The skyscraper design is generated relying on NASA's technological research on space elevators. A non-rocket space launch structure is initially envisioned to transport materials from a celestial body's surface into space. Space elevators are conceived as purely tensile structures, with the weight of the system held up from above. In its tensile concepts, a space tether reaches from a large mass (the counterweight) beyond geostationary orbit to the ground. The design uses one of most recent researches that would then be used to carry up successive reinforcing tethers until a suitable strength is achieved. After the initial...
tether is constructed, carbon nanotubes tethers continue to be brought up the initial line, weaving a carbon nano-lattice of great strength. As the weight increases, additional supports from geostationary orbit weave down to support the growing Spacescraper load. A global network forms to support multiple exo-urban metropolises with a viral pulmonary transportation network, servicing the whole planet.

The transportation mechanisms rely on the use of V-trains, embarking and disembarking on stacked loading platforms distributed throughout the Spacescraper. Since the Vertical Mass Transit operates in the vacuum of the exosphere, the trains can travel without inhibitive atmospheric friction or the annoyance of sonic booms. Moving at thousands of kilometers per hour, the V-trains provide constant regional and international travel through the infrastructure.

By combining chemical components and structural compounds of carbon nanotubes, series of surface skin layers are derived, creating a continuous and uninterrupted membrane. Through repetition and complex multiplication of material layering, the membrane maintains its structural integrity. Using an elastic spatial planning strategy the open lattice can incorporate all organizational systems, without having its initial structure drastically altered.