ∨ D)] 7 Exp

De Morgan does not license entering the sentence on line 3. What 
De Morgan does allow is the replacement of a sentential component of the 
form ~ P ∨ ~ Q with a sentential component of the form ~ (P & Q), but the 
sentential component ‘A ∨ ~ B’ does not have the form ~ P ∨ ~ Q. However, 
by applying Double Negation to the fi rst assumption, we can obtain ‘(~ ~ A ∨ 
~ B) ∨ ~ C’. And this latter sentence does have a sentential component of the 
form ~ P ∨ ~ Q, namely, ‘~ ~ A ∨ ~ B’. Here P is ‘~ A’, and Q is ‘B’. Hence 
the derivation should begin this way:

  Derive: ~ A ⊃ [B ⊃ (G ∨ D)]

1 (A ∨ ~ B) ∨ ~ C Assumption
2 (D ∨ G) ∨ C Assumption

3 (~ ~ A ∨ ~ B) ∨ ~ C 1 DN
4 ~ (~ A & B) ∨ ~ C 3 DeM

The second mistake in our example, in line 5, is that Commutation 
is applied twice within the same line. Each application of a rule, even if 
it is the same rule, requires a separate line. Correctly done, the derivation 
proceeds:

5 (~ A & B) ⊃ ~ C 4 Impl
6 C ∨ (D ∨ G) 2 Com
7 C ∨ (G ∨ D) 6 Com

The third mistake, in line 6 of the example, also stems from our 
trying to apply a rule of replacement to a sentential component that does 
not have the form required by the rule. Implication permits the replacement 
of a sentential component of the form ~ P ∨ Q with a sentential compo-
nent of the form P ⊃ Q, but ‘C ∨ (G ∨ D)’ does not have the form ~ P ∨ 
Q. However, applying Double Negation to ‘C’, a sentential component of
‘C ∨ (G ∨ D)’, generates ‘~ ~ C ∨ (G ∨ D)’. This latter sentence does have 
the form ~ P ∨ Q, where P is ‘~ C’ and Q is ‘G ∨ D’. Here is the entire 
derivation done correctly:
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5.4 THE DERIVATION SYSTEM SD�  221

  Derive: ~ A ⊃ [B ⊃ (G ∨ D)]

1 (A ∨ ~ B) ∨ ~ C Assumption
2 (D ∨ G) ∨ C Assumption

3 (~ ~ A ∨ ~ B) ∨ ~ C 1 DN
4 ~ (~ A & B) ∨ ~ C 3 DeM
5 (~ A & B) ⊃ ~ C 4 Impl
6 C ∨ (D ∨ G) 2 Com
7 C ∨ (G ∨ D) 6 Com
8 ~ ~ C ∨ (G ∨ D) 7 DN
9 ~ C ⊃ (G ∨ D) 8 Impl

10 (~ A & B) ⊃ (G ∨ D) 5, 9 HS
11 ~ A ⊃ [B ⊃ (G ∨ D)] 10 Exp

The defi nitions of the basic concepts of SD� parallel the defi nitions for 
the basic concepts of SD, except that ‘SD’ is replaced with ‘SD�’. For example, 
the concept of derivability is defi ned as follows:

A sentence P of SL is derivable in SD� from a set � of sentence of SL if and 
only if there is a derivation in SD� in which all the primary assumptions 
are members of � and P occurs within the scope of only those assumptions.

Consequently tests for the various syntactic properties in SD� are analo-
gous to those of SD. To show that an argument is valid in SD�, we construct a 
derivation in SD� showing that the conclusion of the argument is derivable in 
SD� from the set all of whose members are premises of the argument. To show 
that a sentence P of SL is a theorem in SD�, we show that P is derivable in SD� 
from the empty set. And so on. Remember that, although SD and SD� are differ-
ent syntactic systems, whatever can be derived in one can be derived in the other.

The Derivation Rules of SD�

All the Derivation Rules of SD and Rules of Inference

Modus Tollens (MT)

 P ⊃ Q

 ~ Q

� ~ P

Hypothetical Syllogism (HS)

 P ⊃ Q

 Q ⊃ R

� P ⊃ R

Disjunctive Syllogism (DS)

 P ∨ Q   P ∨ Q

 ~ P or  ~ Q

� Q  � P
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 5.4E EXERCISES

 1. Show that the following derivability claims hold in SD�.
 a. {D ⊃ E, E ⊃ (Z & W), ~ Z ∨ ~ W} |  ~ D
 *b. {(H & G) ⊃ (L ∨ K), G & H} |  K ∨ L
 c. {(W ⊃ S) & ~ M, (~ W ⊃ H) ∨ M, (~ S ⊃ H) ⊃ K} |  K
 *d. {[(K & J) ∨ I] ∨ ~ Y, Y & [(I ∨ K) ⊃ F]} |  F ∨ N
 e. {(M ∨ B) ∨ (C ∨ G), ~ B & (~ G & ~ M)} |  C
 *f. {~ L ∨ (~ Z ∨ ~ U), (U & G) ∨ H, Z} |  L ⊃ H

 2. Show that each of the following is valid in SD�.

Rules of Replacement

Commutation (Com)

P & Q � � Q & P
P ∨ Q � � Q ∨ P

Implication (Impl)

P ⊃ Q � � ~ P ∨ Q

De Morgan (DeM)

~ (P & Q) � � ~ P ∨ ~ Q
~ (P ∨ Q) � � ~ P & ~ Q

Transposition (Trans)

P ⊃ Q � � ~ Q ⊃ ~ P

Association (Assoc)

P & (Q & R) � � (P & Q) & R
P ∨ (Q ∨ R) � � (P ∨ Q) ∨ R

Double Negation (DN)

P � � ~ ~ P

Idempotence (Idem)

P � � P & P
P � � P ∨ P

Exportation (Exp)

P ⊃ (Q ⊃ R) � � (P & Q) ⊃ R

Distribution (Dist)

P & (Q ∨ R) � � (P & Q) ∨ (P & R)
P ∨ (Q & R) � � (P ∨ Q) & (P ∨ R)

Equivalence (Equiv)

P � Q � � (P ⊃ Q) & (Q ⊃ P)
P � Q � � (P & Q) ∨ (~ P & ~ Q)

 a. ~ Y ⊃ ~ Z

  ~ Z ⊃ ~ X

  ~ X ⊃ ~ Y

  Y � Z

 *b. (~ A & ~ B) ∨ (~ A & ~ C)

  (E & D) ⊃ A

  ~ E ∨ ~ D

 c. (F & G) ∨ (H & ~ I)

  I ⊃ ~ (F & D)

  I ⊃ ~ D

 *d. F ⊃ (~ G ∨ H)

  F ⊃ G

  ~ (H ∨ I)

  F ⊃ J
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 e. F ⊃ (G ⊃ H)

  ~ I ⊃ (F ∨ H)

  F ⊃ G

  I ∨ H

 *f. G ⊃ (H & ~ K)

  H � (L & I)

  ~ I ∨ K

  ~ G

 g. [(X & Z) & Y] ∨ (~ X ⊃ ~ Y)

  X ⊃ Z

  Z ⊃ Y

  X � Y

 3. Show that each of the following is a theorem in SD�.
 a. A ∨ ~ A
 *b. ~ ~ ~ ~ ~ (A & ~ A)
 c. A ∨ [(~ A ∨ B) & (~ A ∨ C)]
 *d. [(A & B) ⊃ (B & A)] & [~ (A & B) ⊃ ~ (B & A)]
 e. [A ⊃ (B & C)] � [(~ B ∨ ~ C) ⊃ ~ A]
 *f. [A ∨ (B ∨ C)] � [C ∨ (B ∨ A)]
 g. [A ⊃ (B � C)] � (A ⊃ [(~ B ∨ C) & (~ C ∨ B)])
 *h. (A ∨ [B ⊃ (A ⊃ B)]) � (A ∨ [(~ A ∨ ~ B) ∨ B])
 i. [~ A ⊃ (~ B ⊃ C)] ⊃ [(A ∨ B) ∨ (~ ~ B ∨ C)]
 *j. (~ A � ~ A) � [~ (~ A ⊃ A) � (A ⊃ ~ A)]

 4. Show that the members of each of the following pairs of sentences are equiva-
lent in SD�.

 a. A ∨ B
  ~ (~ A & ~ B)
 *b. A & (B ∨ C)
  (B & A) ∨ (C & A)
 c. (A & B) ⊃ C
  ~ (A ⊃ C) ⊃ ~ B
 *d. (A ∨ B) ∨ C
  ~ A ⊃ (~ B ⊃ C)
 e. A ∨ (B � C)
  A ∨ (~ B � ~ C)
 *f. (A & B) ∨ [(C & D) ∨ A]
  ([(C ∨ A) & (C ∨ B)] & [(D ∨ A) & (D ∨ B)]) ∨ A

 5. Show that the following sets of sentences are inconsistent in SD�.
 a. {[(E & F) ∨ ~ ~ G] ⊃ M, ~ [[(G ∨ E) & (F ∨ G)] ⊃ (M & M)]}
 *b. {~ [(~ C ∨ ~ ~ C) ∨ ~ ~ C]}
 c. {M & L, [L & (M & ~ S)] ⊃ K, ~ K ∨ ~ S, ~ (K � ~ S)}
 *d. {B & (H ∨ Z), ~ Z ⊃ K, (B � Z) ⊃ ~ Z, ~ K}
 e. {~ [W & (Z ∨ Y)], (Z ⊃ Y) ⊃ Z, (Y ⊃ Z) ⊃ W}
 *f. {[(F ⊃ G) ∨ (~ F ⊃ G)] ⊃ H, (A & H) ⊃ ~ A, A ∨ ~ H}

 6. Symbolize the following arguments in SL, and show that they are valid in SD�.
 a. If the phone rings Ed is calling, or if the beeper beeps Ed is calling. If not both 

Ed and Agnes are at home today, then it’s not the case that if the phone rings, 
Ed is calling. Ed isn’t home today, and he isn’t calling. So the beeper won’t beep.
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224  SENTENTIAL LOGIC: DERIVATIONS

 *b. If Monday is a bad day, then I’ll lose my job provided the boss doesn’t call in 
sick. The boss won’t call in sick. So I’ll lose my job—since either Monday will 
be a bad day, or the boss won’t call in sick only if I lose my job.

 c. Army coats are warm only if they’re either made of wool or not made of cotton 
or rayon. If army coats are not made of rayon, then they’re made of cotton. 
Hence, if they’re not made of wool, army coats aren’t warm.

 *d. If either the greenhouse is dry or the greenhouse is sunny if and only if it’s not 
raining, the violets will wither. But if the violets wither the greenhouse is sunny, 
or if the violets wither the greenhouse isn’t dry. It’s raining, and the greenhouse 
isn’t sunny. So the greenhouse is dry only if the violets won’t wither.

 e. It’s not the case that John is rich and Hugo isn’t. In fact, Hugo isn’t rich, unless 
Moe is. And if Moe just emptied his bank account, then he isn’t rich. Thus, if 
John is rich, then it’s not the case that either Moe emptied his bank account 
or Moe isn’t rich,

 *f. Neither aspirin nor gin will ease my headache, unless it’s psychosomatic. If it’s 
psychosomatic and I’m really not ill, then I’ll go out to a party and drink some 
martinis. So, if I’m not ill and don’t drink any martinis, then aspirin won’t ease 
my headache.

 g. If I stay on this highway and don’t slow down, I’ll arrive in Montreal by 5:00. If 
I don’t put my foot on the brake, I won’t slow down. Either I won’t slow down 
or I’ll stop for a cup of coffee at the next exit. I’ll stop for a cup of coffee at the 
next exit only if I’m falling asleep. So, if I don’t arrive in Montreal by 5:00, then 
I’ll stay on this highway only if I’m falling asleep and I put my foot on the brake.

 *h. The weather is fi ne if and only if it’s not snowing, and it’s not snowing if and 
only if the sky is clear. So, either the weather is fi ne, the sky is clear, and it’s 
not snowing; or it’s snowing, the sky isn’t clear, and the weather is lousy.

 7. Symbolize the following passages in SL, and show that the resulting sets of 
sentences of SL are inconsistent in SD�.

 a. Unless Stowe believes that all liberals are atheists, his claims about current poli-
tics are unintelligible. But if liberals are atheists only if they’re not churchgoers, 
then Stowe’s claims about current politics are nevertheless intelligible. Liberals 
are, in fact, churchgoers if and only if Stowe doesn’t believe that they’re all 
atheists, and if liberals aren’t atheists, then Stowe doesn’t believe that they are 
atheists. Liberals aren’t atheists.

 *b. Either Congress won’t cut taxes or the elderly and the poor will riot, if but only 
if big business prospers. If the elderly don’t riot, then Congress won’t cut taxes. 
It won’t happen that both the poor will riot and big business will prosper, and 
it won’t happen that the poor don’t riot and big business doesn’t prosper. But 
if big business prospers, then Congress will cut taxes.

 8. Answer the following.
 a. Suppose we can derive Q from P by using only the rules of replacement. Why 

can we be sure that we can derive P from Q?
 *b. Why must all arguments that are valid in SD be valid in SD� as well?
 c. Suppose we develop a new natural deduction system SD*. Let SD* contain all 

the derivation rules of SD and in addition the derivation rule Absorption.

  Absorption

 P ⊃ Q
� P ⊃ (P & Q)
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5.4 THE DERIVATION SYSTEM SD�  225

Using only the derivation rules of SD, develop a routine showing that any 
sentence derived by using Absorption could be derived in SD without using it.

GLOSSARY4

DERIVABILITY IN SD: A sentence P of SL is derivable in SD from a set � of sentences 
of SL if and only if there is a derivation in SD in which all the primary assump-
tions are members of � and P occurs in the scope of only those assumptions.

VALIDITY IN SD: An argument of SL is valid in SD if and only if the conclusion of 
the argument is derivable in SD from the set consisting of the premises. An argu-
ment of SL is invalid in SD if and only if it is not valid in SD.

THEOREM IN SD: A sentence P of SL is a theorem in SD if and only if P is derivable 
in SD from the empty set.

EQUIVALENCE IN SD: Sentences P and Q of SL are equivalent in SD if and only if Q 
is derivable in SD from {P} and P is derivable in SD from {Q} .

INCONSISTENCY IN SD: A set � of sentences of SL is inconsistent in SD if and only if 
both a sentence P of SL and its negation ~ P are derivable in SD from �. A set � 
of sentences of SL is consistent in SD if and only if it is not inconsistent in SD.

4Similar defi nitions hold for the derivation system SD�.
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