Searching for dark matter with GPS and global networks of atomic clocks

Benjamin M. Roberts1, G. Blewitt1, C. Dailey1, M. Pospelov2,3, A. Rollings1, J. Sherman4, W. Williams1, and A. Derevianko1

1University of Nevada, Reno; 2Perimeter Institute; 3University of Victoria, BC; 4NIST Boulder

arXiv:1704.06844

New Directions in Dark Matter and Neutrino Physics, Perimeter Institute, 20–22 July 2017

*Supported by the NSF
Outline:

- Ultra light dark matter; “clumps”, e.g. Topological defects
- Transient signals: Global networks of precision devices
- GPS: 50,000km aperture sensor array
 - ~ 30 satellite clocks, > 15 years of archived data
- Initial search: domain walls
- limits: orders of magnitude improvement for certain models
- Looking forward: Bayesian search technique
Ultralight Dark Matter:

WIMPs
- long-time “favourite” DM candidate
- Masses $\sim 10 - 1000$ GeV
- Many null WIMP results
- Increased interest in other forms of DM

Ultralight fields (e.g., axions)
- Masses $\sim 10^{-24} - 1$ eV
- Classical oscillating field: $\phi = a \cos(m_a t)$
- Stable topological defects: monopoles, strings, walls
 - Also: Q-balls, solitons, “clumps”

- Peccei & Quinn ‘77, Weinberg ‘78, Dine & Fischler ‘82,...
Topological Defect DM

Topological Defects
- monopoles, strings, walls,
- Defect width: $d \sim 1/m_{\phi}$
- Earth-scale object $\sim 10^{-14}$ eV

Inside: $\phi^2 \rightarrow A^2$, Outside: $\phi^2 \rightarrow 0$

Dark matter: Gas of defects
- DM: galactic speeds: $v_g \sim 10^{-3} c$
- $A^2, d, \mathcal{T}_{b/w} \text{ collisions} \implies \rho_{DM}$

$$A^2 = \rho_{DM} v_g d \mathcal{T},$$

- Sikivie ‘82, Preskil ‘83, Vilekin ‘85, Coleman ‘85, Lee ‘89, ...
Possible DM–SM interactions

Pseudoscalar (axionic) portal:
- e.g., $\mathcal{L}^{PS} = \partial_\mu a \bar{\psi} \gamma^\mu \gamma^5 \psi$
- Leads to magnetic-like interactions: magnetometry
 - GNOME: Global network of magnetometers (1)

Quadratic scalar portal:
- Effective local shifts in values of fundamental constants
- Leads to shifts in clock frequencies
 - GPS.DM: \rightarrow Global network of atomic clocks (2)

- Also: Interferometry etc.: Arvanitaki, Graham, Hogan, Rajendran, Van Tilburg (2016);
 Stadnik, Flambaum (2016)…
Variation of fundamental constants

\[-L^{SM^2} = \phi^2(r,t) \left(\frac{m_f \bar{\psi}_f \psi_f}{\Lambda_f^2} + \frac{1}{4\Lambda_\alpha^2} F_{\mu\nu}^2 + \ldots \right),\]

c.f. \(L^{SM} \implies \) transient additions to fundamental constants

\[
\alpha^{\text{eff}}(r,t) = \alpha \left(1 + \frac{\phi^2(r,t)}{\Lambda_\alpha^2} \right), \quad m_f^{\text{eff}}(r,t) = m_f \left(1 + \frac{\phi^2(r,t)}{\Lambda_f^2} \right),
\]

\implies \text{shifts in energy levels} \implies \text{shifts in clock frequencies}

\[
\frac{\delta \omega(r,t)}{\omega_0} = \phi^2(r,t) \sum_X \frac{K_X}{\Lambda_X}, \quad K_\alpha : \text{Sensitivity of } \omega \text{ to } \delta \alpha
\]

Flambaum, Tedesco, PRC, 73, 55501 (‘06); Flambaum, Dzuba, Can. J. Phys., 87, 25 (‘09).
Shift in atomic clock frequencies

Monitor Atomic Clocks

- Temporary frequency shift \rightarrow bias (phase) build-up
- Initially synchronised clocks become desynchronised

\[
\frac{v}{g} = \frac{\text{time difference in clock readings}}{\text{running time}}
\]

\[
\Delta t = \frac{\text{distance between the clocks}}{v}
\]
GPS: 50,000 km DM observatory

- 32 satellite clocks (Rb/Cs), \(\sim 16\) years of high-quality data
- Also several H-maser ground-based clocks.
- Data from JPL: (sideshow.jpl.nasa.gov/pub/jpligsac/)
 - 30s sampled data; 0.01–0.1 ns precision
- Correlated, directional signal, with \(v_g \sim 300\) km/s
DM Walls: Initial search/limits

- Thin wall: brief (<30 s) frequency excursion

- \vec{v} encoded in time-delay and signal ordering: $\Delta t \sim$ minutes
Outline

Ultralight DM + TDs

Variation in clock frequencies

GPS

Initial search/first results

Bayesian search

Testing method

Possible outcomes

Apply S_{cut}
Simple pattern search

- Match data windows against expected signals
- Reduce S_{cut} until signal can no longer be ruled out
- This case: excluded since ref $>$ rest

Scan the data
Sensitivity

• 3D parameter space \((\Lambda_X, \mathcal{T}, d)\):

\[
S = \hbar c \sqrt{\pi} \rho_{\text{DM}} \frac{K_X d^2 \mathcal{T}}{\Lambda_X^2}
\]

\[
\rho_{\text{inside}} = \frac{\rho_{\text{DM}} v_g}{d} \mathcal{T}
\]

Not equally sensitive to each width, \(d\)

• Assumes standard halo model
• “Servo time”: \(\tau = d/v_\perp > \tau_{\text{servo}} \approx 0.01 - 0.1\) s
• Wall must be “thin” enough: \(\tau = d/v_\perp < 30\) s

![Graph showing sensitivity vs defect size and TD field mass](image)

• Fraction of events we could “see”
• 90% C.L. (assuming SHM)
Setting Limits

What we see in the data:

- $S_{\text{lim}}^{(1)}$: largest signal size that can’t be ruled out
- Assume Poisson distribution, and SHM
 - $S_{\text{lim}}^{(1)} \sim 0.5 \text{ ns}$
 - $T_{\text{obs}} = 16 \text{ years}$

\[
\frac{\Lambda_{\text{eff}}/\text{TeV}}{d/\text{km}} > 2 \times 10^3 \sqrt{\frac{T_{\text{obs}}s(d)/\text{yr}}{\lambda S_{\text{lim}}^{(1)}/\text{ns}}}.
\]
Rb sub-network

- Λ_{eff}: combination of α, m_e, m_p, m_q
- Until recently, existing limits did not exceed 10 TeV
- $T = 1 \text{ yr} \& d = 10^3 \text{ km} \implies \rho_{\text{inside}} \approx 10^6 \text{ GeV/cm}^3$
- c.f. $\rho_{\text{water}} \sim 10^{24} \text{ GeV/cm}^3$
Results: Limits - Λ_α (photon)

- (Assume this coupling dominates)

Results: Limits - fermion masses

Combine Rb, Cs, and Sr (optical)

- Three different combo’s of three couplings

Sr: Wcislo, Morzynski, Bober, Cygan, Lisak, Ciurylo, Zawada, Nat. Astron. 1, 9 (2016).

How to improve upon this?

- There may be events “hiding” below the noise.
- Other geometries: monopoles, strings, thicker walls

Bayesian Analysis

- Marginalise (integrate) all parameters (In-built Occam’s Razor)
 - Time, velocity, object size, impact parameter
- Form odds ratios

\[
p(D_j | m, l) = K \int \cdots \int p(x | m, l) \exp(-\chi_s)\]

\[
\chi_s = \sum_i \sum_{jl} (d_j^i - s_j^i) H_{jl} (d_j^i - s_j^i)
\]

- Should be able to detect events as small as:

\[
s \approx \sigma / \sqrt{N} \approx 0.001 \text{ ns (for the best clocks)}
\]
Test the method:

Statistical properties of data:

- Power-spectrums, Auto-correlation functions, Allan variance, …

- Generate “fake” data: mimics properties of the real data
 - y: Input white noise, S: PSD, z: Simulated data

$$z = FT^{-1}(FT(y)\sqrt{S_{\text{target}}/S_y})$$
Inject fake events: True positive rate
Don’t inject events: False positive rate
Currently running large-scale simulations. Results promising!
Possible outcomes:

a) See (∼ few) very good candidate events
 - Large odds ratio, good fit to model
 - “best” case scenario: Analyse these in great detail
 - Check against other precision experiments

b) we don’t
 - Set limits.
 - Is that all?
 - Case when there is a large number of small events?
Possible outcomes:

- All actual events should* have same sign

Vector velocity resolution:

- > 30 clocks: quite good speed/direction resolution
- Potential to resolve velocity distribution (SHM)

False positives will have different distribution
- But: have to “discount” priors for this analysis)
Possible outcomes:

Annual variation:

![Graph showing annual variation](image)

Lower threshold. Lots of false-positives

- Assymetry in event ‘sign’ & resolve SHM predictions, +
- Annual modulation:
 - Event rate
 - Average velocity
 - Most-common incident direction

May extend discovery reach for $T \ll 1\,\text{yr}$ and $d \ll R_{\text{GPS}}$
Some references:

Axions, ultralight scalar DM:

Topological defect DM:

non-topological solitons, Q-balls:

Other non-gravitational TD searches:
Conclusion:

GPS: 50,000km aperture DM observatory

- Topological defect dark matter/transient exotic physics
- GPS: 50,000km aperture sensor array
 - ~ 30 satellite clocks, many earth clocks, > 15 years of clock data
- DM walls: Orders of magnitude improvement for certain models
- Looking forward: Bayesian search technique
 - Monopoles, strings, signals below σ_{clock}
- General technique: archived, time-stamped data

More: see arXiv:1704.06844, BMR1, G. Blewitt1, C. Dailey1, M. Pospelov2,3, A. Rollings1, J. Sherman4, W. Williams1, and A. Derevianko1.

1University of Nevada, Reno; 2Perimeter Institute; 3University of Victoria, BC; 4NIST Boulder
Aside: challenges of re-purposed data

data from JPL: Histogram

- Possible that some clocks mis-identified (Here, one of the “Rb” clocks is probably Cs).
- Same discrepancy in autocorrelation function, Allan variance etc.
Clock stability: Mixed network

Launched:

- 1989–1997: II + IIA = ~ 17,000 clock-days
- 1997–2009: IIR = ~ 64,000 clock-days
- 2010–2016: IIF = ~ 8,000 clock-days
- Block III: Due in 2016 2017 2018(?)