The tremendous importance of managing heat energy and driving range of electric vehicles in cold climates (30 °C−80 °C),11,12 and store solar energy (250 °C−1000 °C).13 Despite the tremendous importance of managing heat efficiently, the development of new thermal energy storage materials has received significantly less attention than materials for electrical and chemical energy storage,2 particularly within the synthetic chemistry community.14−19

Although there are many ways to store thermal energy, the latent heat of an isothermal phase transition offers the potential for high energy densities without the large temperature swings that are the basis of sensible heat storage or the large volume and temperature changes that accompany thermochemical storage (Figure 1a).18−21 In principle, any type of reversible, thermally induced phase transition can be used to store thermal energy, but phase-change materials (PCMs) that undergo solid−liquid transitions are the most promising for many applications. These transitions have higher latent heats than solid−solid transitions while avoiding the large volume changes that occur during solid−gas or liquid−gas transitions.22 Though not often termed such, ice is one of the most recognizable and widely used solid−liquid PCMs for cold storage. Interest in the development of higher-temperature PCMs for thermal management above 0 °C began in the 1940s to improve the efficiency of heating and cooling in homes and advanced rapidly in the 1960s when NASA investigated a range of PCMs to regulate the temperature of sensitive electronic components and biological samples in outer space.23,24 These early efforts relied almost exclusively on paraffins, which undergo sharp, reversible melting transitions with minimal hysteresis but relatively low volumetric energy densities,25 and metal-salt hydrates, which undergo phase transitions with much higher energy densities but often have issues upon cycling due to phase separation, supercooling, and corrosivity.19,26

Received: August 14, 2020
The development of PCMs has continued to focus on simple inorganic and organic compounds, frequently relying on external systems or internal additives to augment the properties of existing materials.27–29 These efforts have led to the commercialization of a range of PCMs,30 but their energy density and overall performance have not been sufficient to warrant their use in many thermal applications. Given that engineering solutions increase the mass, volume, cost, and complexity of thermal energy storage systems, there has been surprisingly little effort to synthesize and evaluate new PCMs that might offer intrinsically better properties.14–16,31 In particular, although metal–salt hydrates have received substantial attention, structurally similar metal–organic materials have yet to be seriously explored in the context of thermal energy storage despite their diverse range of modular and highly tunable structures. Unlike conventional organic and inorganic PCMs, the structure of metal–organic materials can be controlled through rational ligand design and directional coordination bonds to tailor the dimensionality, entropy, and strength of covalent and noncovalent interactions within a solid in a predictable fashion.32,33 Beyond the potential implications for improved performance, tunable metal–organic PCMs offer a platform to establish fundamental structure–property relationships that provide insight into the thermodynamics and kinetics of phase transitions relevant to thermal energy storage.

The design of new solid–liquid PCMs requires controlling the enthalpy and entropy of both crystalline solid and disordered liquid phases, as the temperature of a first-order phase transition, \(T_{tr} \), is dictated by the ratio of the enthalpy, \(\Delta H_{tr} \), and entropy, \(\Delta S_{tr} \), changes between the two phases with \(T_{tr} = \Delta H_{tr}/\Delta S_{tr} \). As such, a high-energy (enthalpy) melting transition must be accompanied by a large entropy increase to occur at a moderate temperature. Owing, in part, to substantial variability in reported thermodynamic data—especially for inorganic compounds (Figure S2)—it is challenging to establish rigorous structure–property relationships for many classes of conventional PCMs.16,34–36 Nonetheless, the high volumetric energy densities of select metal–salt hydrates offer inspiration for the design of metal–organic PCMs. In particular, two metal–salt hydrates, Ba(OH)\(_2\)-8H\(_2\)O and Sr(OH)\(_2\)-8H\(_2\)O, undergo melting transitions with exceptionally high enthalpies of fusion, \(\Delta H_{tr} \), of 644 kJ/L at 78 °C and 703 kJ/L at 89 °C,37,38 respectively (Figure 1b), the latter of which is more than double the energy density of ice (333 kJ/L) and approaching the energy density of a 9 V battery (782 kJ/L).39

Both Ba(OH)\(_2\)-8H\(_2\)O and Sr(OH)\(_2\)-8H\(_2\)O have similar solid-state structures, wherein eight coordinated H\(_2\)O molecules and two outer-sphere hydroxide anions per metal cation interact through a dense network of intermolecular hydrogen bonds.40,41 Although the exact structural and chemical features responsible for their high energy densities are not well understood, differences between the strength and density of hydrogen bonds within each solid and liquid phase likely play an important role.16 Indeed, many sugar alcohols also feature dense hydrogen bond networks and have relatively large volumetric enthalpies of fusion,42 albeit with a propensity to degrade above their melting temperatures.43 Similarly, both Ba(OH)\(_2\)-8H\(_2\)O and Sr(OH)\(_2\)-8H\(_2\)O are subject to poor cyclability because of phase separation and supercooling.44,45

An improved understanding of how hydrogen-bonding networks can be manipulated to tune the thermodynamics of order–disorder phase transitions could dramatically expand the library of candidate high-enthalpy PCMs.16

Herein, we report an initial study of metal–organic compounds as PCMs for thermal energy storage. Specifically, we synthesized isostructural series of simple coordination compounds with extended hydrogen-bond networks similar to those found in metal–salt hydrates and investigated the influence of the structure and composition of these compounds on their enthalpies and entropies of fusion. To achieve high densities of hydrogen bonds and moderate (<200 °C) melting temperatures, we selected small organic molecules, including methylurea (MeUr) and acetamide (AcNH\(_2\)), that feature multiple hydrogen bond donor and acceptor groups and are known to form weak coordination bonds with metal cations as neutral ligands.47 Although many coordination complexes of small amides have been crystallographically characterized, the

![Figure 1](image-url)
thermodynamic data required to evaluate their potential as PCMs have rarely been measured, and there is limited understanding of the structural and chemical factors that govern their melting thermodynamics.

RESULTS AND DISCUSSION

With its propensity to form dense hydrogen bond networks, urea represents a particularly promising ligand for metal–organic PCMs, but rapid decomposition within melts effectively rules out its usefulness for reversible thermal energy storage. To target high hydrogen bond densities without decomposition or undesirable reactivity in the liquid phase, we thus began by exploring coordination complexes of N-methylurea (MeUr), where the addition of a methyl group trades one hydrogen bond donor for substantially improved thermal stability. When combined with divalent metal halide or nitrate salts, MeUr forms a series of octahedral complexes \([\text{M(MeUr)}_6]\text{X}_2\) (\(\text{M} = \text{Mg, Ca, Mn, Co, Ni, Cu, Zn}; \text{X} = \text{Cl or NO}_3\)). Within these compounds, octahedral metal centers direct the formation of intramolecular hydrogen bonds between the metal-bound carbonyl O atoms and the N–H groups on adjacent MeUr ligands and of extended networks of intermolecular hydrogen bonds between MeUr ligands and uncoordinated anions (Figure 2a and Figure S6, Tables S4–S7).

To evaluate the effectiveness of MeUr as a ligand for metal–organic PCMs—as well as how the choice of metal cation and outer-sphere anion affects PCM energy density—differential scanning calorimetry (DSC) was used to determine \(\Delta H_{\text{fus}}\), \(\Delta S_{\text{fus}}\), and \(T_m\) for these materials. Although all \([\text{M(MeUr)}_6]\text{Cl}_2\) compounds melted prior to decomposition, \([\text{Mn(MeUr)}_6]\text{Cl}_2\) was the only analogue to exhibit a reversible melting transition (Figure S5), with \(\Delta H_{\text{fus}}\) of 194 kJ/L and \(\Delta S_{\text{fus}}\) of 0.50 kJ L\(^{-1}\) K\(^{-1}\) at 115.8 °C—values that are lower than many metal–salt PCMs have rarely been measured, and there is limited understanding of the structural and chemical factors that govern their melting thermodynamics.
hydrate and sugar alcohol PCMs around this temperature (Figure 1b). Note that thermodynamic values are often reported on a molar basis, but mass and volume are far more relevant to energy storage applications. Since available space is often a limiting factor, maximizing the energy density of a PCM requires maximizing enthalpy changes on a volumetric basis. Here, volumetric quantities are calculated from measured gravimetric values using crystallographic densities to facilitate comparisons between the intrinsic properties of different materials.

Replacing Cl with NO₃ yields the structurally similar compound [Mn(MeUr)₆](NO₃)₂, which melts with a much higher ΔHᵣᵥ of 275 kJ/L and ΔSᵣᵥ of 0.62 kJ L⁻¹ K⁻¹ at 173 °C (Figure 2c). Both Mn compounds have a similar density of intra- and intermolecular hydrogen bonds, but the size and shape of the NO₃ anion better match the pocket of amide donor groups surrounding it, enabling the formation of closer and more linear donor–acceptor interactions than are possible with Cl (Tables S4 and S6). In addition, although Cl anions typically form stronger hydrogen bonds to a single donor, the acceptor strength of Cl likely falls off more quickly than that of NO₃ as the number of hydrogen bonds increases. While other hydrogen bond acceptors are also of interest, the initial metal–organic PCMs explored here thus contain NO₃ anions.

Melting transitions across the series of isostructural [M(MeUr)₆](NO₃)₂ compounds occur between 89 and 191 °C, with ΔHᵣᵥ ranging from 155 kJ/L for the Ca analogue to 357 kJ/L for the Co analogue (Figure 2a, c). All melting transitions are irreversible with the exception of the Ca analogue, which is the only compound in the series that melts below 100 °C. Although the DSC traces for these compounds do not show any extra heat signals corresponding to decomposition, NMR spectra of dissolved [Zn(MeUr)₆]⁻ (NO₃)₂ after melting indicate a small amount of MeUr decomposition—likely due to the formation of methylammonium and cyanate—which may be sufficient to inhibit recrystallization (Figure S7). Any partial decomposition, however, is unlikely to impact melting thermodynamics as the DSC heat flow curves quickly return to baseline after melting (Figure 2c). As such, the thermophysical properties of these materials can be compared to gain insight into the relative importance of the metal in modulating melting behavior.

The energy density of the M(MeUr)₆(NO₃)₂ series of compounds is highly dependent on the identity of the metal cation with Ca < Cu < Mn < Mg < Ni < Zn ≈ Co, which—aside from Cu and Ni—is roughly consistent with the expected trend of increasing M–MeUr bond strengths. Stronger M–MeUr bonds could contribute to higher ΔHᵣᵥ through two primary mechanisms: (1) directly because of a decrease in metal coordination number during melting and (2) indirectly by modulating hydrogen bond strength either through polarization of MeUr ligands that strengthens intra- and intermolecular hydrogen bonds via inductive effects or through shorter M–MeUr bonds that decrease the distance between intramolecular hydrogen bond donors and acceptors. The relative contribution of each of these effects depends, in part, on the magnitude of changes to the average metal coordination number and the density of hydrogen bonds upon transitioning from the solid to liquid state.

The crystal structures of [M(MeUr)₆](NO₃)₂ offer additional insight into how metal–ligand and hydrogen-bonding interactions impact the metal dependency of ΔHᵣᵥ. For instance, the Cu and Co analogues have the same average coordination bond distance (M–O = 2.1002(15) and 2.0980(14) Å, respectively), average intramolecular donor–acceptor hydrogen bond distance (N–O = 2.853(3) and 2.857(3) Å, respectively), and average intermolecular hydrogen bond distances (N–O = 2.986(3) and 2.980(3) Å, respectively), but the transition enthalpy of Cu (263 kJ/L) is 26% lower than that of Co (357 kJ/L). Although average distances are identical, a Jahn–Teller distortion in the Cu complex leads to pairs of long (2.2187(17) Å) and short (1.977(1) Å) metal–ligand bonds and, consequently, pairs of long (2.950(3) Å) and short (2.7757(17) Å) intramolecular hydrogen bonds, while all hydrogen bonds in the Co compound are, as expected, of more uniform length (Tables S6 and S7). If both compounds experience a similar partial loss of coordination bonds and hydrogen bonds upon conversion to a liquid, then the presence of weaker sets of intramolecular bonds in [Cu(MeUr)₆](NO₃)₂ could be responsible for its lower transition enthalpy.

The important contribution of intramolecular interactions to PCM thermodynamics is further emphasized by the low transition enthalpy of the Ca analogue (155 kJ/L). In this compound, the large ionic radius of Ca leads to longer intramolecular hydrogen bonds (average N–O distance = 3.0122(17) Å) but similar intermolecular hydrogen bond distances (Tables S6 and S7), suggesting that intramolecular interactions contribute more than intermolecular interactions to energy density differences between metals and that strong intramolecular interactions are needed to achieve a high phase-change energy density in this class of coordination compounds. In addition to impacting enthalpy, the weaker intramolecular interactions in [Ca(MeUr)₆](NO₃)₂ also likely increase the solid-state residual motion of MeUr, thus increasing the vibrational and rotational entropy within the solid and decreasing ΔSᵣᵥ (0.43 and 0.78 kJ L⁻¹ K⁻¹ for the Ca and Co analogues, respectively) as less entropy will be created upon melting. The decrease in entropy does not, however, compensate for the proportionally larger loss in enthalpy, leading to a 95.0 °C lower melting temperature.

To promote reversibility and further explore structure–property relationships, we next targeted metal–organic PCMs with acetamide (AcNH₂) ligands, which are more thermally stable than Ur and MeUr but still have closely spaced hydrogen bond donor and acceptor groups. Though structurally similar to [M(MeUr)₆](NO₃)₂, [M-(AcNH₂)₆](NO₃)₂ (M = Co, Ni, Zn) compounds exhibit very different thermal behavior, with melting transitions that are nearly 80 °C lower in temperature and more than 100 kJ/L lower in enthalpy than their MeUr congeners (Figure 2b,d). These differences can be attributed to changes in the hydrogen-bond networks present within each series of compounds. Even though intramolecular hydrogen-bonding interactions are similar—with close to 8 and 10 intramolecular hydrogen bonds per nm³ for [M(AcNH₂)₆](NO₃)₂ and [M(MeUr)₆](NO₃)₂, respectively—the AcNH₂ complexes...
have a much lower density of intermolecular hydrogen bonds (∼10 per nm³) than the MeUr compounds (∼16 per nm³) due to the loss of a hydrogen bond donor group (Table S3).

In addition to a lower melting enthalpy, DSC revealed that \([M(\text{AcNH}_2)_6](\text{NO}_3)_2\) melting transitions were reversible but alternated between two distinct melting temperatures upon cycling (Figure S21). Through a combination of powder and single-crystal X-ray diffraction experiments, the two melting transitions were found to originate from trigonal or cubic phases of each compound, with the cubic phases melting at a higher temperature (Figures S18 and S19). These different phases arise from changes to the relative orientation of NO₃ anions that alter the long-range structure of hydrogen bond networks within each material. While multiple meltable phases might complicate the controllable release of thermal energy, such behavior offers an opportunity to manipulate the storage temperature in response to changing demands, provided that the switching between phases could be controlled in a predictable fashion.

While synthesizing \([M(\text{AcNH}_2)_6](\text{NO}_3)_2\), we noticed that the presence of H₂O during crystallization led exclusively to the formation of the isostructural series of compounds \([M(\text{AcNH}_2)_4(H_2\text{O})_2](\text{NO}_3)_2\cdot2\text{AcNH}_2\) (1-M, \(M = \text{Mg}, \text{Mn}, \text{Fe}, \text{Co}, \text{Ni}, \text{Cu}, \text{Zn}\)) under a wide range of conditions. These compounds contain octahedral metal centers with four equatorial AcNH₂ ligands and two axial H₂O ligands, along with two uncoordinated AcNH₂ molecules per metal center. The partial displacement of bound AcNH₂ by H₂O leads to a much denser network of intermolecular hydrogen bonds (average of 18 per nm³) than is present in \(M(\text{AcNH}_2)_4(\text{NO}_3)_2\) (average of 10 per nm³) (Table S3). This extended network consists of two-dimensional sheets of hydrogen bonds between NO₃ (acceptor), free AcNH₂ (donor/acceptor), and coordinated AcNH₂ (donor) that are linked in the third dimension by hydrogen bonds to coordinated H₂O (Figure 3a).

Excitingly, all 1-M compounds undergo high-enthalpy, reversible melting transitions with \(\Delta H_{\text{fus}}\) ranging from 276 to 327 kJ/L, values that are much higher than \([M(\text{AcNH}_2)_6](\text{NO}_3)_2\) and comparable to \([M(\text{MeUr})_6](\text{NO}_3)_2\) under a wide range of conditions. These compounds contain octahedral metal centers with four equatorial AcNH₂ ligands and two axial H₂O ligands, along with two uncoordinated AcNH₂ molecules per metal center. The partial displacement of bound AcNH₂ by H₂O leads to a much denser network of intermolecular hydrogen bonds (average of 18 per nm³) than is present in \(M(\text{AcNH}_2)_4(\text{NO}_3)_2\) (average of 10 per nm³) (Table S3). This extended network consists of two-dimensional sheets of hydrogen bonds between NO₃ (acceptor), free AcNH₂ (donor/acceptor), and coordinated AcNH₂ (donor) that are linked in the third dimension by hydrogen bonds to coordinated H₂O (Figure 3a).

Excitingly, all 1-M compounds undergo high-enthalpy, reversible melting transitions with \(\Delta H_{\text{fus}}\) ranging from 276 to 327 kJ/L, values that are much higher than \([M(\text{AcNH}_2)_6](\text{NO}_3)_2\) and comparable to \([M(\text{MeUr})_6](\text{NO}_3)_2\) and many metal–salt hydrates (Figure 3b). Moreover, a substantial increase in \(\Delta S_{\text{fus}}\) (Table S1) leads to melting temperatures as much as 92 °C lower than the MeUr compounds and, consequently, fully reversible transitions for all members of the 1-M series except 1-Fe, for which oxidation of Fe(II) by NO₃ after melting precludes its use as a PCM. Similar to \([M(\text{MeUr})_6](\text{NO}_3)_2\), the energy density of all 1-M compounds except 1-Cu and 1-Ni roughly follow the Irving–Williams stability order—increasing in \(\Delta H_{\text{fus}}\) with increasing M–L bond stability (Table S1).

To begin to unravel the factors that contribute to the metal dependency of 1-M energy density, we used infrared spectroscopy (IR) and X-ray crystallography to directly probe hydrogen bond strength in the solid state (Figure 4a). The N–H stretching mode of primary amines occludes near 3460 cm⁻¹ in the absence of hydrogen bonding. Upon formation of a hydrogen bond to the carbonyl of another amide, this band red-shifts and broadens, with larger red-shifts indicative of stronger hydrogen bonds. In the ambient temperature IR spectra of 1-M, we observe weak bands centered from 3338 to 3300 cm⁻¹ depending on the identity of the metal, with compounds that undergo higher enthalpy melting transitions exhibiting increasingly red-shifted stretching frequencies and shorter intramolecular hydrogen bonds between bound AcNH₂ ligands (Figure 4b and Figure S29). In addition, all bands are red-shifted compared to that of \([\text{Co}(\text{AcNH}_2)_6](\text{NO}_3)_2\), which has 0.1 Å longer intramolecular hydrogen bonds than 1-Co and a lower phase-change enthalpy than any 1-M analogue. Because the total energy of intramolecular hydrogen bonds between four amides should exceed 100 kJ/mol, changes to hydrogen-bonding strength should be of the correct magnitude to be a significant driver of differences in \(\Delta H_{\text{fus}}\), which span 21 kJ/mol, across the 1-M series.

The preceding crystallographic and IR data highlight correlations between intramolecular hydrogen bond strength—as mediated by ligand steric and the size and charge density of the central metal cation—and PCM energy density. However, these results provide an incomplete picture of phase-change thermodynamics as they only concern interactions within the solid state, and it is the difference between interactions within the solid and liquid phases that ultimately determines energy density. Stated differently, stronger interactions within an ordered phase will only lead to a higher energy density for a PCM if a sufficient fraction of those interactions are broken upon conversion to a more disordered phase. Moreover, while differences in metal–ligand and hydrogen bond strength can help rationalize enthalpic
trends across the 1-M series, solid-state characterization offers limited insight into entropic differences, and consequently, transition temperatures. For instance, 1-Co and 1-Zn have within error, the same ΔH_mel but 1-Zn has a 4% greater ΔS_mel that leads to a 15 °C lower melting temperature. With nearly identical crystal structures, rationalizing this entropy difference requires consideration of the structures of the liquids formed by each compound after melting.

To probe the average local structure of 1-M in the liquid state, we used variable-temperature extended X-ray absorption fine structure (EXAFS) analysis to quantify changes during melting to coordination number and M–O distance within the first coordination sphere of analogues (M = Mn, Co, Ni, Cu, Zn) with easily accessible K-edge energies (Figure 5). EXAFS is routinely used to study the structure of liquids containing solvated metal salts at ambient temperature but, to the best of our knowledge, has rarely been applied to study the structure of metal–organic melts. For each 1-M compound, the first scattering shell—consisting of a pseudo-octahedral arrangement of oxygen atoms—was modeled at room temperature and just above the melting temperature. Absolute coordination numbers determined by modeling EXAFS data are typically subject to large errors because the absolute amplitude of scattering paths depends on many parameters, in addition to the coordination number, that are often highly correlated.

Here, the use of room temperature EXAFS data—for which scattering paths are already known from crystal structures—as a standard allowed for the more accurate determination of coordination numbers when compounds were melted in situ.

Although all 1-M compounds are coordinatively saturated with six ligands in the solid state, EXAFS models revealed metal-dependent decreases in coordination number upon melting, with 1-Zn undergoing the largest change to an average coordination number of 4.6(5). More modest decreases were observed for 1-Mn and 1-Co to average coordination numbers of 5.8(5) and 5.5(5), respectively, while 1-Ni, which has the most stable metal–ligand bonds of the series, remained coordinatively saturated with 6.1(5) ligands. As expected, M–O bond distances within the first coordination shell contracted the most for 1-Zn, which had the largest decrease in coordination number (Table S18).

The substantial decrease in coordination number for 1-Zn during melting is consistent with the lower coordination numbers that have been observed for solvated Zn²⁺—relative to other first-row transition metal ions—in dimethylacetamide and tetramethylurea solutions at ambient temperature. Moreover, these results provide direct structural insight into the liquid phase of each 1-M analogue that help rationalize deviations of energy density trends from the Irving–Williams series. For instance, the low coordination number of molten Zn²⁺ ions is likely responsible for the large entropy difference between the solid and liquid phases of 1-Zn—which has the highest ΔS_mel of the 1-M series—because of the increased rotational, vibrational, and translational degrees of freedom that become accessible to dissociated ligands. This can explain why, as mentioned above, 1-Zn has the same ΔH_mel as 1-Co but a larger ΔS_mel. Specifically, the EXAFS models and thermodynamic data suggest that even though 1-Zn may have weaker metal–ligand bonds than 1-Co, the enthalpy change for dissociating a greater number of more weakly bound ligands in the former compound is roughly equivalent to dissociating a smaller number of more strongly bound ligands in the latter compound. This leads to similar energy densities for both PCMs but a larger entropic driving force—and, consequently, a lower melting temperature—for 1-Zn. Following a similar logic, since 1-Ni maintains a full coordination sphere after melting, it has a lower ΔH_mel than 1-Co and 1-Zn, even though 1-Ni should have the strongest metal–ligand bonds. Note that one does not expect the full metal–ligand bond dissociation energy to be reflected in the

Figure 4. (a) Infrared spectra of 1-M at ambient temperature for M = Mg (gray), Mn (red), Co (purple), Ni (green), Cu (blue), and Zn (yellow). The infrared spectrum of [Co(ACNH2)6]2(NO3) is also shown as a dashed purple line. (b) Intramolecular hydrogen bonds of 1-Co are depicted with dashed lines. Gray, red, blue, white, and purple spheres represent C, O, N, H, and Co atoms, respectively. (c) N–H stretching frequency highlighted in (a) is inversely correlated to \(\Delta H_{\text{mel}} \), in 1-M (circles) and [Co(ACNH2)6]2(NO3) (triangle).

Figure 5. (a) Variable temperature EXAFS spectra of 1-M at ambient temperature (lighter traces) and above the melting temperature (darker traces) for M = Mn (red), Co (purple), Ni (green), Cu (blue), and Zn (yellow). (b) Fourier transforms of the k-space EXAFS spectra at ambient temperature (lighter traces) and above the melting temperature (darker traces).
phase-transition enthalpy since new ligand–ligand interactions in the melt will partially compensate for broken coordination bonds and intramolecular hydrogen bonds.

Unlike 1-M, the energy densities and melting temperatures of [M(AcNH2)4](NO3)2 increase with increasing metal–ligand bond strength (Zn < Co < Ni). Variable-temperature EXAFS spectra provide insight into why different trends are observed for the two series of compounds. In particular, EXAFS models of molten [Co(AcNH2)4](NO3)2 and [Zn(AcNH2)4](NO3)2 reveal average coordination numbers of 4.7(5) and 4.1(3), respectively, in each liquid phase. Both of these values are lower than those for molten 1-M, which is attributable to the increased steric bulk around each metal center, but the relative decrease for the Co analogue is more substantial. In both [M(AcNH2)4](NO3)2 and 1-M, the Co analogues have higher melting temperatures than the Zn compounds. However, the higher melting temperature of 1-Co is due to a lower ΔSfus while that of [Co(AcNH2)4](NO3)2 is due mostly to a higher ΔHfus (Figure 6). This is a direct result of the different relative coordination number changes upon melting, whereby stronger Co–ligand bonds make a greater contribution to ΔHfus in [Co(AcNH2)4](NO3)2.

The different liquid structures of metal–organic PCMs cause their phase-change thermodynamics to deviate from classical models of enthalpy–entropy compensation (Figure 6), which anticipate a linear, positive correlation between enthalpy and entropy changes in systems subject to the association and dissociation of weak interactions, such as those described here.69,70 For instance, 1-Mn and 1-Zn have similar melting temperatures that are both below 1-Co, but the lower melting temperature of 1-Mn relative to 1-Co is due primarily to a decrease in ΔHfus—owing to weaker metal–ligand and intramolecular hydrogen bonds—while that of 1-Zn relative to 1-Co is due to an increase in ΔSfus—owing to a greater decrease in coordination number upon melting. As all three compounds are isostructural in the solid state, these results highlight the importance of understanding liquid—or disordered—structures in designing PCMs for thermal energy storage.

We note that the coordination environment of Cu2+ ions in weak oxygen-donor solvents has been the subject of some debate, with various models invoking square-planar, tetragonally elongated square-pyramidal, and centrosymmetric or noncentrosymmetric tetragonally elongated octahedral geometries, as well as dynamic equilibria between multiple geometries.70 The EXAFS data for molten 1-Cu indicate that Cu2+ ions maintain all four strongly bound equatorial ligands in the liquid phase, but as with previous solution studies at lower concentrations and temperatures, the state of more weakly bound axial ligands is subject to uncertainty. We found that a two-path model with four equatorial ligands and one axial ligand exhibited excellent agreement with experimental data, but the presence or absence of a second, perhaps more weakly bound axial ligand could not be resolved. Although the EXAFS data do not allow the extent to which axial ligands remain bound in the liquid phase to be clearly determined, the low ΔHfus and ΔSfus of 1-Cu are consistent with minimal changes to the coordination environment of Cu centers upon melting. In particular, the far weaker pair of metal–ligand and intramolecular hydrogen bonds in the solid state that arise from a Jahn–Teller distortion should lead to more weakly bound ligands that have greater residual motion in the solid state and, as a result, a smaller increase in vibrational and rotational entropy upon melting. Compared to other 1-M compounds, the enthalpic effect of the Jahn–Teller distortion, however, is more substantial than entropic effects, leading to the lowest melting temperature of the series.

With a mixture of coordinated and uncoordinated Ac even in the solid state, we also wanted to understand the contribution of free Ac to the thermodynamics of 1-M PCMs. To this end, we synthesized the compounds [M-(AcNH2)4(H2O)2](NO3)2 (M = Mn, Co), which maintain the same coordination environment around each metal center but do not contain free AcNH2.71 In the absence of free AcNH2, the sheetlike hydrogen bond network of 1-M is lost, and NO3 anions twist away from the equatorial plane of AcNH2 ligands to form hydrogen bonds to H2O and AcNH2 (Figure S24), leading to longer, weaker intermolecular hydrogen bonds indicative of a less stable extended structure (Tables S8 and S9). In fact, these compounds partially convert into 1-M immediately upon melting as evidenced by powder X-ray diffraction and the presence of two overlapping endotherms in DSC traces (Figures S22 and S23), which prevents the extraction of any useful thermodynamic information.

As an alternative, we hypothesized that removing a single hydrogen bond donor from each axial ligand—by, for instance, replacing H2O with methanol (MeOH)—would inhibit the formation of a compound with free Ac by reducing the enthalpic force for such a structure. As anticipated, the series of compounds [M(AcNH2)4(MeOH)2](NO3)2 (M = Mg, Mn, Co, Ni, Cu, Zn) contain two-dimensional hydrogen bond networks similar to those in 1-M and undergo reversible melting transitions (Figure 7). Moreover, ΔHfus and ΔSfus for these compounds are comparable to—and, in some cases, higher than—1-M despite their nearly 25% lower density of hydrogen bonds (Table S3). These similar enthalpies thus confirm the important contribution of changes to other types of interactions to the energy density of metal–organic PCMs and suggest that free AcNH2 is not necessary to achieve a high energy density in acetamide-based PCMs. Indeed, [M-
compounds showed cold-crystallization behavior—crystallization during heating followed by melting—which can result from kinetically inhibited freezing. While understanding how to manipulate the kinetics of metal–organic PCMs will be of interest for future studies and for the design energy-efficient PCMs, we note that DSC measurements performed on milligram quantities of sample often show substantial supercooling that is lessened at larger scales or upon the addition of small amounts of nucleating agents that do not significantly impact energy density. In addition to crystallization kinetics, studying the corrosivity of metal–organic PCMs will also be important for evaluating their thermal energy storage potential.

CONCLUSIONS

The foregoing results demonstrate how coordination chemistry principles can be applied to manipulate the enthalpy and entropy of phase transitions relevant to thermal energy storage. In particular, metal–organic PCMs containing compact amide ligands and dense hydrogen bond networks were shown to undergo high-enthalpy, reversible melting transitions, and isostructural series of compounds were used to rationalize trends in phase-change thermodynamics based on both local coordination environments and extended structure (Figure 6). Notably, these metal–organic PCMs achieve volumetric energy densities similar to many metal–salt hydrates despite having significantly lower hydrogen bond densities (Figure 5).

Models of liquid structure revealed that changes to the coordination environment of metal centers during melting dominate entropic differences between isostructural compounds, while enthalpic differences arise mostly from changes to the strength of coordination bonds and intramolecular hydrogen bonds. Across different series of metal–organic PCMs, the density and strength of both hydrogen bonds and coordination bonds are the most important contributors to overall energy density. Future metal–organic PCMs could leverage large changes to the first coordination sphere upon melting, like those observed for Zn-based compounds, to further tune the thermophysical properties of PCMs, including those that undergo both solid–liquid and solid–solid phase transitions. In addition, the wide parameter space afforded by organic ligand design—coupled with the predictability of directional coordination bonds—should facilitate the exploration of other creative ways of increasing PCM energy density, such as by coupling order–disorder transitions to reversible chemical reactions.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.0c08777.

Experimental details, overview of reported metal–salt hydrates for thermal energy storage, DSC cycling data, powder X-ray diffraction data, description of EXAFS...
models, and a summary of all structural and thermodynamic data (PDF)
Crystalllographic data for all complexes (CIF)

■ AUTHOR INFORMATION

Corresponding Author
Jarad A. Mason – Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States; orcid.org/0000-0003-0328-7775; Email: mason@chemistry.harvard.edu

Authors
Ryan D. McGillicuddy – Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
Surendra Thapa – Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
Malia B. Wenny – Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
Miguel I. Gonzalez – Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.0c08777

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This research was partially supported by the Climate Change Solutions Fund at Harvard University. This research was also partially supported by the Arnold and Mabel Beckman Foundation through a Beckman Young Investigator Award to J.A.M. and a Beckman Postdoctoral Fellowship to M.I.G. Additionally, M.B.W. is supported by the Department of Energy Computational Science Graduate Fellowship under Grant DE-FG02-97ER25308. This work used beamline 12-BM at the Advanced Photon Source, a U.S. Department of Energy

■ REFERENCES

(22) Fulleri, A.; Guldentops, G.; Tao, M.; Granados-Focil, S.; Van Dessel, S. Review on Solid-Solid Phase Change Materials for Thermal

(51) Here, volumetric enthalpies were calculated from gravimetric enthalpies by using 25 °C crystal densities calculated from measured unit cell volumes of single crystals and powders. However, we note that the most accurate calculation of volumetric energy storage density would calculate volumetric enthalpies using liquid densities just above the melting point.

