Autonomous Vehicle’s Impact on Transportation Infrastructure

Wei Zhu, PE, TE, PMP
Orange County Public Works
June 11, 2018
I. What is an Autonomous Vehicle (AV)

II. How soon will AV become a reality

III. How will AV impact the transportation infrastructure
 a. Safety
 b. Mobility
 c. Accessibility

IV. What should transportation engineers be ready for
 a. Challenges
 b. Opportunities
What is an Autonomous Vehicle

Automatic Levels of Autonomous Cars

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 0</td>
<td>These cars have no autonomous features.</td>
</tr>
<tr>
<td>Level 1</td>
<td>These cars can handle one task at a time, like automatic braking.</td>
</tr>
<tr>
<td>Level 2</td>
<td>These cars would have at least two automated functions.</td>
</tr>
<tr>
<td>Level 3</td>
<td>These cars handle “dynamic driving tasks” but might still need intervention.</td>
</tr>
<tr>
<td>Level 4</td>
<td>These cars are officially driverless in certain environments.</td>
</tr>
<tr>
<td>Level 5</td>
<td>These cars can operate entirely on their own without any driver presence.</td>
</tr>
</tbody>
</table>

Source: SAE International
How soon will AV become a reality

Either passed legislation, issued executive orders, or announced initiatives to accommodate self-driving vehicles on public roads:

- 2012: 6
- 2013: 9
- 2014: 12
- 2015: 16
- 2016: 20
- 2017: 33
- **2018: 37** (5/21/2018)

How soon will AV become a reality

- Sweden: Last December, Volvo launched its Drive Me project, which provided self-driving cars to a number of people.
- China: Shanghai issued its first self-driving licenses in 2018.
- South Korea: The K-City is the largest town model ever built for self-driving car experimentation.
- UK: The government passed a bill to draw up the liability and insurance policies related to autonomous vehicles.
- California: In 2018, DMV allowed fully autonomous vehicles with no driver to operate on its public roads.
- Arizona: Governor Ducey gave the green light for cars without drivers to operate on public roads in 2018.
- Germany: the parliament passed a law last May that allows companies to test self-driving cars on public roads.
- Netherlands: Council of Ministers first approved driverless vehicle road testing in 2015.
- Singapore passed legislation recognizing motor vehicles don’t require a human driver.
- New Zealand: The country has no specific legal requirements for cars to have drivers.

Graphic: Tony Peng | Synced

How soon will AV become a reality

Global Market for Cars

How will AV impact the Transportation Infrastructure

Foreseeable Impacts

- **Safety**
- **Mobility**
 - movement of people and goods
- **Accessibility**
 - the ability to reach desired goods, services, activities and destinations

http://www.vtpi.org/measure.pdf
National Motor Vehicle Crash Causation Survey (NMVCCS), conducted from 2005 to 2007

- **Recognition Errors**: inattention, internal & external distractions, inadequate surveillance... (41%)
- **Decision Errors**: too fast, false assumptions, illegal maneuver, misjudgment... (34%)
- **Performance Errors**: overcompensation, poor directional control, panic... (10%)
- **Non-Performance Errors**: sleep, physical impairment... (7%)
- **Other/Unknown Driver Error** (8%)

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812115
Mobility – VMT (Non-Drivers)

<table>
<thead>
<tr>
<th>AGE GROUP</th>
<th>TOTAL DRIVERS</th>
<th>ADDITIONAL DRIVERS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>% of TTL Drivers</td>
<td>Drivers as % of Age Group</td>
</tr>
<tr>
<td>UNDER 16</td>
<td>397,541</td>
<td>0.2</td>
<td>9.6</td>
</tr>
<tr>
<td>16-19</td>
<td>9,158,699</td>
<td>4.5</td>
<td>44.4</td>
</tr>
<tr>
<td>20-24</td>
<td>17,468,175</td>
<td>8.3</td>
<td>81.1</td>
</tr>
<tr>
<td>25-29</td>
<td>18,431,274</td>
<td>8.8</td>
<td>85.0</td>
</tr>
<tr>
<td>30-34</td>
<td>17,849,093</td>
<td>8.5</td>
<td>89.7</td>
</tr>
<tr>
<td>35-39</td>
<td>18,161,385</td>
<td>8.6</td>
<td>88.4</td>
</tr>
<tr>
<td>40-44</td>
<td>19,177,750</td>
<td>9.1</td>
<td>91.4</td>
</tr>
<tr>
<td>45-49</td>
<td>20,814,204</td>
<td>9.9</td>
<td>91.2</td>
</tr>
<tr>
<td>50-54</td>
<td>20,628,105</td>
<td>9.8</td>
<td>94.8</td>
</tr>
<tr>
<td>55-59</td>
<td>18,439,510</td>
<td>8.8</td>
<td>97.2</td>
</tr>
<tr>
<td>60-64</td>
<td>15,857,585</td>
<td>7.5</td>
<td>100.0</td>
</tr>
<tr>
<td>65-69</td>
<td>11,468,003</td>
<td>5.5</td>
<td>97.3</td>
</tr>
<tr>
<td>70-74</td>
<td>8,230,912</td>
<td>3.9</td>
<td>91.4</td>
</tr>
<tr>
<td>75-79</td>
<td>6,157,899</td>
<td>2.9</td>
<td>84.1</td>
</tr>
<tr>
<td>80-84</td>
<td>4,463,610</td>
<td>2.1</td>
<td>76.7</td>
</tr>
<tr>
<td>85 AND OVER</td>
<td>3,411,194</td>
<td>1.6</td>
<td>60.6</td>
</tr>
<tr>
<td>TOTAL</td>
<td>210,114,939</td>
<td>100.0</td>
<td>85.7</td>
</tr>
</tbody>
</table>

16.4% 14.2%

Mobility – VMT (Drivers)

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Total Daily Driving Trips</th>
<th>Total Annual Driving Trips</th>
<th>Daily Duration of Driving Trips (minutes)</th>
<th>Annual Duration of Driving Trips (hours)</th>
<th>Estimated Miles Driven Daily (miles)</th>
<th>Estimated Miles Driven Annually (miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-19</td>
<td>1.5</td>
<td>548</td>
<td>28</td>
<td>170</td>
<td>19.7</td>
<td>7,300</td>
</tr>
<tr>
<td>20-29</td>
<td>2.0</td>
<td>730</td>
<td>49</td>
<td>298</td>
<td>31.0</td>
<td>11,315</td>
</tr>
<tr>
<td>30-49</td>
<td>2.3</td>
<td>840</td>
<td>54</td>
<td>329</td>
<td>36.0</td>
<td>13,140</td>
</tr>
<tr>
<td>50-64</td>
<td>2.1</td>
<td>767</td>
<td>47</td>
<td>286</td>
<td>30.0</td>
<td>10,950</td>
</tr>
<tr>
<td>65-74</td>
<td>1.8</td>
<td>657</td>
<td>39</td>
<td>237</td>
<td>23.0</td>
<td>8,395</td>
</tr>
<tr>
<td>75+</td>
<td>1.7</td>
<td>621</td>
<td>36</td>
<td>219</td>
<td>19.0</td>
<td>6,935</td>
</tr>
<tr>
<td>Average</td>
<td>2.0</td>
<td>730</td>
<td>46</td>
<td>280</td>
<td>29.2</td>
<td>10,658</td>
</tr>
</tbody>
</table>

How will AV impact the Transportation Infrastructure
Mobility – VMT (Drivers)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily Driving Time per Driver (min.)</td>
<td>49.35</td>
<td>56.28</td>
<td>62.32</td>
<td>56.09</td>
<td>46</td>
</tr>
<tr>
<td>Daily VMT (mile)</td>
<td>28.49</td>
<td>32.14</td>
<td>32.73</td>
<td>28.97</td>
<td>29.2</td>
</tr>
<tr>
<td>Annual VMT per Driver (mile)</td>
<td>13,125</td>
<td>13,476</td>
<td>13,827</td>
<td>12,888</td>
<td>10,658</td>
</tr>
<tr>
<td>Vehicles per Household</td>
<td>1.77</td>
<td>1.78</td>
<td>1.89</td>
<td>1.86</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Scenario Analysis

How will AV impact the Transportation Infrastructure

How will AV impact the Transportation Infrastructure

Case 1: 30-min away

Scenario 1: (2 cars)
- Car 1: AB + BA
- Car 2: AC + CD + DC + CA

Scenario 2: (1 car)
- AV: AB + BA + AC + CD + DC + CA + AB + BA

Case 2: 60-min away

Scenario 3: (1 car)
- AV: AB + BA + AC + CD + DC + CA + AB + BA + AD + DA

Total VMT Increases
How will AV impact the Transportation Infrastructure

Accessibility

<table>
<thead>
<tr>
<th>Mode</th>
<th>Cost per passenger-mile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal Car</td>
<td>$0.57</td>
</tr>
<tr>
<td>Conv. Taxi</td>
<td>$3.46</td>
</tr>
<tr>
<td>Uber</td>
<td>$2.86</td>
</tr>
<tr>
<td>AV</td>
<td>$0.35</td>
</tr>
<tr>
<td>Public Transit</td>
<td>$0.23</td>
</tr>
<tr>
<td>Work at Home</td>
<td>$0.11</td>
</tr>
</tbody>
</table>

How will AV impact the Transportation Infrastructure:

- Less Ridership in Public Transit
- More trips in Single Passenger Vehicles
- Total VMT Increases

What should Transportation Engineers be ready for

Challenges

• Congestion Increases

• Land Use Change
 o Urban Sprawl

• Infrastructure Integration
 o Emergency Response, Traffic Control, TMC...
 o Pedestrian, Bike, Public Transit

Photo credit: wikipedia.org
What should Transportation Engineers be ready for for

Opportunities

- Congestion Management
 - 2013 -- $124 Billion
 - 2014 -- $160 Billion

- Parking Demand
 - 2002 -- $127 Billion
 - 2005 -- $31,000 ea. in L.A.

Dr. Shoup, Donald. “The High Cost of Free Parking.” 2005
Opportunities – Congestion Management

BPR Volume-Delay Function:

\[T_f = T_0(1 + \alpha[V/C]^\beta) \]

- \(T_f \): travel time
- \(T_0 \): free flow travel time
- \(V \): traffic volume
- \(C \): capacity
What should Transportation Engineers be prepared for

Capacity Increases (Roadway Segment)

$q = k \times v$

Where:
- q = Flow (veh/hr)
- v = Speed (mph)
- k = Density (veh/mi)

2200 pc/h/ln \rightarrow 4000 pc/h/ln (82% increase)
What should Transportation Engineers be ready for

Capacity Increases (Intersection)

Platoon Control by V2I Technology

Dr. Henry Liu, Next Generation Traffic Control with Connected and Automated Vehicles, 2016, UMTRI
Opportunities – Free Flow Time Decreases

<table>
<thead>
<tr>
<th>Road Type</th>
<th>Target Headway</th>
<th>Proportion of the Autonomous Vehicles</th>
<th>Travel Speed Percentage Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeway</td>
<td>0.5 s</td>
<td>0% 20% 40% 60% 80% 100%</td>
<td>1.07 1.15 1.26 1.42 1.67</td>
</tr>
<tr>
<td>Major Arterial</td>
<td>0.5 s</td>
<td>0% 20% 40% 60% 80% 100%</td>
<td>1.04 1.1 1.18 1.25 1.39</td>
</tr>
</tbody>
</table>

Opportunities – Parking Demand

Average No. of Vehicles per Household in the U.S.

2.1

An average car is parked 95% of the time. Let’s check...

46 min / day → 3.2% driving time

→ 96.8% idle time

Private Car Parking Demand: -45%

Ownership: -43%
VMT: +75%

$57 Billion Saving

What should Transportation Engineers be ready for

Opportunities – Planning, Design & Operation

• Computer Simulation for better planning and design
• Dynamic Routing for Congestion Mitigation
• Accurate Time Estimate for Transit Scheduling & Mode Choices
Conclusion

• Reality check

• Impact is inevitable

• Visionary planning & advanced technology are necessary
References

- Shoup, Donald C. “The High Cost of Free Parking,” University of California Transportation Center, No. 351, 1997.
THANK YOU

wei.zhu@ocpw.ocgov.com