
Projectcpn.eu

Grant Agreement No.: 761488

D2.1: CPN Reference Architecture

Content Personalisation Network.

Towards an improved personal news offer,

 enabling economic impact for large and small

news publishers.

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 2 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

The CPN reference architecture is the first deliverable of WP2, related to the CPN Platform.

Starting from the objectives of the CPN project, this document gathers the feedback from WP1 in

terms of vision, scenarios and use cases and defines the CPN reference architecture. In the overall

project course this will be followed by the implementation of the platform and integration of

technology bricks and smart components (in WP3).

The first chapter highlights the general goals of the project and in particular those relevant for the

development of the platform. It focuses also on the purpose of the whole deliverable, the role and

impact of the platform within the project and in the news publication and content personalization

markets, at European level.

Chapter two focusses on the approach used to define the architecture. The process started from initial

requirements elicited in WP1 and relies on the identification of the main actors to whom the platform

is addressed: end-users and media professionals. Based on these requirements, the main needs that the

platform must satisfy were identified. Different possible software architecture designs were analyzed

based on a state of the art analysis of service oriented architectures and microservices architectures.

The microservices architecture proved to be the best choice. With this kind of architecture, the

services can operate and be deployed independently from other services. This makes it easier to

integrate services leveraging on existing technology bricks and smart components, to deploy new

versions of services frequently and to scale up a service independently.

Chapter three focusses on the platform implementation details. The design specifications, the patterns

to be adopted and the fundamental components that will constitute the basis of the CPN platform are

described.

Chapter four introduces the guidelines for the development, communication and deployment of the

individual components of the platform. The CPN platform will have "core" services that will be

defined in subsequent WPs (esp. WP3). These services will be integrated with each other to offer a

series of features that accomplish the user requirements. Finally, as the CPN platform must be flexible

and extensible, open to future integration of new services, rules have been defined for the

standardization of services and for interoperability.

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 3 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

Work package WP 2

Task 2.1

Due date 31/01/2018

Submission date 31/01/2018

Deliverable lead ENG

Version 1.0

Authors
Ferdinando Bosco (ENG)

Vincenzo Croce (ENG)

Reviewers
Fulvio D’Antonio (LiveTech)

Petru Buzulan (LiveTech)

Keywords
CPN Reference Architecture - Content Personalisation - Microservices - Open

Virtual Platform

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 4 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

Document Revision History

Version Date Description of change List of contributor(s)

V0.1 13/12/2017 1st version of the deliverable with table of

contents
Ferdinando Bosco (ENG)

Vincenzo Croce (ENG)

V0.2 20/12/2017
draft version of deliverable for contributions by

partners

Ferdinando Bosco (ENG)

Vincenzo Croce (ENG)

V0.3 16/01/2018 version of deliverable with contributions from

ATC and integration of architectural

description

Ferdinando Bosco (ENG)

Vincenzo Croce (ENG)

Marina Klitsi (ATC)

Nikos Sarris (ATC)

Stratos Tzoannos (ATC)

V0.4 23/01/2018 version of deliverable with LiveTech, DCat and

Imec contributions, ready for internal review

Ferdinando Bosco (ENG)

Vincenzo Croce (ENG)

Marina Klitsi (ATC)

Nikos Sarris (ATC)

Stratos Tzoannos (ATC)

Michele Nati (DCat)

Maria Prokopi (DCat)

Matthias Strobbe (Imec)

Fulvio D’antonio (LiveTech)

Petru Buzulan (LiveTech)

v1.0 29/01/2018 final version of deliverable

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 5 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

DISCLAIMER

This project has received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No 761488.

This document reflects only the authors’ views and the Commission is not responsible for any use that

may be made of the information it contains.

Project co-funded by the European Commission in the H2020 Programme

Nature of the deliverable: Report

Dissemination Level

PU Public, fully open, e.g. web X

CL Classified, information as referred to in Commission Decision 2001/844/EC

CO Confidential to CPN project and Commission Services

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 6 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

EXECUTIVE SUMMARY

The main goal of CPN project is to create innovation in the way content creators can structure content

production, distribution and in-depth interaction with audiences.

To do this CPN will realize an innovative Open Virtual Platform.

The microservice architecture offers a series of benefits well suited for the CPN platform

requirements. A process of selection of the most proper model involved a comparison between Service

Oriented Architecture and the microservices models. The analysis brought to the choice to implement

a reference architecture referring to microservices model for many reasons including the possibility to

have an easy and robust development and integration process for the components realized by different

partners. Moreover the specific implementation was aimed at obtain the independence between

applications, infrastructure, deployment and operation environments; this constitutes an easy

environment for the development of solutions exploiting CPN.

This Reference Architecture document contains the guidelines and the template of the architecture to

be used in CPN to develop this Open Virtual Platform.

Starting from the goals and requirements of the CPN project, the document describes the design and

implementation choices to obtain a flexible and extensible architecture and the guidelines for

implementation, deployment and communication among components.

Furthermore interoperability rules have been defined for the integration of external components and

the creation of new features.

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 7 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

TABLE OF CONTENTS

1 INTRODUCTION 12

1.1 Goals 12

1.2 Objective 13

1.3 Impacts 13

2 ARCHITECTURE SELECTION 14

2.1 Key Drivers 14

2.2 User Requirements & Technology Bricks 14

2.2.1 User Requirements 15

2.2.2 Technology Bricks 16

2.3 Architecture Candidates 20

2.3.1 Selected Architecture 22

3 REFERENCE ARCHITECTURE 23

3.1 Design 23

3.2 Logical View 25

3.3 Implementation View 26

3.3.1 Technology Bricks Workflow 29

3.4 Process View 31

4 ARCHITECTURE IMPLEMENTATION 35

4.1 Component Requirements and Recommendations 35

4.2 Installation, Deployment and Coordination 35

4.2.1 Docker containers 35

4.2.2 Container Orchestration 38

4.3 Integration with External Components 39

5 CONCLUSIONS 42

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 8 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

LIST OF FIGURES

Figure 1: From monolithic applications to microservices ... 20
Figure 2: Microservices is an implementation of SOA .. 21
Figure 3: The API Gateway Pattern ... 23
Figure 4: Database per Service Pattern ... 24
Figure 5: Event-driven data management ... 25
Figure 6:CPN Platform - Three logical layers ... 26
Figure 7: Message Broker Metaphor ... 28
Figure 8: CPN Platform - Implementation view .. 29
Figure 9: Technology Bricks Workflow .. 29
Figure 10: Synchronous Communication - Orchestration ... 32
Figure 11: Asynchronous Communication - Message Broker ... 33
Figure 12: CPN Platform - Communication Process .. 34
Figure 13: Microservices deployment – VMs vs Containers ... 37
Figure 14: Kubernetes key components .. 39

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 9 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

 LIST OF TABLES

Table 1: Technology Bricks 16

Table 2: Comparative table - VMs vs Containers 37

Table 3: Message basic structure 40

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 10 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

ABBREVIATIONS

API Application Programming Interface

AMQP Advanced Message Queuing Protocol

ATC Athens Technology

DBs Databases

CPN Content Personalisation Network

DCat Digital Catapult

DIAS Dias Media Group

DW Deutsche Welle

e.g. Example given

ENG Engineering Ingegneria Informatica

ESB Enterprise Service Bus

esp. Especially

etc. Etcetera

FOMO Fear of missing out

i.e. That is

ICT Information and Communications Technology

imec Interuniversity MicroElectronics Center

IT Information Technology

JMS Java Message Service

JSON JavaScript Object Notation

Mb Megabyte

MSA MicroServices Architecture

REST Representational State Transfer

SOA Service-oriented Architecture

VRT Vlaamse Radio-en Televisieomroeporganisatie

Vs. Versus

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 11 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

WAN-IFRA World Association of Newspapers and News Publishers

XML eXtensible Markup Language

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 12 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

1 INTRODUCTION

The challenge of the CPN project is to design and develop a method to connect millions of users to

millions of content items in an advanced, personalized and innovative way while preserving the

European media diversity.
1

In this chapter we will analyze the goals of the project, the scope of this document and the impacts that

it could have in the European context.

1.1 GOALS
2

CPN tackles the challenge of developing a new approach for the personalisation of digital content,

allowing both large and small media companies to benefit from being able to better target content to

media consumers.

From the viewpoint of the media consumer, the challenge is to enable a better delivery of news,

insights and information in the right format at the right time.In short, the core of CPN is to create

innovation in the way content creators can structure content production, distribution and in-depth

interaction with audiences.

➔ offer media professionals faster and more targeted cross-channel news & information

distribution solutions as well as novel personalisation services, fully compliant with already

existing content and operational infrastructure

➔ enable the creation of end user applications that offer users a more attractive and engaging news

& information experience.

CPN will realize this by the creation of an innovative virtual platform.

The platform is not intended to be a physical system which media companies should install, instead,

the CPN platform will be a virtual platform, together with a reference architecture, which can be

adapted to the needs of the media company by connecting different services together.

Every media company, whether large or small, will maintain their own platforms and systems which

can be extended with the CPN services and modules by interfacing with the virtual CPN platform.

As a result, this virtual platform is not conceived to function on its own. Different innovative services

combining content and personal data need to be integrated with it in order to implement successful

content personalisation strategies.

Furthermore, the platform is foreseen to be an open platform in the sense that it will allow external

ICT providers to integrate additional services onto the platform.

1
 as stated in the CPN Grant Agreement (Part B p.4)

2
as stated in the CPN Grant Agreement (Part B p.5)

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 13 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

1.2 OBJECTIVE

The primary objective of this document is to explain the CPN reference architecture, i.e. a template for

specifying concrete system architectures. This architecture is designed to support a wide range of

deployment scenarios and use cases and to fit the requirements of large and small media companies.

It does not just define a single architecture implementation, but defines a template for designing a

flexible platform that offers different services for each stakeholder.

Moreover, this reference architecture allows reuse of standard IT systems and provides extensibility

and openness in adopting future developments and technologies.

1.3 IMPACTS

Through an open virtual platform CPN will offer a series of powerful and innovative services divided

in three main categories:

➔ User Services (to gain actionable insights into the audience’s consumption patterns)

➔ Content Services (e.g., to analyze content items and extract higher level concepts, categories,

viewpoints, etc.)

➔ Mapping Services (e.g., to enable personalised, contextualized recommendations)

Through these services a fully personalised and interactive user experience is guaranteed, offering

users novel, personalised news feeds. By developing these technologies, CPN will have a major

impact in terms of offering qualitative personalised news feeds on a European-scale level.
3

3

 as stated in the CPN Grant Agreement (Part B p.28)

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 14 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

2 ARCHITECTURE SELECTION

This chapter summarizes the system and user requirements that are used as the base

for the CPN Architecture and the process we adopted to select the architecture model.

2.1 KEY DRIVERS

The CPN Architecture has as concrete goal: the realization of an innovative virtual platform, flexible

and extensible to future improvements.

The key drivers/requirements of CPN architecture are:

➔ creation of new features starting from already existing components

➔ the features offered by the platform must be usable by different client applications (web,

mobile, smart tv, etc.)

➔ the platform must define some rules and interfaces for the integration of new components and

the extension of the platform itself with new features

These requirements are clear and well defined within the project, while more detailed use cases,

scenarios and functional requirements are being developed and will be available later in the project.

2.2 USER REQUIREMENTS & TECHNOLOGY BRICKS

At the time of writing of this document, the list of use cases is not fully defined yet. Therefore we used

a more generic approach to design the reference architecture, exploiting the available information from

the general user stories defined in the CPN Grant Agreement and from the inputs obtained from the

requirements elicitation performed in WP1.

The features offered by the CPN platform are aimed at two types of users: end-users and content

producers.

For both types of users, requirements collection activities are in progress, which will serve the

identification of use cases and scenarios.

The approach used to define the architecture of the CPN platform allows us to obtain a result even

exploiting use cases that are not fully defined yet. We started from the goals of the project, already

available use cases and from the list of already existing, or at least defined, modules, called technology

bricks, offered by the various partners (in WP3). These modules form the baseline for the definition of

the "atomic" services that will realize the basic features offered by the platform.

Following the verification of the requirements, these services will eventually be combined with new

ones, to offer additional and increasingly innovative features.

For a good understanding, in the following section, requirements for both identified platform actors

and the list of technology bricks from which we will start to create the CPN platform, are listed.

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 15 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

2.2.1 User Requirements

This section provides a list of possible requirements that the platform should meet taking into account

the project objectives, some examples of user stories described in the CPN Grant Agreement and the

first results extrapolated from the requirements analysis performed in WP1.

Starting from the identification of the actors, we divide the requirements into three categories:

User profile

Requirements related to the enrichment of the user's profile to allow a more effective personalization

of the content.

For example:

➔ Collect user interests

➔ Propose personalized contents

➔ Analyze user behavior in different contexts (e.g. at home, at work, commuting, on holiday, etc.)

➔ ...

Application Features

Requirements for innovative services that do not directly affect the user profile, but contribute to

improving the user experience of applications related to the CPN platform.

For example:

➔ Bursting ‘Filter Bubbles’

➔ Avoiding Fear of missing out (FOMO)

➔ Transparency of how user profile data is used for personalization

➔ ...

Production Side

Requirements related to the features offered to professionals (media, journalists, content creators),

both in terms of content creation, analysis and monitoring.

For example:

➔ Easier content creation, management of responsibilities and accounting of revenues

➔ Powerful distribution of contents

➔ Access to relevant user data, insights and analytics

➔ ...

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 16 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

2.2.2 Technology Bricks

After an initial analysis, the technology bricks that will probably be part of the basic version of the

platform have been identified (the final version will be released with the deliverable of the technical

requirements).

As output of WP3
4
, this table summarizes the functionality of these bricks and indicates the partner

that will develop them.

Table 1: Technology Bricks

Name Owner Description

WEB APP FOR PRODUCERS

Storyfication - Cute

for LArge Event

ENG Cute4LE (http://cute.eng.it/about) is a content curation

platform for Marketing support using a storytelling approach.

It is an evolution of the Cute tool and specialized for Large

Events management. The platform allows to create stories

reusing and embedding content, including user generated

content harvested from web and social networks. User

engagement mechanisms, livestream & Territory monitoring,

influencers & trending topics management and analytics

processes are blended together with the aim to exploit social

network dynamics and monitor the activities related to specific

events. The mechanisms cover different phases from pre-event

to post-event. The Cute4LE modules and technologies will be

used in the realization of the CPN platform to support media

professionals to collect and use existing (user generated)

content for the storytelling to address audiences with effective

gamification processes.

Reward Framework DCat The Reward Framework provides a tool for content producers

to form ad hoc teams needed for the creation of a given item of

media content, e.g., requiring multidisciplinary expertise,

including video production and editing capabilities, text

writing skills, photography experience, etc. A number of pre-

defined contracts are available for selection and agreement

among team members and content distributors, while other

tools allow digitisation of different team members’

contributions, register them as digital assets and share rewards

following their use by the content distributors. Smart contract

and distributed ledger technologies are used to independently

enforce such contracts and transparently and automatically

account for generated revenues.

WEB/MOBILE APP FOR READERS

Collaboration

Platform

ATC Truly Media is a collaboration platform that helps users

gather, organise and verify content. It has been jointly

4

Technology Bricks description-v3

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 17 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

developed by ATC and DW and is available as a commercial

service. Technologies from Truly Media can be reused to

setup a collaboration platform in CPN that will allows

professional users curate (gather and annotate) content.

USER PROFILE

User modelling LiveTech A tool that is capable of creating user profiles at different

levels of granularity; part of the profile is based on the

clickstreams patterns of the user (obtained by using the context

training methodology previously mentioned); other important

dimensions of the user’s profile will be constituted by an

unsupervised topic extraction starting from the user’s

consumed content (news, articles read). Moreover, by means

of a social login, can be harvested from several social

networks basic profile information, summary statistics

regarding their activity on the network, the number of posts

made, likes, comments, groups they are member of etc.

Assessment of

content

trustworthiness

ATC TruthNest (www.TruthNest.com) is an analytics tool that aids

professionals, as journalists or business analysts, in exploring

information found in Social Media and assessing its

trustworthiness. Modules and technologies will be adapted

from TruthNest to aid in the analysis of content.

Personal Data

Receipt

DCat Personal Data Receipts are a tool compliant with GDPR

Articles on Information Notice and aiming to simplify users’

understanding of privacy policies, while providing them with a

human-readable record on what personal data are collected,

the purpose of use they have consented to, and for how long

they will be stored. PDRs are an instrument to allow users to

ask for data removal or for executing other digital rights.

Integration with blockchain is leveraged to provide a non-

repudiable receipt record, useful for future verification that

personal data are used according to the user’s wishes. This tool

will be tested during the project to gather user feedback for

further refinement and with adopters (e.g., content

distributors) in order to derive recommendation for

standardized PDRs.

PRODUCERS’ CONTENT ANALYSIS & RETRIEVAL

Hyper-parametric

optimization of

recommender engines

LiveTech The current state of the art techniques for recommending items

are based on two main areas: content based (that relies on

good semantic modelling/feature extraction and selection on

the items to be recommended) and collaborative filtering

techniques (that are essentially domain-independent and take

into account network metrics based on emerging similarity

graphs of users and items). This module uses a hybrid

approach that uses variable proportions of both techniques for

each user learning (using Machine Learning techniques) from

explicit and implicit feedback given by the users themselves:

clicks, ratings, sharings, etc. The module is customizable for

including content-delivery strategies’ optimization:

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 18 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

multichannel and date/time optimization (predicting the

probability of interests at a given time on a given channel) and

includes mechanisms for fostering “serendipitous” discoveries.

Semantic lifting of

plain-text content &

knowledge graph

build-up

Imec Extensive experience in lifting raw data to a more

interoperable, semantically queryable form. On the one hand,

this can be in the form of converting semi-structured data

(CSVs, proprietary formats, …) using our mapping toolchain

(rml.io). On the other hand, it can be in the form of extracting

unambiguous entities from raw text, and creating a queryable

knowledge graph to make the content more discoverable (e.g.,

http://uvdt.test.iminds.be/storyblink/).

Despite the significant number of existing tools, generating

Linked Data by incorporating heterogeneous data from

multiple sources and different formats remains complicated,

let alone generating their metadata. A sustainable semantic-

driven approach, based on the RML toolchain (RML Mapper,

RML Workbench, RML Editor and RML Validator), can

address the shortcomings of current Linked Data generation

tools and enables data owners to generate high quality Linked

Data by themselves.

We facilitate and automate the generation of high quality

Linked Data with accurate, consistent and complete metadata,

offering a granular, sustainable and generic solution that

shortens the Linked Data generation workflow, and achieves

higher integrity within Linked Data.

The required input for building this system is

-a large corpus of data sources whose semantic annotations are

provided by the users relying on the aforementioned

technologies.

-a large training set (size in order of at least 100 data sources)

with similar content to train the automated rules generation to

automate the Linked Data generation.

-a large corpus of data sources containing information on the

entities.

Generic Training

model for Relation

Extraction

Imec Extensive experience with the design and efficient training of

systems to detect relations between entities from plain text

(e.g., is-CEO-of (Steve Jobs, Apple)).

KBP systems extract information on specific persons (e.g.,

birth dates, spouses,...) or organisations, (e.g., founders,

member organisations,...) from text collections containing

hundreds of thousands unstructured news articles. Text is

processed by multiple modules from the KBP system before

the missing fields are extracted from the text.

These include an information retrieval component (IR), an

entity linking system component (EL), a named entity

recognition system (NER) and a relation extraction module

(RE). The IDLab KBP system focuses on improved relation

extraction between entities.

Our current setup is targeted at slot filling: a trained system

can take as input a relationship tuple with a blank entry to fill

(e.g., subject=“Trump”, predicate=“president_of”, object=?)

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 19 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

and predict the most likely filler (e.g., object=“United States”).

The required inputs for the system to make it operational for

other relations are:

set of predefined relations (e.g., our current system is designed

for those defined in

http://surdeanu.info/kbp2014/TAC_KBP_2014_Slot_Descripti

ons.pdf)

training data: sentences with annotated entities (e.g., persons,

organizations) and the relation(s) expressed between them

within that sentence

a large corpus of documents (typically news articles or

wikipedia data) containing information on the entities and

relations of interest.

Term and

OntoExtractor

LiveTech Domain independent terminological, taxonomical and

ontological extraction from unstructured sources based on

metrics and strategies based on statistical, linguistics and

extra-linguistic features (e.g. text tagging, position, etc.). The

methodology and tool have been used in several academic

(European and National projects) and Industrial applications.

This can be used for the unsupervised topic extraction.

Stance detection Imec Classifying the stance of the view expressed in an article on a

certain topic (e.g., political view, left- vs right-wing; or

positive/neutral/negative in a more basic setting). This can be

used for the unsupervised perspective extraction. We have

neural network based setups for different problems with the

same general goal of sequence classification. A baseline

system for stance detection can therefore be set up reasonably

quickly (1 to a few weeks). The required input for building

this system isa large training set (size in order of 100k) of

sequences (sentences, paragraphs) with for each sequence an

indication of (1) the type of view, i.e., possible stances (e.g.,

political sides), and (2) the stance expressed in the sequence).

Existing datasets focus on narrow cases (e.g., Trump vs

Clinton in tweets on US elections)

Sentiment and

Polarity Miner

LiveTech Multiplatform, micro-service based trainable classification

system for performing: polarity detection, Complex opinion

and sentiment extraction (via unsupervised techniques), Spam,

hate-speech and flames detection.

Context-dependent

recommendation

Imec Refining and personalising recommender systems, targeted to

adjust the selection of recommended items to the location and

context (e.g., at home, at work, commuting...) of the user as

well as taking into account users’ willingness to consume

content given context.

We have a series of implemented models in place that take

content, users, and arbitrary context features, and predict the

most interesting items. These models were developed in an

off-line recommender evaluation setup and were not designed

for real-time deployment. Main difference with respect to

existing recommender setups is the highly dynamic character

of the content (e.g., short life time for news articles).

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 20 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

In order to test these models, we need user click data involving

-‘clicks’: each with user id, timestamp, content id, and click

context features (e.g., location)

-ideally: ‘content’: corresponding content for all content id’s

(if not available: purely based on collaborative aspect and

context)

-ideally: selection of content items presented at the user at the

time of the click (if not available: assuming equal access to all

content, or only most recent).

In section 3.3.1 about the implementation of the architecture, an example workflow will be presented

including some of these modules, to better understand how these modules relate and integrate with

each other, to fulfill the requirements of the platform.

2.3 ARCHITECTURE CANDIDATES

As the CPN platform needs to offer multiple services to different client applications, as clearly

explained in both the project objectives and the first phase of requirements elicitation, a service-

oriented architecture needs to be defined.

There are several types of services architectures: from the generic SOA (service-oriented architecture)

to its more specific MSA implementation (microservices architecture).

Figure 1: From monolithic applications to microservices
5

We took these two types into consideration and analyzed what would be best choice for the CPN

platform.

5

https://www.ibm.com/developerworks/websphere/library/techarticles/1601_clark-trs/1601_clark.html

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 21 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

SOA

A Service Oriented Architecture is a software architecture pattern, where application components

provide services to other components via a communication protocol over a network. The

communication can involve either simple data passing or it could involve two or more services

coordinating connecting services to each other. Services (e.g., RESTful Web services) typically carry

out some small functions, such as validating an order, activating an account, or providing shopping

cart services.

There are 2 main roles in SOA: a service provider and a service consumer. A software agent may play

both roles. The Consumer Layer is the point where consumers (human users, other services or third

parties) interact with the SOA and the Provider Layer consists of all the services defined within the

SOA.

MSA

Microservices - also known as the microservice architecture - is an architectural style that structures an

application as a collection of loosely coupled services, which implement business capabilities. The

microservice architecture enables the continuous delivery/deployment of large, complex applications,

composed of small, independent processes communicating with each other using language-agnostic

APIs. It also enables an organization to evolve its technology stack.
6

In a microservice architecture a service should be independently deployable, or be able to shut-down

a service when is not required in the system without affecting any other service.

Figure 2: Microservices is an implementation of SOA

SOA vs MSA

Both architectures have similar pros and cons and some differences. In both architectures, each service

- unlike a monolithic architecture - has a certain responsibility. Thus, services can be developed in

various technology stacks, which brings technology diversity into the development team. The

development of services can be organized within multiple teams, however, each team needs to know

6

http://microservices.io/index.html

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 22 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

about the common communication mechanism for inter-service communication within the overall

SOA.

While iIn microservices the, services can operate and be deployed completely independent of other

services, it's not always which is often not possible in other SOAs. This makes it easier to deploy new

versions of services frequently or scale a service independently.In both architectures, developers must

deal with the complexity and distributed nature of the architecture. Developers must implement the

inter-service communication mechanism between the different microservices.

In typical SOAs, services share the same data storage while each service can have an independent data

storage in microservices. Last but not least, the main difference between typical SOAs and

microservices relates to size and scope. A typical microservice is significantly smaller than a regular

SOA and is mainly a small(er) independently deployable service. On the other hand, a classic SOA

can be either a deployment monolith or it can be comprised of multiple microservices.

2.3.1 SELECTED ARCHITECTURE

“Microservices are the kind of SOA we have been talking about for the last decade.

Microservices must be independently deployable, whereas SOA services are often implemented

in deployment monoliths. Classic SOA is more platform driven, so microservices offer more

choices in all dimensions.”-

Torsten Winterberg Oracle ACE Director

Based on the available requirements the MSA architecture proved to be the best choice for the

development of the CPN virtual platform.

An MSA architecture offers us a series of benefits:

➔ The microservices can be independently developed and deployed, this satisfies the need to

have components developed by different partners, which offer the different functionalities for

the platform

➔ Microservices are designed to offer a range of "micro" capabilities that aggregate together to

cover a variety of platform use scenarios

➔ The microservices do not bind the platform to the use of a given technology stack

➔ The MSA lends itself well to both the creation of new services and the implementation of new

processes, even after the deployment of the architecture, this meets the criteria of

interoperability, flexibility and openness of the platform.

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 23 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

3 REFERENCE ARCHITECTURE

In this chapter we describe the chosen architecture, the design choices and some views that

demonstrate the overall vision of the architecture.

There are several models for implementing an MSA. During the design phase, we evaluated some of

these patterns and made some architectural choices to achieve the project goals.

In particular, we focused on the possible methods of communication between different microservices

(Inter-service / process Communication) and data management.

3.1 DESIGN

The following patterns have been identified for an effective implementation of the architecture that

meets the objectives and pre-established requirements:

API Gateway Pattern
7

In a MSA each service offers a list of APIs. The granularity of these APIs is often different than what

a client needs. Microservices typically provide fine-grained APIs, which means that clients need to

interact with multiple services.

These services often use a diverse set of protocols, some of which might not be web friendly.

Furthermore, in CPN, we have different kinds of client applications (web, mobile, etc.) that probably

need different kinds of data.

These issues can be solved by implementing an API gateway that is the single entry point for all

clients.

Figure 3: The API Gateway Pattern

7

http://microservices.io/patterns/apigateway.html

http://microservices.io/patterns/apigateway.html

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 24 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

We will discuss this API gateway component in more detail, in section 3.3 describing the

implementation of platform components.

Messaging Pattern
8

In a MSA, services must often collaborate to handle requests from client applications and to offer

features. These services must use an inter-process communication protocol, like asynchronous

messaging, and a platform that allows to exchange messages is Apache Kafka.
9
.

This pattern has the following benefits for our architecture:

➔ Greater flexibility for the platform, increasing the decoupling of services

➔ Improved availability since the message broker buffers messages until the consumer is able to

process them

The main component of this pattern is the Message Broker. We will discuss this in more detail in

section 3.3.

Database Per Service Pattern
10

Typically, in a MSA the services have different data storage requirements. For some services, a

relational database is the best choice. Other services might need a NoSQL database such as

MongoDB, which is good at storing complex, unstructured data, or Neo4J, which is designed to

efficiently store and query graph data.

A good approach for this need is to use the Database Per Service Pattern, keeping the microservice’s

persistent data private to that service and only accessible via its API.

Figure 4: Database per Service Pattern

8

 http://microservices.io/patterns/communication-style/messaging.html
9

 http://kafka.apache.org/

10

http://microservices.io/patterns/data/database-per-service.html

http://microservices.io/patterns/communication-style/messaging.html
http://kafka.apache.org/
http://microservices.io/patterns/data/database-per-service.html

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 25 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

Using a database per service has the following benefits:

➔ Helps to ensure that the services are loosely coupled. Changes to one service’s database does

not impact any other services.

➔ Each service can use the type of database that is best suited for its needs

Unfortunately, there is also a drawback: it is difficult to implement transactions that require multiple

services. To solve this problem, the best solution is to use the Saga Pattern
11

, in which a service

publishes an event when updating data, and other services subscribe to these events and update their

data in response.

Figure 5: Event-driven data management

3.2 LOGICAL VIEW

As previously discussed at a logical level, the platform will offer different types of services. These

services can be conceptually divided into three layers: content layer, mapping layer and user layer.
12

Content Layer

11

 http://microservices.io/patterns/data/saga.html
12

as stated in the CPN Grant Agreement (Part B p.13-14)

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 26 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

The Content Layer will focus on the extraction of relevant information from the different content

sources or content providers.

This layer is composed of two types of services: (1) content procurement (for structured and

unstructured heterogeneous data streams gathering) and (2) knowledge extraction (for user

personalisation such as relation identification and clustering)

Mapping Layer

The goal of this layer is to provide services that map content onto targeted users. The services in this

layer will make specific content available to the users through personalisation and contextualization.

Further, this layer also includes permission and contract aspects, to address legal and ethical issues, as

well as to preserve privacy criteria and accounting of generated revenue to content producers.

User Layer

This layer will offer specific services to deal with the user data itself. It will contain modules to

create user profiles (containing preferences, socio-demographic information, history, etc.), and

services to appropriately handle user context and guarantee transparency and control over user

personal data.

The combination of these three types of services, satisfy all currently defined features and

requirements, and these services can also be used by new components to create additional features.

Figure 6:CPN Platform - Three logical layers

3.3 IMPLEMENTATION VIEW

Another important view of the architecture, in which the choices made in the design phase are

highlighted, is the implementation view.

The proposed MSA, designed according to state of the art patterns, includes the following components

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 27 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

that are necessary for the realization of the platform: API Gateway, Orchestrator and Message Broker.

API Gateway

The API Gateway component is the entry point for every new request that’s being launched by the

client applications on our platform.

The API gateway exposes different APIs optimized for each client application. This central

component, shared by the whole platform, allows to centralize some middleware functionalities, i.e.:

➔ Authentication

➔ Logging

➔ Caching

➔ Security

➔ Load Balancing

Orchestrator

Orchestration is the traditional way of handling interactions between different services in a service

oriented architecture. With orchestration, there is typically one controller that acts as the

“orchestrator” of the overall service interactions.

This component provides a good way for controlling the flow of the application in case of

synchronous processing.

In a MSA that uses the API Gateway pattern there are two ways to implement an orchestrator: at the

Microservice Layer or at the Gateway Layer.

We chose to implement the orchestrator as a microservice to get the following benefits:

➔ unbundling between gateway and orchestration functionalities

➔ no violation of the single responsibility principles

➔ more flexibility to implement new processes and scaling APIs

Message Broker

A message broker (or queue manager) is a software where queues can be defined, applications may

connect to the queue and transfer a message onto it.

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 28 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

Figure 7: Message Broker Metaphor

A message can include any kind of information. For example, it could include information about a

process/task that should start on another application (that could be on another server), or it could be

just a simple text message. The queue-manager software stores the messages until a receiving

application connects and takes a message off the queue. The receiving application then processes the

message in an appropriate manner.

A message broker can act as a middleware for various services (e.g. a web application, as in this

example). They can be used to reduce loads and delivery times by web application servers since tasks,

which would normally take quite a bit of time to process, can be delegated to a third party whose only

job is to perform them.

Message queueing allows web servers to respond to requests quickly instead of being forced to

perform resource-heavy procedures on the spot. Message queueing is also good when you want to

distribute a message to multiple recipients for consumption or for balancing loads between workers.

Others

Some of the services will make use of a blockchain infrastructure for auditing and accounting

functionalities. An additional micro-service exposing CRUD functionalities to create transactions on

the given blockchain and related APIs will be provided for vertical access to the others services.

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 29 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

Figure 8: CPN Platform - Implementation view

3.3.1 Technology Bricks Workflow

After the introduction of the components to be realized inside the platform, this section provides an

overview on how the modules developed by the partners (technology bricks – WP3) will work

together within the platform to offer complex features.

Figure 9: Technology Bricks Workflow

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 30 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

The diagram above describes the core module groups and interactions of these technology bricks

within the CPN platform. In the diagram, we are referring to families of modules. Thus, for the sake of

simplicity we are not including every individual module that will be developed. This will be covered

during the further design of the architecture and the full definition of components.

All calls to the CPN platform will be directed to the API gateway. The API gateway is responsible for

the delegation of these calls to the related modules, based on the defined workflow. A message queue

will implement a pub/sub protocol to enable modules to fetch and analyse content.

For convenience, the synchronous communication between the modules has been represented directly,

although in reality, as described in section 3.4, this kind of communication is implemented through an

orchestrator.

One of the goals is to avoid centralized DBs. Therefore, all modules follow a Microservices approach

and store data internally in their own repository of choice.

Web App for Producers

Producers will use the Cute4LE module for pushing content to the platform. The content will be

published to a message queue. Before pushing content, producers will also access the Reward

Framework in order specify the contracts (e.g. cost per access) that apply to a given content and that

producers and distributors have to comply. The web application and the recommender module will

also interact with the Reward Framework to provide information on how contents are distributed. The

information, published on a distributed ledger for transparent accountability, will allow the Reward

Framework to rewarded producers according to the selected contract.

Web/Mobile App for Readers

Readers will use a customized version of the Truly Media web application to retrieve personalized

content from Social Media and Producers. The web application will communicate through the API

gateway with the core modules of the CPN platform. There will also be a mobile version of the client

application based on Android.

User Profile

The User Modelling module will listen (through the message queue) to all user actions to modify the

user profile accordingly. It can also retrieve input from the Truthnest module to take user

activity/preferences in Twitter into account. Finally, the User Modelling module will also collaborate

with the Personal Data Receipts (PDRs) module to generate a human-readable receipt explaining how

users data are utilized by CPN and what actions are available to the users to modify their personal

profiles. New PDRs are issued any time a change in the user data is provided.

Producers’ Content Analysis and Retrieval

The analysis modules (Recommender, Semantic Indexing) will retrieve content, process, index, and

store this content in a repository in order to fetch the appropriate content when a personalized query is

performed. To retrieve the most suited content when such a personalized query is launched, these

modules will combine info from the relevant ‘User Profile’ stored in the User Modelling module with

the metadata added to the content items during the processing and indexing step.

Social Media Content Analysis and Retrieval

The Truthnest module will be responsible for detecting trending news on Twitter and other Social

Media and (based on the User Profile information) forward personalized content to the user.

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 31 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

3.4 PROCESS VIEW

Another useful view to describe the architecture is a process view, which describes the communication

between the various components within the platform.

In this view the actual implementation of the platform is described and the two main types of

communication within the platform are highlighted: synchronous communication through REST and

asynchronous communication through Messaging.

The MSA design that we have chosen uses (as outlined above) two components that deal with

communication within the platform: the orchestrator for synchronous communication and the message

broker for asynchronous communication.

The choice of a hybrid solution, in which both types of communication coexist, satisfies all the needs

and requirements identified so far.

Let's now analyze the benefits of this choice, describing in detail the two types of communication and

how processes communicate with each other within the architecture:

Synchronous Communication - Orchestration

Orchestration is the traditional way of handling interactions between different services in Service-

Oriented Architecture (SOA). With orchestration, there is typically one component that acts as the

“orchestrator” of the overall service interactions. This typically follows a request/response type

pattern.

In the CPN platform the orchestrator will be implemented as a microservice that will be responsible

for managing the API Orchestration, decoupling this functionality from the API Gateway.

API orchestration services are a special type of light services that take an API call, split it in into

multiple API calls, aggregate the result of each of these calls and return back the aggregation as the

result of the original request.

API orchestration allows to simplify the client API, improves performance and security.

There are different ways to implement an orchestrator, e.g. Netflix Conductor
13

 use task and workflow

definitions to manage the orchestration.

13

https://medium.com/netflix-techblog/netflix-conductor-a-microservices-orchestrator-2e8d4771bf40

https://medium.com/netflix-techblog/netflix-conductor-a-microservices-orchestrator-2e8d4771bf40

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 32 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

Figure 10: Synchronous Communication - Orchestration

Asynchronous Communication - Messaging

While some of the microservices are conceived to be consumed in synchronous use cases, e.g., deliver

data to final consumers, real-time recommendations and so on, some others are essentially thought to

be processing components that will operate in background executing tasks such as gathering

information, semantically enriching the existing data, building Machine Learning models, analyze

trends and finally storing the processed data to specific DBs for subsequent retrieval. These

background processing components can be continuously running or can be triggered by some external

events; for example, if a user clicks on one of the recommended items this could be a signal of implicit

interest about the topics expressed by the news article, so the micro-service that is in charge of User

Profiling would add these topics to the user list and the News Recommendation micro-service will

produce an updated list of recommendations. This scenario could be implemented in a

synchronous/orchestrated fashion by constructing explicit chains of inter-service calls but there are

two main problems with this approach:

1. Adding other processing actions in response to the same event is obtained by modifying the

orchestrator chain of calls (e.g. “when the user clicks on an item update his profile AND search on

Twitter for trending news related to that topic”) leading to an increase in service coupling and

generally complex and less maintainable orchestrators.

2. The processing time of the components in this chain can be not suitable to synchronous calls

whereas some processing components can require minutes, hours or even days.

The messaging pattern is a valid option to solve these kind of problems: a message containing an

information related to an event is posted to a message broker (such JMS queues, AMQP, Kafka) that

are components specifically thought for high throughput, message persistence and recover from

crashes. The message is then delivered to processing components (“consumers”) according to

variations of the following two mechanisms:

- Message queues: each message is delivered exactly once to the first consumer requesting it. This

means each message is PROCESSED at most once.

- Topics: each message is posted to a topic and delivered to those consumers that explicitly subscribed

to such topic (pub/sub mechanism)

The first mechanism is mainly used to speed up the processing of messages in parallel while the

second one is used when we want to execute different operations associated to the same event.

So, by the use of message brokers and the messaging pattern, we are able to overcome the problems of

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 33 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

synchronous communication in the above described scenario: we avoid to construct explicit chains

service calls through the use of pub/sub mechanisms and to let the components to retrieve messages

from the queue and process things at their own pace without blocking the other services.

Figure 11: Asynchronous Communication - Message Broker

The following figure shows a possible implementation of a hybrid architecture in which both

communication methods coexist and microservices can use one or both:

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 34 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

Figure 12: CPN Platform - Communication Process

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 35 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

4 ARCHITECTURE IMPLEMENTATION

In this chapter, we will describe in detail how the different components inside the CPN platform are

developed, build and integrated and specify the mechanisms of deployment and continuous

integration. We will also define the rules and methods for integrating new components and creating

new features.

4.1 COMPONENT REQUIREMENTS AND RECOMMENDATIONS

Below there are some guidelines for designing microservices, which are important for the

implementation of the overall CPN platform:

➔ Single Responsibility Principle (SRP): Having a limited and a focused business scope for a

microservice helps us to meet the agility in development and delivery of services.

➔ Make sure the microservices design ensures the agile/independent development and deployment

of the service.

➔ A given microservice should have a limited set of operations/functionalities and simple message

format.

As highlighted in previous chapters, a good choice of architectural design includes that each

microservice manages its own database.

Furthermore, each microservice must be autonomous and be accessible for communication with other

microservices through REST interfaces or through Messaging.

We will provide more detailed information concerning the communication in section 4.3 on

interoperability.

4.2 INSTALLATION, DEPLOYMENT AND COORDINATION

In this section we will address the topic of platform installation and show the advantages of using

containers for microservices deployment.

Furthermore, a possible tool for container orchestration will be analyzed, providing some useful

indications to solve the problems of coordination and automation.

4.2.1 Docker containers

In a microservices architecture, the deployment of the microservices is of critical importance and has

the following key requirements:

➔ Ability to deploy/undeploy microservices independent from other microservices

➔ Ability to scale on microservices level (a given service may get more traffic than other services)

➔ Fast and easy building and deployment of microservices

➔ Failure in one microservice must not affect any of the other services

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 36 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

Containerization

This term refers to the use of containers. A container is a virtualized server at the operating system

level, for which the virtual instance only concerns the user space, i.e. the application execution

environment. Therefore, we do not virtualize the processor, storage, network connections, etc. of the

physical server, which remain shared between the running containers. This approach means that

containers are "lighter" than virtual machines, require fewer resources and can be activated very

rapidly and therefore can respond to situations with sudden loads and peaks.

Docker

Docker is a world-leading CaaS (Container-as-a-Service platform). It is fully open source, under

license Apache 2.0 and is the most dominant tool in the container ecosystem at the moment, used in

production stage by companies like eBay, Uber and PayPal.
14

The container is a way to package software along with required binaries and settings, isolated on a

shared operating system.
15

Docker makes it easier to create and manage a microservices application than the old SOA paradigm

allowed. Once your services have been Dockerized in containers, you can deploy those containers to

any server with Docker installed and combine them to compose complex applications. You can move

them around between hosts for portability. And you can use container orchestration tools for automatic

provisioning.

The key steps involved are the following:
16

➔ Package the microservice as a (Docker) container image

➔ Deploy each service instance as a container

➔ Scaling is realized by changing the number of container instances

➔ Building, deploying, and starting a microservice is much faster using Docker containers than by

using virtual machines.

14

https://www.docker.com/
15

https://dzone.com/articles/microservices-with-docker
16

https://dzone.com/articles/microservices-in-practice-1

https://www.docker.com/
https://dzone.com/articles/microservices-with-docker
https://dzone.com/articles/microservices-in-practice-1

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 37 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

Figure 13: Microservices deployment – VMs vs Containers

The comparative table below shows the benefits of choosing containers over VMs:

Table 2: Comparative table - VMs vs Containers

 Microservice on VMs Microservice on Containers

Scalability Multiple microservices will run on the

same Linux instance. To scale any of the

services, we need to scale the whole VM

instance, adding unwanted scaling of

other services.

Individual applications can be scaled

independently, without affecting other

services.

Resource

utilization

We cannot distribute the services based

on resource utilization: CPU utilization,

memory utilization, etc.

Container orchestration takes care of

better utilization of resources and

places the services based on the

resources available on the host.

Faster

deployment

Spinning up new VMs is slow, as it

requires a system boot. If we have to

scale a single service, we have to launch

new VMs, which need some time to

reboot.

Containers, by contrast, are much

smaller because they do not require the

operating system spin-up time

associated with a virtual machine.

Containers are more efficient at

initialization. Overall, containers start

in seconds. That's much faster than

VMs.

Cost

Optimization

Running the services on VMs requires

more hardware resources and thus more

costs compared to container systems.

Running microservices on containers

helps us to see the true advantage of

microservices with lower costs.

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 38 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

Portability Deploying services on new VMs means

first ensuring the required software is

installed on the machine.

Dockerized microservices can run in

containers. You can deploy those

containers to any server with Docker

installed.

 Deployment

4.2.2 Container Orchestration

Container Orchestration refers to the automated arrangement, coordination, and management of

software containers.

Kubernetes

Kubernetes is a container orchestrator tool, fully open source, under Apache 2.0 license, with a large

user and community base.
17

Kubernetes extends Docker's capabilities by allowing to manage a cluster of Linux containers as a

single system, managing and running Docker containers across multiple hosts, offering co-location of

containers, service discovery, and replication control. As you can see, most of these features are

essential in our microservices context too. Hence using Kubernetes (on top of Docker) for

microservices deployment has become an extremely powerful approach, especially for large scale

microservices deployments.

Kubernetes manages secrets for containers, performs load balancing between instances in a group,

scales up/down instances as directed, and provides rolling updates to services so that the service does

not go down while being updated.

There are three key concepts in Kubernetes:
18

➔ Pods: are the smallest deployable units that can be created, scheduled, and managed. It’s a

logical collection of containers that belong to an application.

➔ Master: is the central control point that provides a unified view of the cluster. There is a single

master node that controls multiple minions.

➔ Minion: is a worker node that runs tasks as delegated by the master. Minions can run one or

more pods. It provides an application-specific “virtual host” in a containerized environment.

17

 https://kubernetes.io/case-studies/
18

 http://blog.arungupta.me/key-concepts-kubernetes/

https://kubernetes.io/case-studies/
http://blog.arungupta.me/key-concepts-kubernetes/

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 39 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

Figure 14: Kubernetes key components

4.3 INTEGRATION WITH EXTERNAL COMPONENTS

As mentioned, one of the goals of the CPN platform is to allow the integration of new components and

the creation of new features by external stakeholders.

To facilitate this, it is important to provide a good view on the functionality and APIs offered by the

individual services of the platform, but also on the functionalities offered by the platforms as a whole,

aggregating multiple services.

It is critical to have clear documentation for each service. Ideally, documentation for all services

should be shared within the platform.

Both the REST APIs exposed by the microservices and the events that can be subscribed to through

the message broker, should be documented.

If a service changes its endpoints, this must be tracked and made available by the platform.

Open API Documentation

APIs have become the most common way for various services to communicate with each other. In

order to better expose services via APIs, a common interface for these APIs needs to be present to tell

exactly what each service is supposed to do. This interface is a contract that defines the SLA between

the client and the services. The OpenAPI (Swagger
19

) Specification has emerged as the standard

format for defining this contract, in a way that’s both human and machine readable, making it easier

for services to effectively communicate with and orchestrate the entire application.

All the information about the OpenAPI Specification can be found on:

https://github.com/OAI/OpenAPI-Specification

19

 https://swagger.io/swagger-ui/

https://github.com/OAI/OpenAPI-Specification

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 40 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

Message Broker Event Documentation

Message exchanged through a message broker are usually constrained with respect to the size in bytes

(e.g. around 15Mb is the limit for Kafka messages) in order not to affect the overall performance of

the messaging system. However, no assumption is made on the structure of body of the message itself

that could be a sequence of bytes, a string, a number, etc. A common pattern is to send the text of the

message using a structured and easily-parsable format such as XML or JSON. Each consumer can

therefore receive the message, extract and parse the content of the body and access/process the

information of interest.

In CPN we define the very basic structure of the message to be exchanged through message brokers as

the following:

Table 3: Message basic structure

Field Description
event_type A name describing the event that is happened. E.g. “USER_CLICK”,

“NEW_TOPIC”, “TWITTER_FEED_UPDATE”,...

date A timestamp for the event

origin To distinguish if the message has been originated directly from the final user or

from another microservice:

{“USER”, “MICROSERVICE”}

This structure will be represented using JSON notation and it is assumed to be flexible, i.e., while all

messages share at least the set of the above described attributes, most of them will have additional

ones depending on the “event_type” value.

Example:

We describe again the scenario of page …: a user clicks on an article, the click is captured, the topics

of the article are extracted and added to the list of interests of the user in his user profile and, due to

these additional interests, new recommendations are computed for the user.

In terms of messages exchange this process could look as this:

First a message like this is posted on the broker

{

“event_type”: “USER_CLICKS”,

“User_ID”: 12345

“Item_ID”: 6789

“date”:….,

“origin”: “USER”

}

the User-Profiler service, who had previously subscribed to this kind of event, receive this message,

extract the “Item_ID”, retrieves the item, extract the topics and add them to the list of topics of the

user identified by “User_ID”. After it has finished it posts a new message on the broker:

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 41 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

{

“event_type”: “USER_PROFILE_UPDATED”,

“User_ID”: 12345

“date”:….,

“origin”: “MICROSERVICE”

}

this new message will be received by the Recommender service that. knowing that something has

changed on the profile of a user, will start to compute the recommendations according to the new

available information.

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 42 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

5 CONCLUSIONS

The reference architecture document illustrates the goals and the scope of the CPN platform, i.e., to

offer a series of innovative services for the personalization of content to end-users and professional

users.

To reach these goals, it is necessary to implement a virtual, open and flexible platform. Various

architectural implementations were analyzed to allow the integration of existing modules but also the

possibility of creating new services.

The microservice architecture was chosen because it offers a series of benefits well suited for the CPN

platform requirements.

This document describes the benefits and drawbacks of the chosen architecture, the design phase and

some views representing a possible implementation of the architecture itself, demonstrating that,

following some microservices paradigms, it is possible to create a platform that satisfies all the needs.

Starting from already existing modules developed by the partners, microservices will be identified

following specific guidelines, those will consitute the core of the platform.

Furthermore, some basic rules have been defined for the interoperability and future integration of new

components.

 D2.1: CPN Reference Architecture (V 1.0) | Public

Page 43 of 43

©Copyright Engineering Ingegneria Informatica

and other members of the CPN Consortium 2018

REFERENCES

[1] https://www.ibm.com/developerworks/websphere/library/techarticles/1601_clark-

trs/1601_clark.html

[2] http://microservices.io/index.html

[3] http://microservices.io/patterns/apigateway.html

[4] http://microservices.io/patterns/communication-style/messaging.html

[5] http://kafka.apache.org/

[6] http://microservices.io/patterns/data/database-per-service.html

[7] https://medium.com/netflix-techblog/netflix-conductor-a-microservices-orchestrator-

2e8d4771bf40

[8] https://www.docker.com/

[9] https://dzone.com/articles/microservices-with-docker

[10] https://dzone.com/articles/microservices-in-practice-1

[11] http://microservices.io/patterns/data/saga.html

[12] https://kubernetes.io/case-studies/

[13] http://blog.arungupta.me/key-concepts-kubernetes/

[14] https://swagger.io/swagger-ui/

http://kafka.apache.org/
http://microservices.io/patterns/data/database-per-service.html
https://www.docker.com/
https://dzone.com/articles/microservices-with-docker
https://dzone.com/articles/microservices-in-practice-1
http://microservices.io/patterns/data/saga.html

