Innovation for prevention, healing and the cure
Medical Advisory Board

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hwyya Arafat, M.D., Ph.D.</td>
<td>Professor, Dept. of Biomedical Sciences, Course Director, Histology Histopathology and Neuroanatomy, University of New England School of Medicine and Dental Medicine</td>
</tr>
<tr>
<td>Bethany Hall-Long, Ph.D., RNC</td>
<td>Professor, Department of Nursing, University of Delaware</td>
</tr>
<tr>
<td>William Jubb, M.D.</td>
<td>Director Centro de Endocrinology Metabolismo y Diabetes Cali, Columbia</td>
</tr>
<tr>
<td>Robert L. Judd, Ph.D.</td>
<td>Chair, Boshell Diabetes and Metabolic Diseases Research Program, Associate Professor of Pharmacology, Auburn University</td>
</tr>
<tr>
<td>Steven Koevary, Ph.D.</td>
<td>Professor/Chairman, Department of Biomedical Sciences and Disease, New England College of Optometry</td>
</tr>
<tr>
<td>Lucy D. Mastrandrea, M.D., Ph.D.</td>
<td>Associate Professor of Pediatrics, Chief of Pediatric Endocrinology/Diabetes, Jacobs School of Medicine & Biomedical Sciences University at Buffalo</td>
</tr>
<tr>
<td>Marcia McInerney, Ph.D.</td>
<td>Distinguished University Professor of Medicinal and Biological Chemistry, Associate Dean for Research and Graduate Studies, College of Pharmacy and Pharmaceutical Sciences University of Toledo</td>
</tr>
<tr>
<td>Joshua Miller, Ph.D.</td>
<td>Professor and Chair, Department of Nutritional Sciences, Rutgers, The State University of New Jersey</td>
</tr>
<tr>
<td>Ira D. Goldfine, M.D.</td>
<td>Professor of Medicine, Endocrinology/Metabolism, Retired, University of California, San Francisco</td>
</tr>
<tr>
<td>Michael Haller, M.D., MS-CL</td>
<td>Professor & Chief, Pediatric Endocrinology, Silverstein Family Eminent Scholar, University of Florida</td>
</tr>
<tr>
<td>Raghu G. Mirmira, M.D., Ph.D.</td>
<td>Eli Lilly Professor of Pediatric Diabetes, Pediatric Endocrinology, & Diabetology, Indiana University School of Medicine</td>
</tr>
<tr>
<td>Charles Mobbs, Ph.D.</td>
<td>Professor, Neuroscience, Endocrinology, and Geriatrics, Mt. Sinai Icahn School of Medicine</td>
</tr>
<tr>
<td>Svetlana Mojsov, Ph.D.</td>
<td>Research Associate Professor, Department of Academic Affairs, Rockefeller University</td>
</tr>
<tr>
<td>Steven Sansom, Ph.D.</td>
<td>Professor, Dept. of Cellular and Integrative Physiology, University of Nebraska Medical Center</td>
</tr>
<tr>
<td>Janet Silverstein, M.D.</td>
<td>Professor, Division of Pediatric Endocrinology, University of Florida College of Medicine</td>
</tr>
<tr>
<td>Ya-Xiong Tao, Ph.D.</td>
<td>Professor of Physiology, Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University</td>
</tr>
<tr>
<td>Jeffery S. Tessem, Ph.D.</td>
<td>Assistant Professor, Dept. Nutrition, Dietetics and Food Science, Brigham Young University</td>
</tr>
<tr>
<td>Farook Thameem, Ph.D.</td>
<td>Associate Professor, Department of Biochemistry, Faculty of Medicine, Health Science Center, Kuwait University</td>
</tr>
<tr>
<td>Roger Zoorob, MD, MPH, FAAFP</td>
<td>Richard M. Klebert, Sr., Professor and Chair, Department of Family and Community Medicine, Baylor College of Medicine</td>
</tr>
</tbody>
</table>
In 2019 The American Diabetes Association reversed its long-standing advice against the use of a low carbohydrate diet for diabetes. The new 2019 ADA Standards of Medical Care in Diabetes states that “research indicates that low-carbohydrate eating plans may result in improved glycemia and have the potential to reduce anti-hyperglycemic medications for individuals with type 2 diabetes”.

Although there have been multiple research studies that show the benefits of low carbohydrate diets, not only for treating, but for also reversing type 2 diabetes, new studies are now showing how this same diet can be beneficial for type 1 diabetes.

Several years ago Diabetes Action funded a study at Duke University where Dr. Anna Barton surveyed a group of people with type 1 diabetes who were following Dr. Bernstein’s low carbohydrate approach for type 1 diabetes. These patients were thus motivated to commit to a very low carb diet in a study that further decreased their insulin needs while stabilizing their blood sugar levels in order to avoid adverse effects.

A larger NIH funded study, published in 2018, incorporated some of the data from Dr. Barton’s study. This research also confirmed that improvement in A1C levels, lower insulin requirements, and more stable blood sugar levels improved the lives for both children and adults with type 1 diabetes.

Additional research is needed to help the medical community in offering guidance that is targeted to each individual’s specific dietary needs. With the help of our loyal donors, Diabetes Action looks forward to supporting this much needed type of research.

As we celebrate our 30th year of working towards improving the lives of the millions of people affected by diabetes worldwide, I want to especially thank all our generous donors who have made it possible to fund hundreds of vital research studies. I also want to thank our volunteer medical advisory board who review the numerous research applications and our volunteer Board of Directors for 30 years of success. Thank you everyone!

Pat DeVoe, RN, BSN, PRESIDENT
Our Mission

Diabetes Action Research and Education Foundation is committed to the prevention and treatment of diabetes and to the funding of innovative, promising research aimed at finding a cure for diabetes and diabetes related complications.

Our Focus

- Promising research to find a cure for diabetes
- Innovative research to prevent and treat diabetes
- Grants for nutritional and complementary research
- American Indian diabetes prevention
- Children’s camp scholarship program
- Education and prevention programs

Assurance that your money is used wisely

With a consistently low overhead and a small, dedicated staff, Diabetes Action strives to remain one of the most efficient charities. Diabetes Action is especially proud to have received the highest ratings from the following organizations:

<table>
<thead>
<tr>
<th>Organization</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BETTER BUSINESS BUREAU WISE GIVING ALLIANCE</td>
<td>Diabetes Action has earned the right to display the Better Business Bureau Wise Giving Alliance charity seal of approval for meeting their comprehensive, in-depth evaluation of Diabetes Action’s governance, finances, fund raising practices, solicitations, and informational materials.</td>
</tr>
<tr>
<td>CHARITY NAVIGATOR</td>
<td>Diabetes Action is one of the few diabetes organizations to receive an “A” rating. Charity Watch conducts an in-depth, financial analysis of audited financial statements along with a charity’s tax forms and other reports so donors will know how charitable dollars are really being spent.</td>
</tr>
<tr>
<td>CHARITY WATCH</td>
<td>Diabetes Action has received high rankings including for Financial health and Accountability & Transparency.</td>
</tr>
</tbody>
</table>

* see www.give.org
* see charitywatch.org
* see best-charities.org
* see charitynavigator.org
Research Program

Cure for Type 1 Diabetes

GRANT TITLE: A Program for the Cure of Type 1 Diabetes Using a Generic Drug: Phase II

RESEARCHER: Denise L. Faustman, MD, PhD., Associate Professor
Harvard Medical School and Director Immunobiology Laboratory
Massachusetts General Hospital
Charlestown, MA

PURPOSE: In August 2012, results of the Phase I trial showed that the pancreas of long-term diabetics was able to transiently make insulin after two doses of the Bacillus Calmette-Guerin (BCG) vaccine. In 2018, a follow up report published in the journal Vaccines, showed positive results in lowering blood sugars in subjects with type 1 diabetes to almost normal levels while also reducing the amount of insulin needed about one-third after 5 to 8 years from the initial treatment with the BCG vaccine without any reports of severe hypoglycemia. The 2015 FDA approved Phase II clinical trial will determine the dose and frequency of doses required to reverse type 1 diabetes. It is still necessary to obtain funding to track these patients for an additional five years with the ultimate goal of bringing BCG to market as an approved treatment for type 1 diabetes. Five additional clinic trials with BCG/placebo to over 200 subjects are currently ongoing.

GRANT TITLE: Development of a Macrocell (Islet) Encapsulation Device to Cure Diabetes

RESEARCHER: Douglas Sobel, MD
Professor of Pediatrics, Chief Pediatric Endocrinology
Georgetown University
Washington, D.C.

PURPOSE: Although islet transplantation is a promising approach to cure type 1 diabetes, the need for toxic drug therapy impedes its use. The subcutaneous administration of a macropacapsulated cell device could safely cure diabetes without immunotherapy. Dr. Sobel's lab has constructed a Membrane Device which, when loaded with MIN (mouse insulin secreting cells), and transplanted subcutaneously, cures diabetes in mice. This study proposes to improve the Device by determining: (1) which membrane materials best support MIN cell growth in vitro and in vivo (2) which of these membrane devices best cures diabetic mice (3) which device also prevents the rejection of transplanted human islets. This work will be a major step towards safely curing people of diabetes through islet transplantation.

GRANT TITLE: Bioprinting of Engineered Pancreatic Islets into a Perfusion Bed

RESEARCHER: Ibrahim T. Ozbolat, Associate Professor
Penn State University
University Park, PA

PURPOSE: In Dr. Ozbolat’s original project, he aimed to bioprint pre-vascularized pancreatic islets made of mouse insulinoma cells and rat heart microvascular endothelial cells into a perfusion bed in order to create a perfusable platform for microcirculation of the engineered islets. With additional funding, Dr. Ozbolat will further extend these efforts and utilize human cells, where human beta cells and endothelial cells derived from human adipose-derived stem cells will be used to form pancreatic islets. Pre-vascularized pancreatic islets will be bioprinted into the perfusion bed and this study will test the hypothesis that perfused human pancreatic tissue constructs improve islet viability and function through performing LIVE/DEAD assays, immunostaining and glucose challenging tests.

Islet Cell Research
Diabetes Prevention

GRANT TITLE: Long-Term Trajectory of Early Versus Late Onset Type 2 Diabetes: The Coronary Artery Risk Development in Young Adults (Cardia)

RESEARCHER: EunSeok Cha, Ph.D., MPH, MSN, CDE, RN
Assistant Professor
Emory University Nell Hodson Woodruff School of Nursing
Atlanta, GA

PURPOSE: Individuals with early-onset type 2 diabetes (before age 40) have much greater risks of developing chronic diabetes complications compared to those with late-onset diabetes (after age 40), even if they have had diabetes the same length of time. However, current screening, prevention, and treatment guidelines for early-onset are normed for those of late onset. Using data from a landmark observational study, the Coronary Artery Risk Development in Young Adults, this study aims to identify possible differences in the predictors of developing pre-diabetes and type 2 diabetes between early and late onset type 2 diabetes groups. Contributing factors to generate different progression mechanisms in early and late-onset diabetes will be examined. Findings will provide information to increase the precision of diabetes prevention, identification, and care for individuals at risk for and with early onset type 2 diabetes.

Complementary / Nutrition Research

GRANT TITLE: Identification of Early Circulating Diagnostic and Prognostic Biomarkers for Type 2 Diabetes Mellitus

RESEARCHER: Sandra Lobo, Ph.D.
Director, Biomedical Research Institute
Western Connecticut Health Network
Danbury, CT

PURPOSE: Type 2 diabetes is a metabolic disease and a growing global epidemic. Current tests diagnose patients with type 2 diabetes at a late stage when treatment is problematic due to severe metabolic imbalances in these patients. Treatment goals involve tight control of glucose levels to delay the progression of type 2 diabetes and prevent the complications known to significantly decrease the quality of life. Current therapies would be more effective when used in patients at high risk for developing type 2 diabetes before the metabolic imbalances set in. This study will help identify early biomarkers circulating in the blood of patients that affect metabolic function placing them at risk of developing type 2 diabetes, prior to its onset. These patients will benefit from lifestyle and/or drug treatment to prevent developing type 2 diabetes rather than delay its progression.

GRANT TITLE: Determine the role of Vitamin A in the development of type 2 diabetes in Zucker diabetic fatty rats

RESEARCHER: Guoxun Chen, Ph.D.
Associate Professor, Dept. of Nutrition
The University of Tennessee, Knoxville
Knoxville, TN

PURPOSE: The rise of obese population in the U.S. indicates more people with type 2 diabetes in the future, which can be attributed to genetic and nutritional factors. For humans without genetic long-term over-nutrition, excessive intakes of macronutrients (carbohydrates, fat and proteins) for energy, and micronutrients (vitamins and minerals) for metabolic regulation, play a key role in the process. Whether micronutrients such as Vitamin A (VA) play a role in type 2 diabetes development is still an open question. The principal investigator of this proposal has investigated the roles of VA in the development of type 2 diabetes in Zucker diabetic fatty rats. This study will determine whether dietary VA status contributes to type 2 diabetes development in Zucker diabetic fatty rats, a model of type 2 diabetes due to over-nutrition.
Complementary / Nutrition Research

GRANT TITLE: Effects of Fatty Acids on the Brain’s Regulation of Glucose Metabolism
RESEARCHER: Meredith Hawkins, MD
Professor, Dept. of Medicine (Endocrinology)
Albert Einstein College of Medicine
Bronx, NY

PURPOSE: Patients with type 2 diabetes have inappropriately high blood sugar levels, which is predominately produced by the liver. There is evidence in humans and rats that the brain normally regulates sugar production by the liver. However, this regulation is lost in people with type 2 diabetes. Dr. Hawkins’ lab hypothesizes that lowering circulating levels of a type of fat found in the body (free fatty acids) could restore this regulation and improve the brain’s ability to control sugar levels. Patients with type 2 diabetes will be studied before and after normalizing their free fatty acids levels with vitamin B3, to determine whether the brain’s impaired ability to regulate blood sugar can be reversed. Together, these studies will determine whether it is possible to restore the brain’s regulation of blood sugar in type 2 diabetes. These studies are likely to provide novel therapeutic target for controlling blood sugar levels in type 2 diabetes.

GRANT TITLE: Protective Role of Dietary Omega-3 Fatty Acids on Resolution of Inflammation in the Diabetic Brain
RESEARCHER: Kevin W. Huggins, Ph.D.
Associate Professor
Auburn University
Auburn, AL

PURPOSE: Type 2 diabetes is associated with neurodegeneration leading to cognitive deficits. The mechanism(s) underlying this diabetes-associated cognitive decline is poorly understood but may be related to an increase in diabetes-induced inflammation in the brain. Increased consumption of omega-3 polyunsaturated fatty acids (PUFA) from cold water fish and fish oils have been associated with a decreased risk of diabetes and cognitive decline associated with diabetes. This effect may be related to the anti-inflammatory properties of omega-3 PUFA. Specifically, increased brain omega-3 PUFA increases the production of pro-resolving lipid mediators which decrease inflammation. The goal of this study is to determine the role of omega-3 derived pro-resolving lipid mediators on inflammation in the brain of diabetic mice.

GRANT TITLE: High Fat Diet-Induced Diabetes is Abolished by Combined Genistein and Exercise Treatment: Identifying the Mechanisms
RESEARCHER: Layla Al-Nakkash, Ph.D.
Professor of Physiology
Midwestern University
Glendale, AZ

PURPOSE: Clinically, for those millions of individuals that have type 2 diabetes or obesity-related diabetes, the impact to overall health is significant. These disorders are complex and provision of effective treatments is also difficult. Dr. Al-Nakkash’s lab will use a mouse model of diabetic obesity, therefore mice will be given a “Western diet” which means they will feed them a high amount of fat for a fairly long time period. They will examine the effects of either consuming genistein (a naturally occurring compound found in soy) or participating in regular moderate exercise (or both) on key markers of gut and metabolic health. The lab will examine the effects of either consuming genistein (a naturally occurring compound found in soy) or participating in regular moderate exercise (or both) on key markers of gut and metabolic health. The lab will examine the effects of either consuming genistein (a naturally occurring compound found in soy) or participating in regular moderate exercise (or both) on key markers of gut and metabolic health. The lab will examine the effects of either consuming genistein (a naturally occurring compound found in soy) or participating in regular moderate exercise (or both) on key markers of gut and metabolic health.
Complementary / Nutrition Research

GRANT TITLE: Prevention of Amylin Amyloidosis in Type 2 Diabetes by Botanical Baicalein

RESEARCHER: Bin Xu, Ph.D., Assistant Professor
Virginia Polytechnic Institute and State University
Blacksburg, VA

PURPOSE: The goal of this project is to investigate the novel functions of a natural product, baicalein, in the prevention and treatment of diabetes and its complications. Due to a rapidly aging population and the modern sedentary lifestyle, type 2 diabetes and related neurodegeneration are reaching epidemic proportions and they are among the fastest growing diseases in America and worldwide. Currently, there is no known cure for these diseases. One potential molecule link between these two diseases is a molecule call amylin. Excessive secretion of this molecule in type 2 diabetes patients can lead to the formation of toxic aggregates, which can deposit in the pancreas and in other organs such as the brain and cause damages in these tissues. The researchers discovered that baicalein potently inhibits amylin aggregation and reduces amylin-induced toxicity. The researchers will determine how baicalein can inhibit amyloid formation and test how effective baicalein is in a diabetic animal model.

GRANT TITLE: Nicotinamide Riboside Prevention of Neuropathy in Type 1 Diabetes

RESEARCHER: James Russell, MD, MBchB, MS, FACP, FRCP
Professor Dept. of Neurology, Anatomy and Neurobiology
Vice Chair for Research, Dept. of Neurology
University of Maryland School of Medicine
Baltimore, MD

PURPOSE: Neuropathy eventually affects over 60% of patients with type 1 diabetes, but there is no treatment that prevents neuropathy developing or progressing. Neuropathy in type 1 diabetes may be associated with a decrease in tissue levels of nicotinamide adenine dinucleotide (NAD). Deficiency of NAD can affect critical pathways that protect cellular metabolic function in the peripheral nerve against oxidative and glutaminergic injury. Dr. Russell’s lab will test if dietary nicotinamide ribosome (NR), which repletes NAD levels, prevents neuropathy in an animal model of type 1 diabetes. Dr. Russell’s lab obtained an FDA IND for NR treatment in human type 2 diabetic neuropathy. However, they also need to determine if NR can prevent neuropathy in type 1 diabetes and if the effect can be sustained.

GRANT TITLE: Testing of New Intervention to Treat Type 1 Diabetes Induced Kidney Failure

RESEARCHER: Kai Y. Xu, Assoc. Professor
University of Maryland
Baltimore, MD

PURPOSE: Type 1 diabetes causes kidney failure in which the kidneys are no longer able to remove waste from the body. (Na+ and K+)-ATPase (NKA) is found in large amounts of kidney and plays a crucial role in kidney function. Studies have shown that significant reduction of the NKA activity is strongly associated with type 1 diabetes-induced kidney failure, indicating that NKA activity is an essential basis for kidney function. Dr. Xu has developed a NKA activator which markedly increases NKA activity. Dr. Xu hypothesizes that protecting kidney NKA activity through the NKA activator may offer a new disease modifying intervention to prevent and treat type 1 diabetes-induced kidney failure. The purpose of this study is to test whether the NKA activator protects kidney function against the progression of kidney failure. If the hypothesis is supported by the experimental results, this study will transform basic research findings into medical technology for better treatment of type 1 diabetes-induced kidney failure.

Treating and Preventing Complications
American Indian Diabetes Prevention Program

Since our inception in 1990, Diabetes Action has provided funding for various projects designed to help reduce the incidence of diabetes among American Indians. We have provided support for building youth centers on the Cheyenne River Sioux Reservation where our partnership with the Cheyenne River Youth Project has provided nutrition and wellness information in our very successful diabetes prevention program for youth and their families across the Reservation. One of the most valuable components for diabetes prevention has been a focus on growing fresh produce including different fruits and vegetables usually not available in local grocery stores. Despite a summer tornado and flooding due to heavy rains, the Winyan Toka Win Garden ended up with 7000 pounds of fresh produce in 2019. Some of this produce was used in a cooking workshop with Partnerships with Native Americans who taught the staff how to cook traditional foods including buffalo, hominy, and corn. Follow up community training sent community members home with cooking utensils to replicate the healthy meals at home.

Education Program

Diabetes University

Our 2019 program featured presentations by Dr. Liz Lipski, Professor and Director of Academic Development for the graduate programs in Nutrition and Integrative Health at Maryland University of Integrative Health.

DIABETES, GLUTEN, AND WHEAT This lecture described the relationship between gluten related disorders and both type 1 and 2 diabetes. Dr. Lipsky stressed the need for comprehensive testing, especially related to the gut since recent research shows a microbiome link to diabetes, and how identifying inflammatory microbes and bacteria can help with diabetes treatment.

A GENERIC AND FUNCTIONAL APPROACH TO ALZHEIMER’S DISEASE Because people with diabetes have an increased risk for developing Alzheimer’s disease, Dr. Lipsky stressed that any diet for Alzheimer’s must focus on normalizing insulin sensitivity. Dr. Lipsky discussed research on supplements, hormones, diet, exercise, and lifestyle factors that hold promise for preventing cognitive decline.
Each summer thousands of children with diabetes attend special diabetes camp programs that nurture self-esteem and self-reliance by offering a support system that is not available in any other setting. For many children with diabetes, camp provides the only place when they don’t “feel different” and allows them to learn from potential role models and peers. In 2019 Diabetes Action provided funds to 57 camps throughout the U.S.

It is always heartwarming to read the notes of thanks that campers send us each year that reflect on the benefits of camp. As one teenage camper wrote in 2019, “This is my 3rd year at camp. My favorite part is making “BESTIES” for life and getting to see them year after year. Camp means the world to me. It is the best thing that has ever happened to me. Thank you for making camp possible”.

Another camper wrote about camp as a life-saving experience: “Every single day I either think about camp or some memory I’ve made! The people who matter most to me in my life have come from camp…… When I was younger, probably around 12, I was considering ending my life. I can 100% say that without this family I would not be here today”.

2019 Children’s Summer Camps

- Camp Seale Harris, AL
- Camp Kushtaka, AK
- Camp Aldersgate, AR
- University of Arizona Foundation, AZ
- Lions Diabetic Camp, CA
- Camp Conrad Chinook, CA
- Camp Sweet Pea, CO
- Rainbow Club, CT
- Camp Possibilities, DE
- College of Health and Nursing Sciences, DE
- Florida Diabetes Camp, FL
- Camp Kudzu, GA
- Camp Hodia, ID
- Camp Granada, IL
- Triangle D Camp for Children with Diabetes, IL
- Diabetes Youth Foundation, IN
- Hertko Hollow Children’s Diabetes Camp, IA
- Camp Discovery, KS
- Camp Hendon, KY
- Camp Victory, LA
- Jack Rua Camp for Children, MA
- Clara Barton Camp, MA
- Joslin Diabetes Camp, MA
- Lions Camp Merrick, MD
- Camp Angels, ME
- Cary’s Diabetes Kids, ME
- Camp Midicha, MI
- Camp Needlepoint, MN
- Camp Daypoint, MN
- Camp Hickory Hill, MO
- Camp Montana, MT
- Twin Lakes Diabetes Camp, MS
- Camp Carolina Trails, NC
- Camp Needles in the Pines, NC
- Camp Sioux, ND
- Nevada Diabetes Association, NV
- Floyd Rogers Camp, NE
- Zebra Crossings, NH
- Camp Nejeda, NJ
- Kamp 4 Kids, NM
- Camp Big Shots, OH
- Camp Korelitz, OH
- Camp Endres, OK
- Chris Dudley Basketball Camp, OR
- Camp Setebaid, PA
- Camp Surefire, RI
- Camp Sweet Escape, SC
- Camp Gilbert, SD
- Tennessee Camp for Diabetic Children, TN
- Texas Lions Camp, TX
- Utada Camp, UT
- AYUDA, VA
- Camp Holiday Trails, VA
- Camp Sealth, WA
- Wisconsin Lions Camp, WI
- Camp Kno-Koma, WV
- Camp Hope, WY
Diabetes Action Research and Education Foundation Inc.

BALANCE SHEET

December 31, 2019

ASSETS

Current Assets
- Cash – Checking $29,336
- Cash – Money Market $15,283
- Cash Account – Escrow $1,103

TOTAL ASSETS $45,722

PUBLIC SUPPORT AND REVENUE

Contributions $323,328
Legacies, Bequests $10,000
Foundations, Grants $101,500
Other Income $(76)
Interest Income $15

TOTAL PUBLIC SUPPORT AND REVENUE $434,767

EXPENSES

Public Education $243,398
Biomedical Research $141,000
Summer Camps $20,200

TOTAL PROGRAM SERVICES $404,598

General and Administrative $42,937
Fundraising $12,062

TOTAL EXPENSES $459,597

Decrease in Unrestricted Net Assets $(24,830)

Net Assets - Beginning of Year $61,380
Net Assets - End of Year $36,550

LIABILITIES AND NET ASSETS

Payroll Taxes Payable $9,172
Total Liabilities $9,172
Net Assets - Unrestricted $36,550
Total Liabilities and Net Assets $45,722

Complete financial statement audited by Eric Bolin, CPA, PC, available on request
How You Can Help

Your support ensures the advancement of Diabetes Action’s mission to prevent and cure diabetes.

Donate Online
Make a general donation or pay tribute to a loved one.

Matching Grants
Many businesses sponsor matching grant programs. Ask your employer if they offer a matching grant program to multiply the value of your contribution.

Workplace or CFC Campaign
Look for Diabetes Action Research and Education Foundation in your campaign directory. Even a small contribution per paycheck will make a difference.

Planned Giving
Including Diabetes Action as a beneficiary in your will or life insurance policy is a generous way to leave a legacy of hope.