Making and Breaking Rules with Algorithmic Forms and Tactile Processes

A Technoceramist's Adventures with Mathematical Thinking

Timea Tihanyi
Contents

06 — One: Preparing
18 — Two: Toolpaths
38 — Three: Wedging
57 — Four: Form Giving
95 — Five: Touching Up
104 — Photo Plates
Mystery. Solved. Mystery. Detail. 2017-2019. 3D printed porcelain. 12"x6"x6"

Textile Traditions Series: Knit Vessels. Detail. 2017. 3D printed porcelain, glaze. 8"x5"x5"

Textile Traditions Series: Tiling Cup. Detail. 2017-18. 3D printed porcelain, pigments, glazes. 5"x3.5"x3.5"


Pathfinder Series: Slip 1. 2019. 3D printed porcelain, glaze. 9"x5"x6"


Listening Cup. 2018. 3D printed porcelain, glaze, sound data. 6.5"x4"x4"

Textile Traditions Series: Woven Vessels. Detail. 2017. 3D printed porcelain, glaze. 13"x8"x6"

Textile Traditions Series: Crochet Vessels. Detail. 2017. 3D printed porcelain, glaze. 8"x5"x5"

Code Slip Series: We. The. People. Detail. 2018. 3D printed porcelain. 8"x14"x16"

Golden Means: Reflections. Installation detail. 2019. 3D printed porcelain, glaze, sound data, gold leaf. 60"x60"x18"

Golden Means. Installation detail. 2019. 3D printed porcelain, glaze, sound data, gold leaf. 60"x60"x18"


Vortex. 2018. 3D printed porcelain, glaze, sound data. 6.5"x4"x4"

Unspace. Detail. In Parlor Games: Scientia. 2018. Chalk, pencil, Conte on board. 60"x36"x2"

Perfect Imperfect. 2016. Slipcast bone china, foam porcelain. 20"x20"x20"

Axiomatic. 2016. Installation with slipcast bone china and porcelain, wall drawing, video.

Burst and Follow Series. 2018. 3D printed porcelain. 13"x8"x8"

Burst and Follow: Rule 75. 2018. 3D printed porcelain. 13"x8"x8"

Burst and Follow: Rule 43. 2018. 3D printed porcelain. 13"x8"x8"

Burst and Follow: Rule 105. 2018. 3D printed porcelain. 13"x8"x8"

Burst and Follow: Rule 30. 2018. 3D printed porcelain. 13"x8"x8"

Burst and Follow: Rule 45. 2018. 3D printed porcelain. 13"x8"x8"

Burst and Follow: Rule 73. 2018. 3D printed porcelain. 13"x8"x8"

Burst and Follow (Viral Version). 2018. 3D printed porcelain and mirrors. 24"x30"x10"

Burst and Follow (Viral Version). Detail. 2018. CoCalc coding, 3D printed porcelain. 24"x30"x10"

Colors of a Punctured Donut. Detail. 2019. CoCalc coding, 3D printed porcelain. 13"x8"x8"

Sandpile cups. 2019. 3D printed porcelain, glaze. 5"x4"x4"

Colors of a Punctured Donut. Detail. 2019. CoCalc coding, 3D printed porcelain. 13"x8"x8"

Colors of a Punctured Donut. 2019. 3D printed porcelain, glaze. 60"x8"x8"

Matrix Series. 2019. CoCalc coding, 3D printed porcelain. 8"x8"x8"

Plateaus. Detail. 2019. Participatory sculpture. 3D printed porcelain, gold glaze, glazes. 60"x30"x30"
Many thanks to

Sara Billey, who provided many of the original code kernels and who generously said yes to embarking on this project with me;
All the current and past Slip Rabbit interns and collaborators, and the fabulous WXML team lead by Sara, for their spirited way of putting up with my constant wigglng, probing and wild ideas;
My husband, Sándor Kovács, who is always by my side to lend his time, support and encouragement (besides being both a walking math-wiki and a most diligent reader of the first draft);
Talented graphic designer, Eli Kahn, who believed in this publication coming to life more than I ever dared to do;
Debby Bacharach, who kept reminding me to rein in my scattered flow of thought and fine-combed the final draft;
Erica Lee for her help with the illustrations;
William Stein, who created CoCalc, and gave us additional computing resources for our project;
Ahmed Bou-Rabee, who advised me on the mathematical description of sandpiles;
Jayadev Athreya, whose excitement about math-art is contagious;
Sundaymorning@ekwc—formerly the European Ceramic Workcentre, an international workplace in the Netherlands, where artists, designers and architects explore the technical and artistic possibilities of ceramics—where I came to become a ceramist again, and where I first dipped my toes into making with the help of digital tools;
ICERM for inviting and hosting me during the special semester for Illustrating Mathematics, which gave me the time to focus on this project, as well as a perspective to reflect on many of the ideas I learned about there and had the opportunity to discuss with fellow participants.

I’m deeply grateful to the visionary donors and the College of Arts and Sciences at the University of Washington for the 2018 Bergstrom Award, without which this publication would not have been possible.

December 2019
About the Author

Timea Tihanyi is an interdisciplinary visual artist and ceramist with an active research and exhibition practice spanning over two decades. Tihanyi earned an MD in 1993 at Semmelweis University, Budapest, Hungary, specializing in neuropsychology. Moving to the United States, she pursued a degree in ceramics and received a BFA in 1998 from the Massachusetts College of Art, Boston and an MFA in ceramics, in 2003 from the University of Washington, where she has been teaching since. Her work has been exhibited in the United States, Brazil, Australia, Denmark, Spain and the Netherlands, including the Shepparton Art Museum, the Henry Art Gallery, the Bellevue Art Museum, CoCA Seattle, the Mint Museum of Art and Design, the Society for Contemporary Craft in Pittsburg, the Clay Center for the Arts and Sciences, the Foundry Art Center, the Museum of Glass, and the International Museum of Surgical Science. Tihanyi is a recipient of the 2018 Neddy Award in Open Media. She frequently collaborates with mathematicians and runs the Seattle-based technoceramics mentoring and research studio, Slip Rabbit.