Ubiquitous Volume Estimation - A Machine Learning Approach: Results from the Denver Metropolitan Area

Venu Garikapati

NaTMEC, Irvine CA
June 13, 2018
Outline

1. Motivation and Background
2. Standard Error Measures in Prediction
3. Volume Estimation on Freeways
4. Volume Estimation on Non-Freeways
5. Summary and Future Work
Why Do We Need More and Better Volume Data?

- **Operation**
 - Detect real-time traffic volume in the network
 - Traffic volume during inclement weather and special events

- **Performance measure**
 - Assess user costs
 - Utilization of existing capacity

- **Economic and energy assessment**
 - Estimate economic impact of congestion
 - Quantify VMT and energy use
Ubiquitous Traffic Volumes

Ubiquitous network observability
- Ideal but expensive to achieve with sensors

Best alternative
- Utilize and fuse existing high-quality yet sparse data with probe data to predict traffic volumes on each and every link of the road network
Proposed Solution

Input
- Probe Traffic Data
- Road Characteristics
- Weather Info
- Temporal Info

Calibration Network

Estimator
Machine Learning Techniques

Output
Traffic Volume Everywhere and All Times: Both real-time and historic
Standard Error Measures

- **Mean Absolute Percentage Error:** \(\text{MAPE} = \frac{1}{N} \sum_{i=1}^{N} \frac{|V_i - \bar{V}_i|}{V_i} \)
 - Reflects the absolute volume accuracy

- **Error to Theoretical Capacity Ratio:** \(\text{ETCR} = \frac{1}{N} \sum_{i=1}^{N} \frac{|V_i - \bar{V}_i|}{C_i} \)
 - Reflects fidelity with respect to capacity

- **Coefficient of Determination:** \(R^2 = 1 - \frac{(\bar{V}_i - V_i)^2}{(V_i - \bar{V})^2} \)
 - Depicts explanatory power of model
How Good is Good Enough?

- Error to Capacity (ETCR) or Max Flow (EMFR)
 - $< 10\%$ becomes useful $< 5\%$ is target

- Mean Absolute Percentage Error (MAPE)
 - Volume dependent - estimate
 - $10-15\%$ High Volume
 - $20-25\%$ Mid Volume
 - $30-50\%$ Low Volume
 (Mean Absolute Error may be appropriate)

- R^2 Coefficient of Determination
 - $>70\%$ good $>80\%$ better $>90\%$ best

<table>
<thead>
<tr>
<th>AADT Range</th>
<th>Decreasing (−)</th>
<th>Increasing (+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-19</td>
<td>-100%</td>
<td>400%</td>
</tr>
<tr>
<td>20-49</td>
<td>-40%</td>
<td>50%</td>
</tr>
<tr>
<td>50-99</td>
<td>-30%</td>
<td>40%</td>
</tr>
<tr>
<td>100-299</td>
<td>-25%</td>
<td>30%</td>
</tr>
<tr>
<td>300-999</td>
<td>-20%</td>
<td>25%</td>
</tr>
<tr>
<td>1,000-4,999</td>
<td>-15%</td>
<td>20%</td>
</tr>
<tr>
<td>5,000-49,999</td>
<td>-10%</td>
<td>15%</td>
</tr>
<tr>
<td>50,000+</td>
<td>-10%</td>
<td>10%</td>
</tr>
</tbody>
</table>

MNDOT Example
Volume Estimation on Freeways
Volume Estimation on Freeways

- 14 Continuous Count Station (CCS) locations and TomTom segments
Data Sources — both Freeway and Off-Freeway

- CDOT continuous count stations (freeways) and 48-hour short-term counts (off-freeways)
 - Hourly volume, road class, number of lanes
- Weather Underground
 - Temperature, precipitation, visibility, fog, rain, snow daily (freeways) and hourly (off-freeways)
- TomTom GPS Data
 - Probe count — key ingredient, speed, speed limit
- Temporal information
 - Month, day of week, hour of day
Data Points – Freeway Analysis

• Feb 1, 2017 – April 30, 2017

• A total of 52,092 observations

• Ranges from 2800-4000 observations at each CC location

• Percentage of traffic covered by GPS probe data (ranges from 8%-12%)
Estimation Methodology

• Machine Learning: A subfield of computer science that gives computers the ability to learn from data without being explicitly programmed
 – Random Forest (RF)
 – Gradient Boost Machine (GBM)
 – Extreme Boost Machine (XGBoost)

• Advantages
 – Do not require detailed mathematical forms and assumptions on variable distributions
 – Suitable for capturing the underlying relationships among different variables in an environment of uncertainty

• Disadvantages
 – Interpretability of input variables (“black box”)
 – Only predict within bounds of training – no extrapolation
Model Training and Validation

• In each iteration
 – 13 stations are used for training
 – 1 station is used for validation
• Repeat this 14 times and report validation results for all 14 locations

- Accuracy metrics accrued from validation of 14 iterations (similar method used for off-freeway)
Model Results

- Results exceed the survey expectation: ETCR<10%
- About 18% error relative to observed volume
- XGBoost is the most computational efficient

<table>
<thead>
<tr>
<th>Model</th>
<th>MAPE</th>
<th>ETCR</th>
<th>R2</th>
<th>Training Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF</td>
<td>17.8%</td>
<td>5.2%</td>
<td>0.92</td>
<td>73s</td>
</tr>
<tr>
<td>GBM</td>
<td>18.3%</td>
<td>4.8%</td>
<td>0.93</td>
<td>124s</td>
</tr>
<tr>
<td>XGBoost</td>
<td>17.7%</td>
<td>5.3%</td>
<td>0.91</td>
<td>13s</td>
</tr>
</tbody>
</table>
Contribution of Probe Vehicle Data

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Overall MAPE</th>
<th>Overall ETCR</th>
<th>Median R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without Probe Data</td>
<td>39.4%</td>
<td>12.4%</td>
<td>0.65</td>
</tr>
<tr>
<td>With Probe Data</td>
<td>17.7%</td>
<td>5.3%</td>
<td>0.91</td>
</tr>
</tbody>
</table>

Probe vehicle data has significant impact on volume estimation accuracy!!!
Estimation vs. Observation

Traffic Crash - Serious Injuries

Denver Police Dept. 🚑
@dDenverPolice

#Traffic: Delays possible in area of 6th Ave/Steele St due to a 2-vehicle crash with serious injuries. #Denver
5:37 PM - Feb 23, 2017

DC Sheriff 🚗
@dcsheriff

It's treacherous out! Douglas county is on accident alert. PLEASE slow down and drive carefully! #headsup #dcsotraffic
5:19 PM - Feb 23, 2017

Road Name: US

ON CHANNEL 2

February 24, 2017

Date
Volume Estimation on Non-Freeways
Functional Classification of Roadways

FHWA functional classification

Freeways
- Interstates
- Other Freeways

Lower Class Roads
- Principal Arterials
- Minor Arterials
- Major Collectors
- Minor Collectors
- Local Streets

<table>
<thead>
<tr>
<th>Property</th>
<th>Lower Class Roads</th>
<th>Freeways</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of Miles</td>
<td>98.5%</td>
<td>1.5%</td>
</tr>
<tr>
<td>Percentage of Lane Miles</td>
<td>96.7%</td>
<td>3.3%</td>
</tr>
<tr>
<td>Percentage of VMT</td>
<td>68.5%</td>
<td>31.5%</td>
</tr>
<tr>
<td>Monitoring Method</td>
<td>Short-term counts</td>
<td>Continuous count stations & Short-term counts</td>
</tr>
</tbody>
</table>

Data source: FHWA Highway Statistics 2013
Calibration / Validation Network

Freeway
- 14 Continuous Count Stations
- Probe sample 8%-12% of trips

Off-Freeway
- 359 48-hour count locations
- Probe sample 3.1%-7.7% of trips (~6.4% mean)

~1% of hourly volumes are between 0 to 100 vehs/hr

More than 25% of hourly volumes are between 0 to 50 vehs/hr
Model Evaluation Criteria

• Mean Absolute Percentage Error (MAPE)
 – Reflect the absolute volume accuracy
• Coefficient of Determination (R^2)
 – Explanatory power of model

New Measures need for Off-Freeway Results
• Error to Maximum Flow Ratio (EMFR)
 – Reflect volume to capacity fidelity
• Mean Absolute Error (MAE)
 – Reflect the absolute error
 – Effective for low volume roads
MAPE of Different Volume Ranges

- Volume > 300 vehs/hr: MAPE is low and stable
- Volume < 300 vehs/hr: MAPE is high, but model is still good
48-Hour Prediction on Test Locations

Principal Arterial

Station ID: 106501, MAPE=35.8%, MAE=68.2

Minor Arterial

Station ID: 900152, MAPE=24.8%, MAE=30.6

Major Collector

Station ID: 106992, MAPE=29.4%, MAE=29.6

Local Street

Station ID: 901909, MAPE=38.6%, MAE=3.1
Summary / Conclusions

• Volume estimation can be supported with a combination of:
 – Commercial Probe Data (Probe count & Speed/Travel Times)
 – Other road attribute data and weather
 – High confidence ground truth sensor for calibration and validation

• Machine learning provides rapid and sustainable calculation methods

• Probe data has significant impact on volume estimation accuracy

• Can be applied for both historical and real-time
On-going / Future Work

• Confidence Measures
• Handling volumes outside of training data set
• Better, consistent, standardize accuracy metrics
 – By number of observed probes
 – By roadway volume / AADT
 – By time of day
• Estimating truck volumes / AADT

Seeking Operational Partners:
• Taking it from the Laboratory to the Streets
 If interested please contact us
Thank You!