Designing Glass and Crystalline Phases of Metal–Bis(acetamide) Networks to Promote High Optical Contrast

Mengtan Liu, Adam H. Slavney, Songsheng Tao, Ryan D. McGillicuddy, Cassia C. Lee, Malia B. Wenny, Simon J. L. Billinge, and Jarad A. Mason*

Cite This: J. Am. Chem. Soc. 2022, 144, 22262−22271

ABSTRACT: Owing to their high tunability and predictable structures, metal–organic materials offer a powerful platform to study glass formation and crystallization processes and to design glasses with unique properties. Here, we report a novel series of glass-forming metal–ethylenebis(acetamide) networks that undergo reversible glass and crystallization transitions below 200 °C. The glass-transition temperatures, crystallization kinetics, and glass stability of these materials are readily tunable, either by synthetic modification or by liquid-phase blending, to form binary glasses. Pair distribution function (PDF) analysis reveals extended structural correlations in both single and binary metal–bis(acetamide) glasses and highlights the important role of metal–metal correlations during structural evolution across glass–crystal transitions. Notably, the glass and crystalline phases of a Co–ethylenebis(acetamide) binary network feature a large reflectivity contrast ratio of 4.8 that results from changes in the local coordination environment around Co centers. These results provide new insights into glass–crystal transitions in metal–organic materials and have exciting implications for optical switching, rewritable data storage, and functional glass ceramics.

INTRODUCTION

With the structural disorder characteristic of a liquid and the restricted dynamics characteristic of a solid, glasses are optically transparent, highly processable, and grain-boundary-free materials that play an important role in many current and emerging technologies.1−3 Glasses are critical components of displays,4 coatings,5 and building materials,6 and new glassy materials are being actively developed as solid electrolytes for batteries,7 storage media for radioactive waste,8 and matrices to isolate qubits for quantum computing.9 Though many inorganic, metallic, polymeric, and molecular organic materials can form glasses,10,11 the compositional and structural diversity of glasses that have been designed, synthesized, and studied to date pales in comparison to crystalline materials. For instance, extended metal−organic materials offer tremendous potential for dramatically expanding the library of materials with accessible glass phases yet have only recently begun to receive attention in this context. Owing to their high tunability and the predictable, directional nature of interactions between metal cations and bridging organic ligands,11 glasses formed from extended networks of coordination bonds can enable the establishment of more robust structure−property relationships than are typically possible for conventional glasses and provide access to new functionalities that arise from unique mechanical, electronic, optical, and host−guest properties not found in traditional inorganic or organic glasses.

Glassy materials are distinguished from amorphous powders by their ability to undergo a thermally induced transition—the glass transition—from a rigid solid to a dynamic liquid that can be molded into transparent objects of arbitrary size and shape with isotropic properties.5,12 Although there are many examples of amorphous metal−organic materials,13 the range of metal−organic glasses is far more limited.14 To date, glass transitions have been realized for only a small subset of extended metal−organic materials, including, most prominently, zeolitic−imidazolate frameworks (ZIFs),15 zinc−phosphate and metal−thiocyanate coordination polymers,16 and two- and three-dimensional perovskites.17 The diversity of metal−organic glasses is limited, in part, by the high melting temperatures—often near or above ligand decomposition temperatures—of most extended metal−organic materials,13b,16b which precludes glass formation via melt quenching. Melt quenching is one of the most powerful and versatile methods for glass formation because the structure and properties of glass can be controlled by the specific
nonequilibrium conditions used to cool a melt from an equilibrium liquid phase to a supercooled liquid and, ultimately, metastable solid glass.25,26

Recently, we reported a series of two- and three-dimensional metal–bis(acetamide) networks that feature record-low melting temperatures and form stable liquid phases that can, in many cases, be quenched into a glass phase.19 In some of these materials, the crystal-to-glass transition is reversible, and both a glassy and crystalline solid can be accessed from the liquid state, depending on the exact thermal profile followed after a melting or glass transition. This is rare for metal–organic glasses, as crystalline phases are not typically accessible under any thermal cycling conditions. To the best of our knowledge, thermally induced reversible glass–crystal transitions have not been observed for any other classes of three-dimensional metal–organic frameworks and have only been realized for a hybrid perovskite, as well as a few one- and two-dimensional metal–organic coordination polymers.16a,17b

The predictable and reversible conversion between crystal and glass phases offers opportunities for fabricating thin films and glass ceramics with precisely tailored properties.20,21 Moreover, reversible glass–crystal transitions underpin technologies such as nonvolatile data storage and memory, optical switching, and reflective displays, which rely on materials that can be switched between states with large differences in electrical resistivity or optical reflectivity.22,23 Chalcogenides have received the most attention as electronic and optical phase-change materials because of the high contrast in conductivity and reflectivity between their glass and crystalline phases and their ability to be rapidly interconverted.23c

However, the high melting temperatures of chalcogenides (\textasciitilde500 to 800 °C) lead to much greater energy requirements for thermal switching in comparison to that for a typical transistor.24,25 Melttable metal–organic materials provide an opportunity to reduce this thermal budget by achieving high electronic and optical contrast between a glassy and crystalline phase at much lower transition temperatures.26 Indeed, a reversible glass–crystal transition accompanied by a distinct shift in the optical absorption onset was recently demonstrated for a hybrid layered perovskite with a low melting temperature of 175 °C.17b Much remains to be understood, however, about how to systematically design metal–organic materials that undergo glass–crystal transitions at low temperatures with fast kinetics, high reversibility, and changes in properties tailored for specific applications.

Given that metal–bis(acetamide) networks experience a decrease in average metal coordination number upon melting,19 it should be possible to design networks composed of optically active transition metals with high optical contrast between crystalline and glass phases. In particular, we anticipated that d–d electronic transitions that are Laporte-forbidden for centrosymmetric octahedral metal centers in the crystalline network would become allowed for lower-coordinate metal centers in the glassy phase. The glass-transition temperatures of our previously reported metal–butylenelbis(acetamide) networks, however, are near or below ambient temperature,19 which makes it challenging to rigorously characterize their properties and is impractical for most applications. Herein, we report a new series of glass-forming two-dimensional metal–ethylenelbis(acetamide) networks that undergo glass transitions above ambient temperature. Through liquid-phase blending and judicious selection of different components of the network, we show that reversible switching between glass and crystalline phases with large differences in optical reflectivity can be achieved, revealing a promising pathway for optical switching in metal–organic glasses.

RESULTS AND DISCUSSION

Glass Formation and Recrystallization Behavior.

To design metal–bis(acetamide) networks with higher glass-transition temperatures than glasses composed of hexamethylenelbis(acetamide) (hmba, $n = 6$) and butylenelbis(acetamide) (bba, $n = 4$) bridging organic ligands, the shorter ligand $N\text{,}N'$-ethylenelbis(acetamide) (eba, $n = 2$) was combined with divalent transition-metal chloride salts to yield a new series of two-dimensional $\text{M(eba)}_2[\text{M}'\text{Cl}_4]$ networks ($\text{M} = \text{M}' = \text{Mn, Fe and M} = \text{Mn, Fe, Co for M}' = \text{Zn}$) with a heating rate of 5 °C/min for all compounds. The DSC traces are offset by 0.5 W/g from each other for clarity. The range of temperatures that correspond to glass transitions (T_g), cold crystallizations (T_x), and melting transitions (T_m) are highlighted in light blue, yellow, and orange, respectively.

![Figure 1](https://pubs.acs.org/JACS)

(a) Crystal structure of two-dimensional framework $\text{Mn(eba)}_2[\text{MnCl}_4]$ at 298 K. Note that at 298 K, one of the two crystallographically independent eba ligands is disordered over two symmetry-related positions, and only one of them is shown for simplicity. Olive, red, gray, blue, green, and white spheres represent $\text{Mn, O, C, N, Cl, and H}$ atoms, respectively; only N–H protons are shown. The range of transition temperatures (T_g, T_x, T_m) is highlighted with light blue, yellow, and orange, respectively. (b) DSC traces for $\text{M(eba)}_2[\text{MCl}_4]$ ($\text{M}/\text{M}' = \text{Fe, Mn}$; and $\text{M} = \text{Co, Fe, Mn, M}' = \text{Zn}$) with a heating rate of 5 °C/min for all compounds. The DSC traces are offset by 0.5 W/g from each other for clarity. The range of temperatures that correspond to glass transitions (T_g), cold crystallizations (T_x), and melting transitions (T_m) are highlighted in light blue, yellow, and orange, respectively.
Single-crystal X-ray diffraction (SCXRD) revealed that all compounds crystallize in the same orthorhombic space group (Pbcm) with the same extended connectivity, wherein two pairs of ligands connect each octahedral metal center to two different neighboring metal centers to form one-dimensional chains. An additional pair of ligands bind two metal centers orthogonal to the chains, interconnecting them to afford two-dimensional sheets of coordination networks that are stacked around layers of charge-balancing tetrahedral [M’Cl₄]²⁻ anions (Figure 1a). Except for Co(eba)₃[ZnCl₄], which undergoes a partial recrystallization, all M(eba)₃[M’Cl₄] networks undergo a fully reversible melting transition (Tₘ) between 150 and 190 °C and form glasses upon fast quenching (20–50 °C/min) with glass-transition temperatures (Tₛ) that range from 33 °C for Fe(eba)₃[FeCl₄] to 50 °C for Mn(eba)₃[ZnCl₄]. Moreover, cold crystallization transitions (Tₓ), which correspond to an amorphous-to-crystalline transition induced by heating below Tₘ, are observed for each network by differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) on subsequent heating runs after glass formation (Figures 1b and S6).

Comparing glass-transition temperature for the M(eba)₃[M’Cl₄] networks to those of glass-forming hmba- and bba-containing networks reveals an inverse correlation between the length of the polymethylene chain, n, and Tₓ (Figure 2, top). Though moderate on an absolute scale, there is also an inverse correlation between n and Tₘ (Figure 2, middle). The increase in Tₘ is primarily driven by a decrease in the entropy of fusion, ΔSₘ (Figure 2, bottom), which can be attributed to the lower conformational flexibility of the shorter polymethylene bridge reducing the difference in rotational and configurational entropy between the solid and liquid states. The shorter polymethylene chain likely also contributes to a higher Tₛ by increasing the viscosity of the molten phase (Figure S43), which leads to slower relaxation dynamics and promotes glass formation at higher temperatures.

Interestingly, the identity of the metal center in the metal tetrahalide counteranion (M’) has a substantial effect on the melting transitions of M(eba)₃[M’Cl₄], which contrasts with the M(bba)₃[M’Cl₄] compounds wherein the identity of the counteranion minimally affects Tₘ. For instance, Fe(eba)₃[FeCl₄] and Mn(eba)₃[MnCl₄] have melting temperatures of 162 and 167 °C, respectively, and replacing the counteranion with [ZnCl₄]²⁻ leads to increases in Tₘ to 178 and 189 °C, respectively. The increase in Tₘ is primarily driven by an increase in the enthalpy of fusion, ΔHₘ, that is not compensated for by a commensurate increase in ΔSₘ (Figure S11). This can be rationalized, in part, through variable-temperature SXCRD, which reveals dynamic disorder in the M(eba)₃[M’Cl₄] networks (Figure S4) that is absent in M(bba)₃[M’Cl₄] and suggests a greater residual entropy in the solid state of the former compounds. Since the [M’Cl₄]²⁻ anions are engaged in hydrogen-bonding interactions with the N–H protons of the eba ligand, stronger hydrogen bonds to the more electron-rich Cl atoms of [ZnCl₄]²⁻ anions should lead to a larger ΔHₘ than the more electron-poor Cl atoms of [FeCl₄]²⁻ and [MnCl₄]²⁻. Because each [M’Cl₄]²⁻ anion only engages in hydrogen-bonding interactions with one metal–organic layer (Figure S2), we hypothesize that hydrogen-bonding strength has less of an effect on restricting the residual motion—and lowering the entropy—of [M’Cl₄]²⁻ and bis(acetamide) ligands in the solid state for the two-dimensional M(eba)₃[M’Cl₄] networks than for the three-dimensional M(bba)₃[M’Cl₄] networks for which [M’Cl₄]²⁻ anions are engaged in hydrogen bonds to the surrounding metal–organic network in all three dimensions (Figure S2). This would explain why there is greater enthalpy–entropy compensation in the latter case than in the former and is consistent with the increased dynamic disorder revealed by variable-temperature SXCRD for the M(eba)₃[M’Cl₄] network compared to M(bba)₃[M’Cl₄] (Figure S4).

In addition to its impact on melting thermodynamics, the introduction of [ZnCl₄]²⁻ also has a marked influence on the crystallization kinetics and glass-forming ability of each compound. For example, Mn(eba)₃[ZnCl₄] requires a cooling rate of at least 50 °C/min to circumvent crystallization and form a glass during DSC experiments, while Mn(eba)₃[MnCl₄] forms a glass for cooling rates faster than 30 °C/min. On subsequent heating, Tₓ of Mn(bba)₃[MnCl₄] is also 36 °C higher than that of Mn(bba)₃[ZnCl₄]. These differences are further reflected in the higher glass stability of Mn(eba)₃[MnCl₄], which describes how resistant glass is to devitrification upon heating and is critical to evaluating reversible glass–crystal transitions. There are several empirical parameters that can be used to quantify glass stability, including the Hruby parameter (Kₜ), which is related to normalized differences between Tₓ and Tₛ and is calculated as:

\[
Kₜ = \frac{(Tₘ - Tₙ)}{(Tₘ - Tₓ)}
\]
With a \(K_{rt} \) of 0.13, Mn(eba)\(_3\)\([\text{ZnCl}_4]\) is classified as an unstable glass that should be challenging to isolate experimentally. Consistent with its higher glass-forming ability, the \(K_{rt} \) of Mn(eba)\(_3\)\([\text{MnCl}_4]\) increases by almost 7-fold to 0.88, which is within the empirical \(K_{rt} \) range of 0.5—1.0 that typically permits facile glass preparation. Even though the difference is smaller, the glass stability of Fe(eba)\(_3\)\([\text{FeCl}_4]\) \((K_{rt} = 0.37) \) is also higher than Fe(eba)\(_3\)\([\text{ZnCl}_4]\) \((K_{rt} = 0.22) \), which suggests that \([\text{ZnCl}_4]\)\(^{2−}\) consistently leads to a decrease in glass stability.

In addition to glass stability, we also directly probed differences in the kinetics of recrystallization between Mn(eba)\(_3\)\([\text{MnCl}_4]\) and Mn(eba)\(_3\)\([\text{ZnCl}_4]\). Specifically, we used DSC experiments to measure the time required for complete isothermal cold crystallization of each compound as a function of temperature in the vicinity of their respective \(T_x \) (Figure S16). For both compounds, the fraction of crystallization, \(\alpha \), as a function of time at each temperature can be well modeled \((r^2 > 0.99) \) by the Avrami equation \(^{30,31} \)

\[
\alpha(t) = 1 - \exp(-k^n(t-t_0)^n)
\]

where \(k \) is the crystallization rate constant, \(n \) is the Avrami exponent that depends on the nucleation and growth mechanism, and \(t_0 \) is the induction time of crystallization (Figure S16). The higher \(k \) and \(n \) values modeled for Mn(eba)\(_3\)\([\text{ZnCl}_4]\) indicate faster recrystallization kinetics and are consistent with the lower glass-forming ability of this compound compared to Mn(eba)\(_3\)\([\text{MnCl}_4]\) (Table S10). The temperature dependence of \(k \) is related to the activation energy, \(E_a \), for crystallization. The rate constants for Mn(eba)\(_3\)\([\text{ZnCl}_4]\) follow typical Arrhenius behavior and can be described by

\[
k(T) = A \exp\left(\frac{-E_a}{RT}\right)
\]

where \(A \) is the pre-exponential coefficient and \(R \) is the ideal gas constant, yielding an activation energy of 200 kJ/mol that is similar to values reported for the crystallization of some inorganic glasses. \(^{31} \) Interestingly, the temperature dependence of \(k \) for Mn(eba)\(_3\)\([\text{MnCl}_4]\) appears to be non-Arrhenius and can be modeled by two processes with an activation energy of 66 kJ/mol at lower temperatures and an activation energy of 234 kJ/mol at higher temperatures (Figure 3). We note that larger sample-to-sample variation is observed at higher temperatures, which may indicate the presence of other processes not accounted for in the model. The lower \(E_a \) of Mn(eba)\(_3\)\([\text{ZnCl}_4]\) could be rationalized by stronger hydrogen-bonding interactions between \([\text{MCl}_4]\)\(^{2−}\) and the N–H proton in the eba ligand in the glass state relative to Mn(eba)\(_3\)\([\text{MnCl}_4]\), leading to less bond rearrangement during crystallization. This is corroborated by infrared (IR) spectroscopy, which reveals that the N–H stretch \((∼3290 \text{ cm}^{-1}) \) of glassy Mn(eba)\(_3\)\([\text{ZnCl}_4]\) is less red-shifted \((∼40 \text{ cm}^{-1}) \) from its crystalline state in comparison to glassy Mn(eba)\(_3\)\([\text{ZnCl}_4]\) (Figure S44).

Formation of Binary Metal–bis(acetamide) Glasses.

High glass stability is typically required for applications, such as phase-change memory and rewritable data storage, that leverage a contrast in optical properties between crystalline and glassy states of a material. All M(eba)\(_3\)\([\text{MCl}_4]\) compounds except for Mn(eba)\(_3\)\([\text{MnCl}_4]\) have relatively low glass stability \((K_{rt} < 0.5) \), but the spin-forbidden \(d-d \) transitions of the high-spin Mn(II) centers—and, consequently, the optical properties of the compound—are minimally affected by changes in coordination number. In an effort to increase the glass stability of networks containing more optically active metals, we discovered that multiple M(eba)\(_3\)\([\text{ZnCl}_4]\) networks could be combined to form new binary 1-M\(^{1}\)/M\(^2\)(Zn) phases with substantially higher glass stability. For example, mixing Mn(eba)\(_3\)\([\text{ZnCl}_4]\) and Co(eba)\(_3\)\([\text{ZnCl}_4]\) in a 1:1 ratio by mechanical grinding followed by melting and recrystallization resulted in the new homogeneous phase 1-Mn/Co(Zn), which undergoes a single glass transition, cold crystallization, and reversible melting transition. Relative to the two parent networks, the new melting transition occurs at an intermediate temperature with a slightly lower \(\Delta H_{fus} \). The reversibility of the glass–crystal transition in this binary phase and the large \(\Delta H_{fus} \) recovery are surprising, as less than 4% of the melting enthalpy could be recovered during partial recrystallization of the single-phase Co(eba)\(_3\)\([\text{ZnCl}_4]\) network. In addition, 1-Mn/Co(Zn) features a much higher \(K_{rt} \) of 0.79 than Mn(eba)\(_3\)\([\text{ZnCl}_4]\) \((K_{rt} = 0.13) \), demonstrating how glass stability can be readily tuned by mixing without adversely affecting reversibility.

Although liquid-phase blending of ZIFs typically leads to domain-structured glasses, \(^{32} \) SEM-EDX reveals that Mn, Co, and Zn are distributed homogeneously throughout the 1-Mn/Co(Zn) binary glass (Figure 4). Moreover, PXRD confirms that recrystallized 1-M\(^1\)/M\(^2\)(Zn) compounds are isostuctural to the parent M(eba)\(_3\)\([\text{ZnCl}_4]\) networks (Figure 57). The SEM and PXRD analysis—along with DSC experiments that show single melting transitions for all consecutive heating runs of the mixed phase (Figure 4a)—suggest that the metal centers from the parent networks are evenly distributed throughout the coordination network, likely via the dynamic dissociation and association of metal–ligand bonds within the molten and supercooled liquid states that promote the formation of M\(^1\)–eba–M\(^2\) linkages. As such, we expect liquid-phase mixing to be generalizable to a wide range of metal–bis(acetamide) networks, enabling the formation of mixed glasses with glass stability and crystallization behavior tailored for specific applications (Figure S15).
In Situ Structural Analysis of Glass–Crystal Transitions. To further investigate glass–crystal transitions in both single and binary \(\text{M(eba)}_3[\text{M'Cl}_4] \) compounds, we collected variable-temperature X-ray total scattering data for \(\text{Mn(eba)}_3[\text{ZnCl}_4] \), \(\text{Mn(eba)}_3[\text{MnCl}_4] \), and \(1-\text{Mn/Co(Zn)} \). The raw total scattering data was integrated, corrected for experimental effects, and normalized using PDFgetX3 to obtain total scattering-reduced structure functions, \(F(Q) \), which were Fourier transformed to get pair distribution functions (PDFs), \(G(r) \) (Figure 5a). \(^{33}\) Glassy samples showed broad diffuse scattering peaks and did not contain any of the strong features at high-\(r \) (\(r > 20 \) Å) in \(G(r) \) that are characteristic of crystalline samples.

The PDFs of \(\text{M(eba)}_3[\text{M'Cl}_4] \) networks provide insight into the structure of the disordered glassy states (Figure 5). At short interatomic distances (0 < \(r < 5 \) Å), the glass-phase PDFs are very similar to those of the crystalline phase, with sharp features that can be assigned to C–C, C–N, and C–O bonds within the eba ligands and to M–O and M’–Cl bonds, suggesting minimal changes to local coordination environments (Figure S24). This is consistent with ambient-temperature X-ray absorption fine structure (EXAFS) data for glassy \(\text{Mn(eba)}_3[\text{MnCl}_4] \), which can be well modeled with half of the Mn centers coordinated to \(4 \) Cl atoms—consistent with the \([\text{MnCl}_4]^{2-} \) anion being preserved in the glassy state—and half of the Mn centers coordinated to \(4.4(1.2) \) O atoms of the eba ligand (Figure 6). The average metal–ligand coordination...
number of 4.4(1.2) is comparable to that of the molten phase of Co(bba)$_3$[CoCl$_4$] (N$_{Co-O}$ = 4.8(7)) and is well above the bond percolation threshold of 2.0–2.4 that is required for a disordered network. This is consistent with the presence of an extended network of metal–ligand coordination interactions—rather than discrete molecular units—that spans the entire glass.

The intermediate-r ($5 < r < 20$ Å) and high-r ($r > 20$ Å) regions of the PDFs of M(eba)$_3$[M$'$Cl$_4$] glasses further reveal structural ordering reminiscent of the parent crystalline phases. For instance, calculations of PDF patterns based on the crystalline phase show that peaks at 8.1 and 15 Å arise mostly from first- and second-nearest-neighbor correlations between framework and counteranion metal centers (M–M$'$), while peaks at 9.5 and 13 Å mainly arise from M–M and M–M$'$ correlations. Though decreased in intensity in the glassy phases, broad peak features centered at 7.8 and 14.5 Å suggest structural correlations reminiscent of first- and second-nearest-neighbor metal–metal correlations in the crystalline state, albeit with a much wider distribution of metal–metal distances (Figure S31). In addition, a close examination of PDF patterns beyond 20 Å reveals an oscillatory signal that extends to 40 Å for all three M(eba)$_3$[M$'$Cl$_4$] glasses (Figure 5a, inset). This oscillatory signal can be attributed to density modulations that persist in the glassy state and produce a relatively sharp feature at low-Q in the diffraction signal known as the first sharp peak.

![Figure 6.](image)

Figure 6. EXAFS model for glassy Mn(eba)$_3$[MnCl$_4$]. Black traces correspond to experimental data, while red, light blue, and dark yellow traces represent the overall Mn–O, and Mn–Cl fits, respectively, and residuals are shown in blue. The fitting window (gray) is from 1.0 to 2.2 Å. Inset: k space representations of the EXAFS data for crystalline (olive) and glassy (light green) Mn(eba)$_3$[MnCl$_4$] showing minimal changes from the crystalline state upon glass formation.

![Figure 7.](image)

Figure 7. (a) UV–vis spectra of a crystalline 1-Mn/Co(Zn) film (dotted line) compared to glassy films with a range of estimated thicknesses (solid lines). (b) Absorbances at 650 nm as a function of estimated thickness for glassy (dark blue squares) and crystalline (light blue circles) films. Black dotted lines represent Beer’s law fits ($r^2 \geq 0.97$), and the slope of each fit corresponds to the absorption coefficient α. Inset: picture of a presentative 1-Mn/Co(Zn) glass film (left) and the same film after annealing (right). (c) High reflectivity contrast ratio of 4.8 at 650 nm (red dotted line) across a melt quench-annealing cycle of a 1-Mn/Co(Zn) film. The % normalized reflectivity of the glass and crystalline film is shown in dark and light blue solid lines, respectively. Inset: optical images of the measured crystalline film, from which a single grain, with size ~ 15 μm in width, was selected for data analysis. The scale bar corresponds to 10 μm. (d) Cycling experiment results demonstrating well-retained reflectivity contrast. A 1-Mn/Co(Zn) film was cycled between the glass and the crystalline states seven times, and three reflectivity measurements were taken for each phase at different cycles. The variability between each measurement for crystalline and glassy films likely arises from slight changes in the film thickness after melting.
The FSDP for glassy M(eba)\(_2\)[M'Cl\(_4\)] glasses is a common feature of network-forming liquids and amorphous solids, and its position, \(Q_s\), is correlated to the wavelength of the oscillatory signal, \(\lambda\), as described by\(^\text{35}\)

\[
\lambda = 2\pi/Q_s
\]

\(\text{Figure 5b).}\) The FSDP for glassy M(eba)\(_2\)[M'Cl\(_4\)] is at 0.9–1.0 Å\(^{-1}\), which corresponds to a density modulation wavelength of 6.3–7 Å that is consistent with density modulation characteristic of the crystalline network. This suggests that a network structure reminiscent of the parent crystalline phase is maintained within the glass. Interestingly, a larger amplitude of the oscillatory signal that extends to higher \(r\) is observed for Mn(eba)\(_2\)[ZnCl\(_4\)] relative to Mn(eba)\(_2\)[MnCl\(_4\)] and 1-Mn/Co(Zn) (\(\text{Figure 5a, inset; Figure S25}\)). This implies that a higher degree of extended structural ordering is present in Mn(eba)\(_2\)[ZnCl\(_4\)], which could contribute to its faster crystallization kinetics.

While peaks at short interatomic distances remain largely unchanged upon heating each glass, changes to intermediate and long-range PDF features provide insight into structural evolution across the glass—crystal transitions. Arising from metal—metal correlations in the intermediate range, broad peaks centered at 7.8 and 14.5 Å significantly sharpen and increase in intensity as metal—metal distances unify during crystallization (\(\text{Figure 5b).}\)) To quantitatively analyze how extended-range density modulations evolve upon heating, the position and width of the FSDP was modeled as a function of temperature for Mn(eba)\(_2\)[MnCl\(_4\)] and 1-Mn/Co(Zn) (\(\text{Figures S26 and S27}\)). As crystallization occurs in both compounds, the FSDP decreases in width and increases in intensity, consistent with increased structural order.

The position of the FSDP is 0.91 Å\(^{-1}\) in the glass state of Mn(eba)\(_2\)[MnCl\(_4\)], while the first intense Bragg peak appears at a higher \(Q\) of 0.95 Å\(^{-1}\) in the crystalline state, which suggests a contraction in real-space density modulations during crystallization. Surprisingly, He pycnometry shows that the density of the Mn(eba)\(_2\)[MnCl\(_4\)] glass is actually 3.0% higher than that of the crystal (\(\text{Figure S42}\)). We hypothesize that the slight increase in the glassy state density is mainly driven by a reduction in tiny void spaces between ordered layers in the glass relative to the crystalline state, which is not captured in the FSDP since it only reports on weakly ordered density modulations. This is consistent with the dynamic disorder observed for [M'Cl\(_4\)]\(^{2-}\) anions (\(\text{Figure S4}\)), which could reflect voids in between the coordination network layers that are eliminated in the glassy state and regained upon the glass—crystal transition. Although not commonly observed for conventional glasses, we note that there are several examples of metal—organic frameworks that form glasses that are denser than the parent crystalline phase due to reduced residual void space.\(^\text{15b}\)

Optical Contrast across Reversible Glass—Crystal Transitions

For rewritable data storage and phase-change memory applications, changes in optical properties between the crystal and glass phases of a material can be used to read out a current logic state (0 or 1). Given the fine control over melting, glass, and cold crystallization transitions that can be achieved, we anticipated that M(eba)\(_2\)[M'Cl\(_4\)] compounds containing optically active metal centers within the coordination network would serve as promising optical phase-change materials owing to changes in the absorption intensity of \(d-d\) transitions as centrosymmetric, six-coordinate metal centers in the crystalline network transition to non-centrosymmetric, lower-coordinate species in the glassy network. To begin investigating this, we fabricated smooth, homogeneous films of single and binary M(eba)\(_2\)[M'Cl\(_4\)] glasses via melt quenching that could be converted into crystalline films by annealing at \(T_a\) (\(\text{Figure S32}\)). While no visible color change is observed for Mn(eba)\(_2\)[ZnCl\(_4\)] and the purple to dark blue color change of Co(eba)\(_2\)[CoCl\(_4\)] is irreversible, the binary glass 1-Mn/Co(Zn) excitingly combines the high reversibility and substantial optical contrast of the two parent phases. Specifically, the glass—crystal transition for 1-Mn/Co(Zn) occurs with a distinct, reversible color change from dark blue to a faint pale blue (\(\text{Figure 7b, inset}\)).

To confirm the molecular mechanism responsible for the color change, we collected ambient-temperature UV–vis spectra for both glassy and annealed crystalline films of 1-Mn/Co(Zn) sandwiched between two pieces of optically transparent quartz slides (\(\text{Figure 7b, inset}\)). An absorption band at 600–725 nm is present for the annealed crystalline film, along with an additional absorption band of very low intensity centered at 543 nm (\(\text{Figures 7a and S36}\)). With broad maxima at 612, 629, 665, and 694 nm, the main absorption band in the crystalline state is consistent with \(d-d\) transitions for tetrahedral [CoCl\(_4\)]\(^{2-}\), whereas the significantly weaker absorption band at 543 nm arises from the Laporte-forbidden \(d-d\) transitions of octahedral Co coordination centers. While [CoCl\(_4\)]\(^{2-}\) octahedra are expected in the crystalline binary network, the formation of [CoCl\(_4\)]\(^{2-}\) in the annealed crystal from the initial mixture of Mn(eba)\(_2\)[ZnCl\(_4\)] and Co(eba)\(_2\)[ZnCl\(_4\)] suggests some exchange between network Co atoms and Zn atoms of the [ZnCl\(_4\)]\(^{2-}\) anions during melt quenching and recrystallization. Though quantifying the exact extent of this exchange is challenging, the presence of [CoCl\(_4\)]\(^{2-}\) in annealed 1-Mn/Co(Zn) is further confirmed by EXAFS spectra at the Co edge (\(\text{Figures S20 and S21}\)) as well as by X-ray diffraction data for an analogue of the compound synthesized by a solution-phase crystallization (\(\text{Figure S33}\)). The light blue color of the annealed crystalline film can thus be attributed to a small population of [CoCl\(_4\)]\(^{2-}\) anions.

Upon melt quenching to form glassy 1-Mn/Co(Zn), the absorption onset shifts to 500 nm, and there is an increase in absorption intensity, as expected, given the intense blue color of the glass (\(\text{Figure 7b)\)}. Broad features at 609, 626, and 660 nm indicate that [CoCl\(_4\)]\(^{2-}\) species are still present in the glass. The absorption onset shift and significant enhancement in intensity for glassy 1-Mn/Co(Zn) compared to crystalline 1-Mn/Co(Zn) can be attributed primarily to the breaking of inversion symmetry within the coordination network since undercoordinated Co centers (\(N_{\text{Co-O}} < 6\)) have additional allowed \(d-d\) transitions. As crystallization occurs, Co centers regain their octahedral coordination environments—with the exception of some residual [CoCl\(_4\)]\(^{2-}\) anions—and the color reverts from dark blue to pale blue. Importantly, the optical switching in this binary glass is highly reversible, with a similar absorbance contrast observed between the glass and crystalline states over the course of at least three thermal cycles (\(\text{Figure S36}\)).

To more rigorously quantify the absorbance contrast, we determined the absorption coefficients of the glass by measuring the absorbance of glass films as a function of thickness (14, 20, 34, 45 μm) (\(\text{Figure S33}\)). The films were...
then annealed to determine the absorption coefficients of the crystalline phase, with diffuse scattering from crystalline domains accounted for by subtracting a fitted baseline over a featureless range (360 ≤ λ ≤ 440 nm) of each spectrum. The absorption coefficient at a given wavelength (λ) was then obtained by fitting the dependence of absorbance on estimated thickness with Beer’s law:

\[A = \alpha l \]

(5)

where \(A \) is the absorbance, \(\alpha \) is the absorption coefficient, and \(l \) is the estimated film thickness (Figure S35). Notably, 1-Mn/Co(Zn) features a large \(\alpha_{\text{glass}}/\alpha_{\text{crystal}} \) ratio of 5.4 at 650 nm, which confirms that this material can be converted between two states with high optical contrast (Figure 7b).

To eliminate the effects of diffuse scattering and to allow for a more quantitative comparison to existing chalcogenide glasses that are used in reflection mode for rewritable data storage, we also measured changes in reflectivity across the glass—crystal transition using a spectroscopic microscope (Figure 7c). The high spatial resolution (≈0.3 μm) provided by spectroscopic microscopes—in combination with the large grain size (10–50 μm) of 1-Mn/Co(Zn) crystals—allowed for the precise quantification of reflectivity from a single crystalline grain. Moreover, a reflective silver backing was used to minimize light loss due to transmission through the sample. Although slightly lower than the theoretical absorptivity ratio of 5.4, a large contrast ratio of 4.8 in percent normalized reflectivity (\%R\text{crystal}_N/\%R\text{glass}_N) at 650 nm was observed for the glass—crystal transition of 1-Mn/Co(Zn) (Figure 7c). The reflectivity values for the glass and crystalline phases were used to calculate the reflectivity contrast (C), which is a commonly used parameter to evaluate optical contrast in rewriteable optical data storage and is defined as:40

\[C = \frac{2(R_{\text{crystal}} - R_{\text{glass}})}{R_{\text{crystal}} + R_{\text{glass}}} \times 100\% \]

(6)

where \(R_{\text{crystal}} \) and \(R_{\text{glass}} \) correspond to the reflectivity of the crystal and glass phases, respectively. With a C value of 131%, the optical contrast achieved by 1-Mn/Co(Zn) is higher or comparable to reported chalcogenide phase-change materials.38,39 In addition, the reflectivity of each phase did not change significantly over multiple melt-recrystallization cycles (Figures 7d and S39). Although the bulk-film sample configuration used here is not conducive to evaluating scaling potential and switching time—which are important parameters for photonic memory applications that require ultrafast switching and small device sizes33—1-Mn/Co(Zn) demonstrates the potential of utilizing changes in metal–ligand coordination environments across glass–crystal transitions to achieve high optical contrast at significantly lower operating temperatures than chalcogenide phase-change materials, thus providing a pathway to data storage and optical switches with reduced energy intensity.

Conclusions

The foregoing results demonstrate a strategy to increase the glass-transition temperatures of metal–bis(acetamide) networks to above ambient through the use of ethylenebis(acetamide) as a bridging ligand. The increased \(T_g \)—relative to previously reported metal–bis(acetamide) networks—can be attributed to a reduced entropy of fusion and increased molten-phase viscosity that results from the reduced conformational flexibility of ethylenebis(acetamide) in comparison to longer bridging ligands. Moreover, most M(eba)\textsubscript{2}(M\textsubscript{2}Cl\textsubscript{4}) compounds undergo reversible glass–crystal transitions, and the glass stability can be enhanced by modifying the nature of the metal center in the counteranion site or by liquid-phase blending of two M(eba)\textsubscript{2}(M\textsubscript{2}Cl\textsubscript{4}) networks. The highly reversible interconversion between glassy and crystalline phases, as well as the capacity for forming homogeneous binary glasses upon liquid-phase mixing, were leveraged to design a new optical phase-change material with a high reflectivity contrast ratio of 4.8. Owing to their high tunability, metal–bis(acetamide) networks offer a promising platform for expanding the structural and chemical diversity of metal–organic glasses with predictable thermophysical properties unobserved in conventional glassy materials.

Associated Content

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.2c10449.

Additional experimental details, powder X-ray diffraction data, EXAFS data, total X-ray scattering data, pair distribution function analysis, calorimetry data, rheological data analysis, UV–vis data, spectroscopic microscopy data, SEM-EDS analysis, and crystallographic information (PDF)

Accession Codes

CCDC 2202032–2202041 and 2216165–2216166 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Author Information

Corresponding Author

Jarad A. Mason — Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States; orcid.org/0000-0003-0328-7775; Email: mason@chemistry.harvard.edu

Authors

Mengtan Liu — Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States

Adam H. Slavney — Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States

Songsheng Tao — Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States

Ryan D. McGillicuddy — Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States

Cassia C. Lee — Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States

Malia B. Wenny — Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States; orcid.org/0000-0002-0704-8184
Simon J. L. Billinge — Department of Applied Physics and Applied Mathematics, Columbia University, New York; New York 10027, United States; Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States; orcid.org/0000-0002-9734-4998

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.2c10449

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research was partially supported by the Arnold and Mabel Beckman Foundation through a Beckman Young Investigator grant awarded to J.A.M. and an Arnold O. Beckman Postdoctoral Fellowship to A.H.S. Synthesis, crystallography, thermal characterization, glass film fabrication, and optical characterizations were supported by the US Department of Energy (DoE) under award DE-SC0021145. The PDF work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-SC0012704. The authors thank Dr. Shao-Liang Zheng for assistance with crystallography experiments and data analysis. The authors thank Dr. Arthur McClelland for assistance with spectroscopic microscope experiments. The authors thank Mr. Timothy Cavanaugh for assistance with SEM-EDS data collection and analysis. The authors thank Dr. Sungak Lee for assistance with EXAFS experiments and data analysis. EXAFS measurements were conducted on beamline 12-BM at the Advanced Photon Source, a DoE Office of Science User Facility operated for the DoE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. X-ray PDF measurements were conducted on beamline 28-ID-2 of the National Synchrotron Light Source II, a US Department of Energy (DoE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704. This work was performed in part at the Harvard University Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Coordinated Infrastructure Network (NNCI), which is supported by the National Science Foundation under NSF award no. ECCS-2025158.

REFERENCES

