
Cornell AppDev Fall 2018

Cocoapods, HTTP,
Networking, and JSON

a

What is Cocoapods?
From the cocoa pods website: “CocoaPods is a dependency manager for Swift and
Objective-C Cocoa projects. It has over 53 thousand libraries and is used in over 3 million
apps.” Let us break down what this means. A dependency just refers to a library, or code,
that someone else has written and made public for others to use. A dependency manager is
a tool that manages all the libraries that are used in your application. Just to give some
examples for Python application’s dependency manager is pip and node.js application’s
dependency manager is npm.

For Swift application’s this is Cocoapods. Some extremely popular and useful Cocoapods
that we definitely recommend you guys check out is Alamofire (networking library) and
SnapKit (library for easy AutoLayout). Essentially, we will be using Cocoapods to install and
be able to use any external libraries that we want to use in our application.

When building out our applications, there will come times when we want to build a very
complicated UI or perform some sort of special task. In these cases, we have two options.
We can try to build this new feature from scratch all by ourselves OR we could use a library
(code) which other people have already written and made public because they figured that
other people would want to have this feature in their application.

Setting up Cocoapods
Before we can use Cocoapods, we must install it on our computers. To do so, go to your
terminal and run the following command (NOTE: you should have Xcode installed already
beforehand):

$ sudo gem install cocoapods

Once this command finishes running, you should have cocoapods installed and should not
have to reinstall it ever again. Now, in order to setup cocoapods in our Xcode project, use
your terminal and navigate to your project’s root directory. Once inside run the following
command:

$ pod init

Cornell AppDev Fall 2018

What this command does is create a boilerplate Podfile inside the current directory. Upon
opening the Podfile, you should see something like this:

platform :ios, '9.0'

ignore all warnings from all pods
inhibit_all_warnings!

target ‘SampleProject’ do
 use_frameworks!

 # Pods for SampleProject
 pod 'Alamofire'
 pod ‘SnapKit'
end

In the snippet above I inserted two cocoapods already as an example but yours shouldn’t
contain any in the beginning. Essentially, anytime you want to add a new cocoapod to your
project, all you have to do is come into this Podfile and insert it as pod ‘[name]’. In this
snippet, I am declaring that I want to use the Alamofire and SnapKit cocoapods. Once you
have written all the cocoa pods that you need, save the file and return to the terminal. The
next command that we want to run is:

$ pod install

What this command does is it looks at your Podfile (needs to exist in the directory or else this
command will not work) to see all the cocoa pods that you want to use, installs all of them,
and integrates them with your .xcodeproj into a .xcworkspace. For example, if we our
project was called SampleProject and we had a SampleProject.xcodeproj, after running
pod install, we would have a SampleProject.xcworkspace in the same directory. After
running pod install, you should always be developing in .xcworkspace instead
of .xcodeproj. This is because .xcworkspace is where you will be able to import and use all
the cocoa pods that you installed. If at any point later on you want to install more cocoapods,
simply go back to the Podifle, add your cocoa pod, and then run pod install again.

How do you make an app communicate with the internet?
So far in this course, we’ve only dealt with hard-coded data that we’ve made ourselves to
show on screen, but most apps don’t have static information. HTTP requests are a method
to communicate between a client (your iOS app) and a server (the internet).

HTTP requests are used all over development, and there are many different types. The most
common types of requests are GET and POST requests. GET requests are used to get
information from the internet (ex. getting information from google.com), and POST requests
are used to post information onto the internet (ex. submitting a form). Other methods include
PUT, DELETE, and more.

In this class, we’ll be using Alamofire, a Cocoapod, to make HTTP requests. Here’s an
example of making a GET request to fetch recent posts from The Cornell Daily Sun’s website.
We’ll just print the data we get back.

Cornell AppDev Fall 2018

let endpoint = "http://cornellsun.com/wp-json/wp/v2/posts"

Alamofire.request(endpoint, method: .get)
 .validate().responseJSON { response in
 // Depending on what response JSON we get here,
 // we can appropriately handle it.
 switch response.result {
 // If the response is a success, print the data
 case let .success(data):
 print(data)
 // If the response is a failure, print the error
 case .failure(let error):
 print(error.localizedDescription)
 }
}

The printed response will look something like this:

[{"id":
3597603,"date":"2018-07-17T01:45:30","date_gmt":"2018-07-17T05:45:30","guid"
:{"rendered":"http:\/\/cornellsun.com\/?
p=3597603"},"modified":"2018-07-17T01:45:30","modified_gmt":"2018-07-17T05:4
5:30","slug":"jurassic-world-fallen-kingdom-bites-off-more-than-it-can-
chew","type":"post","link":"http:\/\/cornellsun.com\/2018\/07\/17\/jurassic-
world-fallen-kingdom-bites-off-more-than-it-can-chew\/","title":
{"rendered":"Jurassic World: Fallen Kingdom Bites Off More Than It Can
Chew”},"content":{ … etc

Interpreting responses from the internet
The response above is formatted in JSON (JavaScript Object Notation), which is a key-
value coding format commonly used in server responses. Each JSON is wrapped in two curly
braces { }, and data is separated by commas. Values in JSON can be strings, numbers,
objects (items wrapped in curly braces), null, booleans, or arrays.

Here’s an example of a JSON response you might get:

{
 "title": "HTTP, Networking, and JSON",
 "year_created": 2018,
 "success": true,
 "topics": ["HTTP", "Networking", "JSON"],
}

This
entire
thing is
an
object
because
it’s
wrapped
between 
{ }. Keys Values

Cornell AppDev Fall 2018

Usually, the responses will be condensed into one blob of text (as seen in the previous
example), so you can use a JSON pretty-printer to format it to make it easier to read. Here’s
an example of a good JSON printer that might be useful: https://jsonformatter.org/json-
pretty-print

So, how do you decode these responses and put them on screen?

Decoding responses from the internet
Starting in Swift 4, there’s a protocol called Codable that objects, structs, and enums can
conform to to make them encodable and decodable from JSON. Codable items can contain
an enum for the coding keys of type String and CodingKey in order to decode the values
from JSON.

For example, if we wanted to decode the example JSON response into a model of type
lecture, we could create a Lecture struct that conforms to Codable as follows:

struct Lecture: Codable {

 var title: String
 var yearCreated: Int
 var success: Bool
 var topics: [String]
}

Notice how the names of our variables match the fields in our JSON. This is done on
purpose. With Codable, the names of the variables are expected to be the keys in the JSON

JSON decoding
In order to decode the JSON response into the Lecture class, we could then create a
JSONDecoder, and then call the decode method to convert it from a JSON to a Lecture
struct. How cool is that?

// Assume we already received the data from an Alamofire call

let jsonDecoder = JSONDecoder()

// Decode the data as a Lecture (optional type)

let lecture = try? jsonDecoder.decode(Lecture.self, from: data)

Note: Since the decoding could throw errors, it’s preceded by a try?, which will make the
lecture constant an optional. This means that lecture will either contain a Lecture item or be
nil.

https://jsonformatter.org/json-pretty-print
https://jsonformatter.org/json-pretty-print
https://jsonformatter.org/json-pretty-print
https://jsonformatter.org/json-pretty-print

Cornell AppDev Fall 2018

Using your decoded data: @escaping completions
	 Once you’ve decoded the lecture JSON as a Lecture class, how do you use it? Since
you’ve downloaded this JSON from the internet, it might take forever to load, and you only
want to display this information on the screen when it’s ready (and possibly use a loading
indicator in the meantime as the information loads). We also don’t want our application to just
wait until we get a response to do something else.

	 This is where a completion handler comes in handy. A completion handler is an
argument passed into whatever networking function you make that will take in your decoded
object(s) and pass them to the ViewController (or wherever you’re calling this function) and
then run some block of code that you write (i.e. perhaps reload the view with the data on
screen).

	 This completion handler is marked as @escaping because it can escape from the
networking function call itself and hand it off to whoever called the function - it doesn’t need
to go through every line inside the function. Back to the Lecture class example from before:
suppose we want to make a function that makes the network call and returns to us the
Lecture JSON decoded as a Lecture class. Here’s an example of what that would look like:

static func getLecture(completion: @escaping (Lecture) -> Void) {

 Alamofire.request(endpoint, method: .get)
 .validate().responseJSON { response in
 switch response.result {
 case let .success(data):
 let jsonDecoder = JSONDecoder()
 if let lecture = try? jsonDecoder.decode(Lecture.self, from:
data) {
 completion(lecture)
 }
 case .failure(let error):
 print(error.localizedDescription)
 }
 }

}

Here, you can see that completion is a function that takes in one argument which is of type
Lecture and then has a return type of Void (i.e. does not return anything). We only call
completion when we know that the response succeeded and we actually have an actual
Lecture object.

Making network calls
It’s good practice to create a NetworkManager class with static methods for every network
call, with the endpoint urls hidden to the public (in case it’s private information).

Then, in your ViewController, you can make a network request and handle it appropriately. For
example, if you have a variable for lecture and need to reload the data of a table view after
you get your lecture, you would do it like so:

you can call the
completion function on
the lecture object you
received

Cornell AppDev Fall 2018

func getClasses() {
 NetworkManager.getLecture { lecture in
 self.lecture = lecture
 self.tableView.reloadData()
 }
}

The { lecture in … } is the escaping completion we defined in the NetworkManager
earlier. In this case, we get the lecture variable only if we made the network call to the
endpoint, received a success, received the JSON, and then decoded it. If succeeded, we run
this block of code. This ensures that we receive the Lecture object only when it’s ready, so
the screen isn’t frozen while the app is trying to execute all of these network request steps.

POST requests and query parameters
Sometimes, you want to send information to the network instead of just receiving it. For
example, when you search for something (for example, “Taylor Swift”) in iTunes, you make a
network request by sending the string “Taylor Swift” to the backend in a POST request.

In Alamofire, you can pass in a Parameter object in a network request to the endpoint you
choose. The Parameter object is a dictionary mapping strings to strings. For example, in
iTunes, the search endpoint requires four parameters: term, country, media, and entity. The
search term is the keywords joined by the + sign (so “Taylor Swift” would become
“Taylor+Swift”.

For example, let’s say we’re searching songs by Taylor Swift in the US so the media type is
music and the entity type is songs. Here’s what this would look like as an Alamofire network
request (on the next page).

Note on Alamofire query parameters: Depending on how your endpoint receives
parameters on the backend, you might need to add in another argument to your Alamofire
request. For example, if your search endpoint takes in query strings, you’ll need to add the

extra argument for query string parameter encoding, which is
URLEncoding(destination: .queryString). If you’re having trouble with your Alamofire
POST requests this most likely will fix it! For more information, see this StackOverflow post
here.

https://stackoverflow.com/questions/43282281/how-to-add-alamofire-url-parameters?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa
https://stackoverflow.com/questions/43282281/how-to-add-alamofire-url-parameters?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa

Cornell AppDev Fall 2018

private static let endpoint = "https://itunes.apple.com/search"

static func getTracks(withQuery query: String, completion: @escaping
([Song]) -> Void) {

 let parameters: Parameters = [
 "term" : query.replacingOccurrences(of: " ", with: "+"),
 "country" : "US",
 "media" : "music",
 "entity" : "song"
]

 Alamofire.request(endpoint, parameters: parameters)
 .validate().responseJSON { response in

 // handle response here
 switch response.result {

…
 }
 }
}

