Quantitative Analysis and Empirical Methods 3) Descriptive Statistics

Jan Rovny

Sciences Po, Paris, CEE / LIEPP

Introduction

- Data and statistics
- Introduction to distributions
- Measures of central tendency
- Measures of dispersion
- Skewness

Data and Statistics

Statistics

- Descriptive statistics
- Provide a summary of data
- Give us an overview in which we can situate specific observations
- Describe a sample
- Inferential statistics (\neq descriptive statistics)
- Draw inferences (generalizations) to larger populations

Data frame

- Rows are observations
- eg: countries; individuals; country years etc.
- Columns are variables
- Quantified characteristics of the observations

Data frame example 1

cntry	year	almp	educspend_total	Euro_atrisk	EU_empl_rate_20to64	Euro_spendRD
Austria	2000	.5	11937.2	.	71.4	1.93
Austria	2005	.6	13337.3	16.8	71.7	2.46
Austria	2010	.	16867.5	16.6	74.9	2.8
Belgium	2000	1.1	12917.7	.	66.8	1.97
Belgium	2005	1.1	17969.3	22.6	67.6	1.83
Belgium	2010	.	23395.6	20.8	.	2.1
Canada	2000	.4	54662.6	.	.	.
Canada	2005	.3	63658.9	.	.	.
Canada	2010	.	84166.4	.	.	

Raw data

little overwhelming...

educspend_total Euro_atrisk EU_empl_rate_20to64 Euro_spendRD family_exp gdp_growth lfp_15to24 unempl_15to lfp_15to64 unempl_15to64 lfp_old unempl_old MARKER preprim_edspend_level
017.3691 .563 .65 .25328 .832213 .689166 .59164 .4965632 .39522 .1226510 017.170 .71 .513 .1014324 .725114 .234168 .21214 .3972340 .56772 .289611296 .87 20725.174 .31 .941 .53 .9410370 .81116 .1039974 .34063 .0717238 .45192 .12766141468 .67 $26423.216 .7 \quad 75.11 .91 .712 .0464868 .0959 .4010675 .4798 \quad 5.291246 .89584 .4857811824 .27$ $\begin{array}{llllllllllllllllllll}35085.6 & 15.1 & 76.8 & 1.86 & 1.52765 & 68.993 & 8.67052 & 78.2175 & 4.479 & 56.2877 & 3.95713 & 1 & 2413.51\end{array}$ $\begin{array}{lllllllllllll}7862.03 & 2.8 & 2.71945 & 62.7503 & 13.5562 & 75.0567 & 6.23276 & 59.6856 & 4.72167 & 1 & 221.577\end{array}$ 9699.242 .63 .5068362 .52759 .7263677 .3153 .8676470 .85231 .897661361 14111.31 .8155660 .369617 .059177 .54476 .7172575 .85423 .3781911038 .99 9748080.333 .2535864 .681710 .158780 .69013 .4557268 .03651 .34228110652 13661416.278 .21 .512 .82 .5889460 .178212 .030678 .87514 .6669468 .82791 .713415595 $\begin{array}{lllllllllllllllllllll}174830 & 14.9 & 79.6 & 1.68 & 478112 & 57.3522 & 9.31575 & 78.2474 & 3.6882 & 69.6043 & 1.39058 & 1 & 8493.9\end{array}$ $35956.261 .641 .24 .2598 \quad 37.843935 .1658 \quad 65.76416 .3703131 .34649 .3629313582 .17$
 $7325427.864 .3 .743 .8747334 .580123 .666765 .3151 \quad 9.74832 \quad 36.69867 .1459717349 .41$ 6632.4473 .5 . $7313.9155845 .7478 .61538 \quad 71.22354 .15412 \quad 52.51893 .186021349 .879$ 8044.8826 .172 .3 . 781.2 . 77507642.121216 .220273 .19838 .0503953 .67936 .101431594 .7 $\begin{array}{lllllllllllllllllllllll}9721.41 & 25.3 & 70.5 & 1.59 & 1.93641 & 36.1289 & 22.7588 & 73.6744 & 11.4114 & 54.2928 & 8.89334 & 703.98\end{array}$ 36862.163 .5 . 6521.3683945 .996236 .961269 .882518 .780324 .329512 .33613901 .82 $\begin{array}{lllllllllllllllllllllll}57186.2 & 32 & 64.5 & .51 & 1.9 & 6.65522 & 36.5174 & 29.8811 & 68.872 & 16.1954 & 35.0568 & 13.2901 & 1 & 5764.26\end{array}$ 2781.420 .664 .6 .634 .4253430 .962333 .633568 .650114 .414145 .224510 .13941260 .57 $68.51 .38 \quad 1.24 .265531$
$\begin{array}{lllllllllllllllllllllll}394512 & 18.5 & 71.1 & 1.44 & 1.1 & 4.00726 & 40.5185 & 15.9451 & 70.6668 & 6.6654 & 32.0621 & 4.22045 & 1 & 32581.3\end{array}$ $2016.5418 .370 .32 .11 .2584539 .925914 .652371 .49737 .4107436 .478 \quad 3.961091207 .21$ 26989.860 .7 . $9115.047648 .5496 \quad 25.29466 .696613 .935540 .89119 .4089312331 .89$ 38432.624 .367 .21 .121 .23 .5836552 .394719 .631271 .08229 .1924245 .97866 .304414769 .24 $\begin{array}{llllllllllllllllll}52091.6 & 26.7 & 62.8 & 1.4-.201262 & 46.8711 & 41.4806 & 74.5539 & 19.9752 & 50.7497 & 14.2104 & 1 & 7319.47\end{array}$ $\begin{array}{llllllllllll}162313 & 77.7 & 3 & 4.45219 & 52.8727 & 11.7308 & 78.97 & 5.87717 & 69.2991 & 6.12536 & 1 & 10642\end{array}$
$19070814.478 .13 .563 .3 \quad 3.1607855 .5036 \quad 21.994180 .24587 .76657 \quad 72.82544 .45618114906$
$2330941578.13 .396 .5568551 .364824 .773479 .04548 .7473874 .89745 .75934123716 .14 \equiv \downarrow$ 三

Jan Rovny \quad Quantitative Analysis and Empirical Methods

Levels of measurement and descriptive statistics

- Different levels of measurement require different descriptive statistics
- Nominal and ordinal measures \rightarrow categorical measures
- Interval and scale measures \rightarrow continuous measures

Distributions

Distribution

- Demonstrates the way in which observations are spread over possible values
- Shows the frequency of values of a sample
- To draw a distribution:
- Collect all the values of a variable
- Find the minimum and maximum
- Plot all the values from the lowest to the highest

Distribution example 1

Youth unemployment rate

Kernel density estimate

Distribution example 2

Youth unemployment rate

Distribution example 3

Voting behavior

Measures of central tendency

Measures of Central Tendency

- Measures of central tendency give different types of 'average' values of a variable.
- It is a summary measure of a variable.

Mode
Median
Mean
Measure Calculation Description

Calculation

Description

the most frequently occurring value the central value separating halves of data the arithmetic mean

Measures of Central Tendency

Different measures can be used for different levels of measurement! Mode nominal, ordinal, interval, scale
Median ordinal, interval, scale
Mean interval, scale

- Example: Identify the mode, median and mean in ($2,2,2,4,6,8,8$)

Measures of Central Tendency

Different measures can be used for different levels of measurement! Mode nominal, ordinal, interval, scale
Median ordinal, interval, scale
Mean interval, scale

- Example: Identify the mode, median and mean in ($2,2,2,4,6,8,8$)
- Mode $=2$

Measures of Central Tendency

Different measures can be used for different levels of measurement! Mode nominal, ordinal, interval, scale
Median ordinal, interval, scale
Mean interval, scale

- Example: Identify the mode, median and mean in ($2,2,2,4,6,8,8$)
- Mode $=2$
- Median $=4$

Measures of Central Tendency

Different measures can be used for different levels of measurement! Mode nominal, ordinal, interval, scale
Median ordinal, interval, scale
Mean interval, scale

- Example: Identify the mode, median and mean in ($2,2,2,4,6,8,8$)
- Mode $=2$
- Median $=4$
- Mean=4.571

Assessing measures of central tendency

- Nominal data - histogram, frequencies

Party Family	Freq.	Percent	Cum.
other	10,614	9.68	9.68
Major right	31,234	28.48	38.15
Major left	27,452	25.03	63.18
Radical right	4,642	4.23	67.42
Green	4,449	4.06	71.47
Radical left	5,498	5.01	76.48
Minor liberal	3,238	2.95	79.44
Abstention	22,554	20.56	100.00
Total	109,681	100.00	

Assessing measures of central tendency

- Ordinal data - histogram, frequencies

Assessing measures of central tendency

- Interval and scale data - density distribution,
- mean and standard deviation, min, max, median

Assessing measures of central tendency

Complications:

- When ordinal data is 'interval' (has equivalent unit changes along the scale), and has enough categories, we can treat it as interval data

Mean and Median in interval data

- Difference between mean and median!
- Income (19, 20, 12, 30, 10, 17, 18, 15, 13, 10):

Mean and Median in interval data

- Difference between mean and median!
- Income ($19,20,12,30,10,17,18,15,13,10$):
- $\bar{X}=16.40$, Mode $=10, \tilde{\mathrm{X}}=16.00$

Mean and Median in interval data

- Difference between mean and median!
- Income ($19,20,12,30,10,17,18,15,13,10$):
- $\bar{X}=16.40$, Mode $=10, \tilde{\mathrm{X}}=16.00$
- Enter an outlier: $(19,20,12,30,10,17,18,15,13,10,575)$:

Mean and Median in interval data

- Difference between mean and median!
- Income ($19,20,12,30,10,17,18,15,13,10$):
- $\bar{X}=16.40$, Mode $=10, \tilde{\mathrm{X}}=16.00$
- Enter an outlier: $(19,20,12,30,10,17,18,15,13,10,575)$:
- $\bar{X}=67.18$, Mode $=10, \tilde{\mathrm{X}}=17.00$

Mean and Median in interval data

- Difference between mean and median!
- Income ($19,20,12,30,10,17,18,15,13,10$):
- $\bar{X}=16.40$, Mode $=10, \tilde{\mathrm{X}}=16.00$
- Enter an outlier: $(19,20,12,30,10,17,18,15,13,10,575)$:

$$
\text { - } \bar{X}=67.18, \text { Mode }=10, \tilde{\mathrm{X}}=17.00
$$

- Lesson: Mean is very sensitive to outlying data, Median much less so!

Measures of dispersion

Dispersion

- Interval data are represented by two measures
- central tendency (mean, median)
- dispersion
- Dispersion can be understood as spread, stretch or variability of the values

Dispersion

- Dispersion can be measured by:
- range
- interquartile range, 90:10 ratio
- variance, standard deviation

Measures of Dispersion

- Tell us how close to the mean the values of the variable are.
- Is our variable 'tightly' around the mean, or is it widely dispersed?
- Effectively tell us how well the mean describes our variable.

Measure
Sample Variance
Sample Standard Dev.

Description
square deviation from mean
deviation from mean

Measures of Dispersion 2

- From previous example:
- $(19,20,12,30,10,17,18,15,13,10)$:
- $\sigma^{2}=35.82, \sigma=5.99$
- $(19,20,12,30,10,17,18,15,13,10,575)$:
- $\sigma^{2}=28398.96, \sigma=168.52$
- Measures of dispersion are essential pieces of statistical information about variables!!! Mostly forgotten in mainstream media!

Question

- In a sample of Swedes and Brits, you notice that the highest earners are predominantly British
- Yet Swedes have higher income on average
- How is this possible?

Skewness

Skewness

- when mean=median we have a symmetrical distribution
- when mean \neq median we have a skewed distribution

Types of Frequency Distributions

a. Symmetrical distribution

b. Negatively skewed distribution

c. Positively skewed distribution

Skewness

- To deal with skew we transform variables:
- Recode, collapsing or changing units
- Log transformation: positive skew is fixed by logging the variable
- Power transformation: negative skew is fixed by power transformation

Skewness

- Why does this work?
- Log transformation "pulls" higher values in

Skewness

- Why does this work?
- Exponential transformation "pushes" higher values out

