Innovation
for prevention, healing and the cure
2021 annual report and overview
President’s Message

Though 2021 was a difficult year for researchers who had to delay their projects during the COVID-19 pandemic, your donations helped to ensure that many of these dedicated researchers were able to continue their important work. Dr. Kai Xu's lab at the University of Maryland was able to continue research because of additional funding from Diabetes Action. This important project to treat type 1 diabetes with novel immunotherapy is continuing to make great progress. At Massachusetts General Hospital, where Dr. Denise Faustman is studying the potential of the BCG vaccine to reverse established type 1 diabetes, progress also continued as patients were able to keep their appointments to ensure success for this project that Diabetes Action has made a long-term commitment to support. We were also excited to learn that Dr. Bin Xu's research at North Carolina Central University on the use of rosmarinic acid to treat type 2 diabetes was just published in the journal, ACS Pharmacology & Translational Science.

In 2021, Diabetes Action began funding a new study by Dr. Gaetano Santulli at Albert Einstein College of Medicine that is addressing the urgent need to learn more about how the coronavirus damages beta cells. This study is investigating how virus-infected endothelial cells secrete extracellular vesicles that cause beta cell dysfunction. Any success in identifying the specific toxic molecules in the microvesicles is vital to understanding the cause and cure of diabetes. Recent research shows that the incidence of diabetes remains elevated up to one year following a COVID-19 infection. Dr. Santulli's research and similar studies are especially critical due to recent data showing that children who have had COVID-19 are 2.5 times more likely to be later diagnosed with diabetes, as well as reports from pediatricians of a 30-40% increase in children being diagnosed with type 1 diabetes.

We want to thank these many dedicated researchers and our loyal donors who make it possible to support so many of these vital research projects. Also, many thanks to our all-volunteer Medical Advisory Board and Board of Directors who have continued their tireless work for Diabetes Action during a difficult pandemic year.

Best wishes for a healthy 2022,

Pat DeVoe, RN, BSN

President
Our Mission

Diabetes Action Research and Education Foundation is committed to the prevention and treatment of diabetes and to the funding of innovative, promising research aimed at finding a cure for diabetes and diabetes related complications.

Our Focus

• Promising research to find a cure for diabetes
• Innovative research to prevent and treat diabetes
• Grants for nutritional and complementary research
• American Indian diabetes prevention program
• Children’s camp scholarship program
• Education and prevention programs

Assurance that your money is used wisely

With a consistently low overhead and small, dedicated staff, Diabetes Action strives to remain one of the most efficient charities. Diabetes Action is especially proud to have received the highest ratings from the following organizations:

BETTER BUSINESS BUREAU WISE GIVING ALLIANCE
Diabetes Action has earned the right to display the Better Business Bureau Wise Giving Alliance charity seal of approval for meeting their comprehensive, in-depth evaluation of Diabetes Action’s governance, finances, fund raising practices, solicitations, and informational materials.
- see give.org

CHARITY WATCH
Diabetes Action is one of the few diabetes organizations to receive an “A+” rating. Charity Watch conducts an in-depth, financial analysis of a charity’s audited financial statements along with their tax forms and other reports so that donors will know how their charitable dollars are really being spent.
- see charitywatch.org

BEST IN AMERICA
The Independent Charities Seal of Excellence is awarded to the members of Independent Charities of America that have, upon rigorous independent review, been able to certify, document, and demonstrate on an annual basis that they meet the highest standards of public accountability, program effectiveness, and cost effectiveness.
- see best-charities.org

CHARITY NAVIGATOR
Diabetes Action has received Charity Navigator’s highest 4-star rating for financial health, accountability, and transparency.
- see charitynavigator.org
Research Program

Cure for Type 1 Diabetes

GRANT TITLE: A PROGRAM FOR THE CURE OF TYPE 1 DIABETES USING A GENERIC DRUG: PHASE II
RESEARCHER: Denise L. Faustman, MD, PhD., Associate Professor
Harvard Medical School and Director, Immunobiology Laboratory, Massachusetts General Hospital
Charlestown, MA
PURPOSE: In August 2012, results of the Phase I trial showed that the pancreas of long-term diabetics was able
to transiently make insulin after two doses of the Bacillus Calmette-Guerin (BCG) vaccine. In 2018 a follow up
report on a total of 232 participants both treated and untreated with BCG, published in the journal *Vaccines*,
showed positive results in lowering blood sugars in subjects with type 1 diabetes to almost normal levels while also
reducing the amount of insulin needed about one-third after 5 to 8 years from the initial treatment with the BCG
vaccine without any reports of severe hypoglycemia. The 2015 FDA approved Phase II clinical trial, which is now fully enrolled with 150
participants with long-term type 1 diabetes, will determine the dose and frequency of doses required to reverse type 1 diabetes. It is still
necessary to obtain funding to track these patients for an additional two years with the ultimate goal of bringing BCG to market as an
approved treatment for type 1 diabetes. Five additional clinical trials with BCG/placebo to over 150 subjects are currently ongoing.

GRANT TITLE: TACKLING BETA CELL DEATH IN TYPE 1 DIABETES
RESEARCHER: Researcher: Angela Lombardi, Ph.D., Assistant Professor
Albert Einstein College of Medicine
Bronx, NY
PURPOSE: Over the past four decades, the number of people with Type 1 diabetes (T1D) has increased by 4% per
year, making it an important public health challenge. Currently, no curative therapy exists for T1D and the only
available treatment is insulin replacement, which, though life-saving, is often associated with fatal high or low
glucose levels. The aim of this research project is to treat or prevent autoimmunity in T1D by blocking antigen
presentation using novel D-peptides, specifically by blocking the HLA-DQ8 peptide binding pocket from presenting
diabetogenic peptides to auto reactive T-cells. Our hypothesis is that D-peptides are specific to the cause of T1D, and should not cause
general immunosuppression, reducing or eliminating the need for insulin replacement therapy. The novel D-peptide approach can be
easily expanded to patients with other autoimmune diseases carrying HLA-DQ8 or other HLA class II alleles, therefore, representing a
ew strategy to treat autoimmunity in general.

GRANT TITLE: CIRCADIAN REGULATION OF PANCREATIC ISLET-GUT AXIS IN DIABETES DEVELOPMENT
RESEARCHER: Li Wen, MD, PhD, Associate Professor in Medicine
Yale University School of Medicine
New Haven, CT
PURPOSE: Dr. Wen’s lab recently discovered that pancreatic islets from the non-obese diabetic (NOD) mouse,
an animal model for human type 1 diabetes, express a high level of biological clock genes. The expression of
these genes changes at different times of the day. These same genes are in the gut of NOD mouse but they are
expressed at very different times of the day compared with the pancreatic islets. Both the gut and pancreas are in
the digestive system and they are vulnerable to be attacked by immune cells, which alter gut stability or damage
the insulin-producing cells. In this study, Dr. Wen will investigate how the clock genes regulate the functions of pancreatic islets and
gut differently, with the ultimate goal to provide new knowledge to improve the effectiveness of existing therapy and to design more
effective new therapies to treat or prevent type 1 diabetes.
Diabetes Prevention

GRANT TITLE: IDENTIFICATION OF BIOACTIVE COMPOUNDS FOR THE PREVENTION AND TREATMENT OF T2D
RESEARCHER: Dongmin Liu, PhD, Professor
Virginia Polytechnic Institute & State University
Blacksburg, VA
PURPOSE: Type 2 diabetes (T2D) is a fastest-growing health problem in the US. It is a result of insulin resistance and loss of insulin secreting beta-cells. The goal of this research is to identify low-cost, natural compounds to prevent and treat T2D. Dr. Liu discovered for the first time that hispidulin, a compound isolated from the herb Salvia plebaia, which is also abundant in oregano, acts in the gut to promote beta-cell function and ameliorates T2D, while sulforaphane, a small molecule derived from cruciferous vegetables, is a potent insulin sensitizer in the body of T2D mice. In this project Dr. Liu will investigate whether a combination treatment with hispidulin and sulforaphane is more effective in preventing T2D development by simultaneously improving insulin sensitivity and preserving functional beta-cell mass in T2D mice. The results from this grant could lead to developing strategy for using these natural products as an alternative or complementary therapy for T2D.

GRANT TITLE: UNDERSTANDING BCAA REGULATION - A STEP TOWARD DECIPHERING DIABETES
RESEARCHER: Andrew C. Shin, Ph.D., Assistant Professor
Director, Mouse Metabolic Phenotyping Facility
Texas Tech University
Lubbock, Texas
PURPOSE: Branched-chain amino acids (BCAAs) are essential amino acids that our bodies do not produce, thus we need to obtain through diet. Recent studies show that circulating BCAAs are elevated in obese and diabetic individuals, and that BCAA supplementation through diet can lead to insulin resistance and abnormally high glucose levels. These findings indicate that BCAAs may have a causal role in the development of obesity and diabetes, but how and why they are elevated to begin with is unknown. Dr. Shin has discovered earlier that insulin action in the brain region called the mediobasal hypothalamus (MBH) controls circulating BCAAs. The present study proposes to identify and test the role of specific neuronal populations within the MBH for BCAA regulation. Findings from this study would elucidate the neuronal BCAA regulatory pathway and help develop new pharmacological/dietary strategies to decrease BCAAs in order to prevent/treat metabolic disorders.

GRANT TITLE: NEW INSIGHTS IN THE PATHOGENESIS OF DIABETES MELLITUS
RESEARCHER: Gaetano Santulli, MD, PhD, Assistant Professor of Medicine
Albert Einstein College of Medicine
Bronx, NY
PURPOSE: The main goal of this project is to understand the molecular mechanisms underlying the pathogenesis of diabetes in patients affected by COVID-19. The role of diabetes in COVID-19 is two-fold: not only do people with diabetes present an augmented risk of a severe outcome of COVID-19, but COVID-19 has been shown to also increase the risk of developing diabetes. Dr. Santulli’s hypothesis is that the coronavirus responsible for COVID-19 is causing endothelial dysfunction and that extracellular vesicles secreted by impaired endothelial cells can cause beta cell dysfunction. Dr. Santulli’s lab has preliminary data supporting this hypothesis and has identified some specific molecules contained in endothelial microvesicles that can be targeted to prevent and cure the onset of diabetes in COVID-19 patients. Moreover, the unprecedented relationship between endothelial cells and pancreatic beta cells can also be harnessed and targeted in diabetes mellitus non caused by COVID-19.
Treating and Preventing Complications

GRANT TITLE: ABILITY OF 12 WEEKS MODERATE EXERCISE AND/OR GENISTEIN (SOY) TO REVERSE HYPERGLYCEMIA, HYPERINSULINEMIA, FATTY LIVER DISEASE AND MICROBIOME CHANGES INDUCED BY CHRONIC CONSUMPTION OF HIGH FAT HIGH SUGAR DIET
RESEARCHER: Layla Al-Nakkash, Ph.D., Professor of Physiology
Midwestern University
Glendale, AZ
PURPOSE: Clinically, millions of individuals have type 2 diabetes or obesity-related diabetes, and the impact to overall health is significant. These disorders are complex and provision of effective treatments is difficult. Dr. Al-Nakkash will use a mouse model of diabetic-obesity; mice will be given a “Western diet” by feeding them a high amount of fat and sugar for three months. At this time point in time, the lab will examine the effects of either consuming genistein (a naturally occurring compound found in soy), participating in regular moderate exercise (or both), or merely eliminating fat and sugar in the diet, on key markers of diabetes, obesity fatty liver and gut health. Dr. Al-Nakkash's lab will use standard laboratory techniques to assess both gut and overall health in this model of type 2 diabetes. This research will aid in the understanding of how exercise and soy can be of benefit to reverse diabetic-obesity.

GRANT TITLE: INVESTIGATING THE INHIBITORY ROLE OF SKELETAL MUSCLE PHOSPHATASES IN DISTAL SIGNALING OF OBESE INDIVIDUALS
RESEARCHER: Leslie Consitt, Ph.D., Associate Professor
Ohio University Heritage College of Osteopathic Medicine
Athens, Ohio
PURPOSE: Dr. Consitt has been studying glucose uptake in skeletal muscle, the primary target for insulin action, with a focus on distal insulin signaling such as AS160. The current study seeks to identify the protein phosphatases (PPS) that inhibit insulin-stimulated AS160 phosphorylation in humans, and difference in the interaction of Ppl and AS160 between lean and obese humans. In the long run, chemicals targeting PPS might be used to alleviate insulin resistance and treatment of type 2 diabetes. Based on the previous results in rats demonstrating PP1 as a potential inhibitor of AS160, Dr. Consitt seeks to confirm that this is also true in humans and further identify the subtypes of PPS involved. With solid preliminary data, Dr. Consitt hypothesizes that obese insulin-resistant humans have increased PP1alpha-AS160 interaction in skeletal muscle; decreasing PP1alpha can increase insulin-stimulated AS160 phosphorylation. Dr. Consitt is especially interested in using this project for outreach and education of the Athens, Ohio community.

GRANT TITLE: TESTING NOVEL IMMUNOTHERAPY TO TREAT DIABETES-INDUCED KIDNEY FAILURE
RESEARCHER: Kai Y. Xu, Ph.D., Associate Professor of Surgery
University of Maryland School of Medicine
Baltimore, MD
PURPOSE: Diabetes causes kidney failure which results in the kidneys no longer being able to remove waste from the body. (Na+ + K+)-ATPase (NKA) is a key enzyme found in large amounts in kidneys. Studies have shown that dysfunction of NKA is associated with diabetic kidney failure, indicating that NKA activity is essential to kidney function. Dr. Xu has discovered a NKA activator and developed a NKA activator-based immunotherapy. Recent studies reveal that newly developed immunotherapy protects kidney function against progression of type 1 diabetes-induced kidney failure in female NOD mice. Dr. Xu hypothesizes that this immunotherapy may be a universal disease-modifying intervention for both type-1 and type-2 diabetes-induced kidney failure. The proposed investigation will test the hypothesis and examine the efficacy of immunotherapy on both type 1 and type 2 diabetes induced kidney failure. This study challenges the critical barrier of existing treatment by testing a novel immunotherapy to advance our knowledge and improve human health.
Complementary/ Nutrition Research

GRANT TITLE: INVESTIGATE THE POTENTIAL OF CONTINUOUS DIETARY PRESENCE OF HIGH DOSES OF BOTH VITAMINS C AND E TO INTERVENE TYPE 2 DIABETES IN ZUCKER DIABETIC FATTY RATS
RESEARCHER: Guoxun Chen, Ph.D.
Associate Professor, Dept. of Nutrition
The University of Tennessee, Knoxville
PURPOSE: The numbers of patients with type 2 diabetes (T2D) in the U.S. is rising. It is urgent to find alternative, complementary, and nutritional therapies for the prevention and treatment of T2D. Oxidative stress contributes to abnormalities of T2D. Therefore, antioxidants have been implied to have anti-diabetic functions. Clinical trials using high doses of Vitamin C or E individually have shown some promising results in T2D patients. However, whether a continuous dietary presence of vitamin C and/or E is critical for their anti-diabetic effects remains unanswered. Dr. Chen's research aims to investigate the effects of a combination of high doses of dietary vitamins C and E on the development of type 2 diabetes in Zucker diabetic rats, a well-known T2D model. The results will lead us to use commonly available antioxidants, vitamins C and E, as nutritional therapies to prevent and treat diabetes and its complications.

GRANT TITLE: GLYCEMIC INDEX AND POST-PRANDIAL INFLAMMATION IN ADOLESCENT TYPE 1 DIABETES
RESEARCHER: Robert P. Hoffman, MD
Professor of Pediatrics
Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
PURPOSE: Cardiovascular disease is a major cause of death in patients with type 1 diabetes. Increased inflammation causes future atherosclerosis and cardiovascular disease. Inflammation increases with increased glucose following a meal. Adolescents with type 1 diabetes have increased inflammation. The glycemic index quantifies the expected rise in glucose for a specific food two hours after a meal with a smaller increase for low glycemic index foods. The effects of low glycemic index meals on inflammation following a meal have not been studied in adolescents with type 1 diabetes. Inflammation before and after low and high glycemic index meals will be studied in 20 adolescents with type 1 diabetes. If improvements in inflammation, vascular and renal function are found, this would strongly indicate that low glycemic index diets have the potential to reduce complications in type 1 diabetes.

GRANT TITLE: COMPLEMENTARY MANUKA HONEY EMBEDDED DERMAL REGENERATION TEMPLATES TO IMPROVE DIABETIC WOUND HEALING
RESEARCHER: Laurie P. Shornick, PhD
Associate Professor of Biology
Saint Louis University, St. Louis, MO
PURPOSE: Diabetic patients often develop non-healing foot ulcers that result in lower limb amputations. Unfortunately, the 5 year survival rate after lower limb amputation is less than 50%, so there is a critical need to develop wound dressings that will improve healing. Honey has been used for centuries as a complementary treatment for wound healing; however, it is sticky and difficult to apply. When honey warms to body temperature, it may also leak out of the wound. Dr. Shornick proposes an innovative three-dimensional wound dressing containing New Zealand manuka honey which has special properties. The dressing will provide a structure for cells to migrate into the wound, and the honey will provide anti-bacterial protection and will promote the formation of new tissue and blood vessels. Because pigs have skin very similar to human skin, a diabetic pig model will be used to test the efficacy of the honey-embedded wound dressings.

GRANT TITLE: NOVEL FUNCTIONS OF ROSMARINIC ACID AND ITS ANALOG AS DIABETES-PREVENTION NUTRACEUTICALS; IN VIVO EFFICACY STUDIES
RESEARCHER: Bin Xu, Ph.D.
Assistant Professor, Principal Investigator
Biomanufacturing Research Institute and Technology Enterprise (BRITE)
North Carolina Central University, Durham, NC
PURPOSE: The goal of this project is to investigate the novel functions of botanical compound rosmarinic acid (RA) and its analog RA-amide, in the prevention and treatment of diabetes and its complications. Due to the growth of the aging population and the modern sedentary lifestyle, type 2 diabetes (T2D) and related neurodegeneration are reaching epidemic proportions. Currently, there is no known cure for these diseases. One potential molecule link between these diseases is a molecule called amylin. Excessive secretion of this molecule in T2D patients can lead to the formation of toxic aggregates, which can deposit in the pancreas and the brain and cause damages in these tissues. Dr. Xu discovered that both RA and its analog RA-amide potently inhibit amylin aggregation and reduces aggregation-induced toxicity in vitro. This study will determine how effective RA and RA-amide are in ameliorating diabetes and related neurodegeneration in a diabetic animal model.
American Indian Diabetes Prevention Program

Despite the ongoing challenges of the pandemic, the Cheyenne River Youth Project on the Cheyenne River Reservation continued their mission to provide health, wellness, and diabetes prevention programming. With the help of funding from Diabetes Action, these efforts found ways to engage youth through small group classes provided over Zoom. Throughout 2021, a Native Wellness internship was completed by 22 teens who practiced cooking traditional Lakota foods and received lessons on topics such as the benefits of buffalo meat.

During the 2021 growing season, the Winyan Toka Win Garden yielded 13,682 pounds of over 50 varieties of pesticide-free fruits and vegetables which were shared with the local Elderly Nutrition Center and Homeless Shelter throughout the summer. In addition, the program partnered with other groups and the USDA to serve over 1000 families from ten different communities where food shortages were common during the pandemic. Because of the ingenuity of Director Julie Garreau and her dedicated staff and students, drive-through events were organized to help the local community receive healthy meals. We commend the efforts of these staff and students who were able to continue this important wellness program during these difficult pandemic times.

Education Program

Diabetes University

The 2021 Diabetes University took place over Zoom and provided a demonstration of “Yoga For Self-Care and Diabetes” by Dana Halkowski, Clinical Supervisor at Maryland University of Integrative Health and owner of Yoga Stretch and Move, LLC. She discussed how yoga can help balance hormones and relieve symptoms of fatigue, anxiety, sleep issues, and mood swings.

A second presentation on “Digestive Wellness” was given by Dr. Liz Lipski, Director of Academic Development/Nutrition Programs at Maryland University of Integrative Health and author of the books, Digestive Wellness, Digestion Connection, Digestive Wellness for Children and Leaky Gut Syndrome.
Summer Camps

For many children the constant change in routines, added stress, and mental strain of the pandemic caused their diabetes management to suffer. Camp became even more important than ever to help children mentally and physically. At Camp Ho Mita Koda – a type 1 diabetes camp that provided an in-person camp experience – one mother with two children who attended commented that “Camp saved their lives”. Other camps that were unable to offer an in-person camp were still able to find creative ways to provide successful programs. At the Barton Center, a virtual camp offered classic camp fun in addition to twice daily calls in order to help campers make friends with other kids who also know what it is like to live with diabetes. At the Florida Diabetes Camp, Diabetes Action provided a special grant to make it possible to complete long overdue renovations and purchase updated technology needed to make future programs more successful.

2021 Children’s Summer Camps

- Camp Seale Harris, AL
- Camp Aldersgate, AR
- University of Arizona Foundation, AZ
- Lions Diabetic Camp, CA
- Camp Conrad Chinook, CA
- Camp Possibilities, DE
- College of Health and Nursing Sciences, DE
- Florida Diabetes Camp, FL
- Camp Kudzu, GA
- Camp Hodia, ID
- Camp Granada, IL
- Triangle D Camp for Children with Diabetes, IL
- Diabetes Youth Foundation, IN
- Hertko Hollow Children’s Diabetes Camp, IA
- Camp Hendon, KY
- Camp Victory, LA
- Jack Rua Camp for Children, MA
- Lions Camp Merrick, MD
- Camp Angels, ME
- Cary’s Diabetes Kids, ME
- Camp Midicha, MI
- Camp Needlepoint, MN
- Camp Daypoint, MN
- Missouri Diabetic Children’s Camp, MO
- Camp Montana, MT
- Twin Lakes Diabetes Camp, MS
- Camp Needles in the Pines, NC
- Camp Sioux, ND
- Nevada Diabetes Association, NV
- Floyd Rogers Camp, NE
- Zebra Crossings, NH
- Camp Nejeda, NJ
- Kamp 4 Kids, NM
- Camp Big Shots, OH
- Camp Homita Koda, OH
- Camp Korelitz, OH
- Camp Endres, OK
- Chris Dudley Basketball Camp, OR
- Camp Setebaid, PA
- Camp Surefire, RI
- Camp Sweet Escape, SC

- Camp Gilbert, SD
- Tennessee Camp for Diabetic Children, TN
- Texas Lions Camp, TX
- Utada Camp, UT
- Camp Holiday Trails, VA
- Camp Sealth, WA
- Wisconsin Lions Camp, WI
- Camp Kno-Koma, WV
- Camp Hope, WY
Financials/Misc.

Board
- **BOARD CHAIR:** Patricia A Faulkner
- **TREASURER/SECRETARY:** Anne Lafferty
- **DIRECTORS:**
 - Catherine Hussong
 - Louise Koch
 - Teresa Sadeghin
 - Jan Taylor
 - Ann Wood

Principal Staff Members:
- **PRESIDENT:** Pat DeVoe, RN, BSN
- **DEPUTY DIRECTOR:** Dorothy Harriot, MSW

Expenses
- Fundraising: 2.6%
- Administrative: 8.7%
- Program Services: 88.7%
 (Research, Education, Summer Camps)

Public Support and Revenue

<table>
<thead>
<tr>
<th>Source</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contributions</td>
<td>$480,483</td>
</tr>
<tr>
<td>Legacies and Bequests</td>
<td>$169,252</td>
</tr>
<tr>
<td>Foundation and Grants</td>
<td>$75,799</td>
</tr>
<tr>
<td>Interest Income</td>
<td>$72</td>
</tr>
<tr>
<td>TOTAL PUBLIC SUPPORT AND REVENUE</td>
<td>$725,606</td>
</tr>
</tbody>
</table>

Expenses

<table>
<thead>
<tr>
<th>Category</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Education</td>
<td>$250,239</td>
</tr>
<tr>
<td>Research and Treatment</td>
<td>$229,935</td>
</tr>
<tr>
<td>Summer Camp Programs</td>
<td>$34,350</td>
</tr>
<tr>
<td>TOTAL PROGRAM SERVICES</td>
<td>$514,524</td>
</tr>
<tr>
<td>General and Administrative</td>
<td>$50,230</td>
</tr>
<tr>
<td>Fundraising</td>
<td>$14,812</td>
</tr>
<tr>
<td>TOTAL EXPENSES</td>
<td>$579,566</td>
</tr>
</tbody>
</table>

Increase in Unrestricted Net Assets
- $146,040

Net Assets
- **Beginning of Year:** $675,962
- **End of Year:** $822,002

Liabilities and Net Assets

<table>
<thead>
<tr>
<th>Category</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Grants Payable</td>
<td>$160,000</td>
</tr>
<tr>
<td>Total Liabilities</td>
<td>$160,000</td>
</tr>
<tr>
<td>Net Assets Without Donor Restrictions</td>
<td>$822,002</td>
</tr>
<tr>
<td>Total Liabilities and Net Assets</td>
<td>$982,002</td>
</tr>
</tbody>
</table>

Complete financial statement audited by Dembo Jones, PC. available on request.
Hwyda Arafat, M.D., Ph.D.
Professor, Dept. of Biomedical Sciences
Course Director, Histology
Histopathology and Neuroanatomy
University of New England School of Medicine and Dental Medicine

Michael Haller, M.D., MS-CL
Professor & Chief
Pediatric Endocrinology
Silverstein Family Eminent Scholar
University of Florida

Bethany Hall-Long, Ph.D., RNC
Professor, Department of Nursing
University of Delaware

William Jubiz, M.D.
Director
Centro de Endocrinología
Metabolismo y Diabetes
Cali, Colombia

Robert L. Judd, Ph.D.
Chair, Boshell Diabetes and Metabolic Diseases Research Program
Associate Professor of Pharmacology
Auburn University

Steven Koevary, Ph.D.
Associate Professor
Department of Medical Education
Texas Tech University Health Sciences Center

Lucy D. Mastrandrea, M.D., Ph.D.
Associate Professor of Pediatrics
University at Buffalo

Raghu G. Mirmira, M.D., Ph.D.
Professor and Director
Translational Research Center
Department of Medicine
The University of Chicago

Charles Mobbs, Ph.D.
Professor
Neuroscience, Endocrinology, Geriatrics, Pharmacology and Therapeutics Discovery
Mt. Sinai Icahn School of Medicine

Svetlana Mojsov, Ph.D.
Research Associate Professor
Department of Academic Affairs
Rockefeller University

Steven Sansom, Ph.D.
Professor
Dept. of Cellular and Integrative Physiology
University of Nebraska Medical Center

Janet Silverstein, M.D.
Professor of Pediatrics, Retired
University of Florida College of Medicine

Ya-Xiong Tao, Ph.D.
Professor of Physiology
Department of Anatomy, Physiology, and Pharmacology
College of Veterinary Medicine
Auburn University

Jeffery S. Tessem, Ph.D.
Associate Professor of Nutritional Science
Dept. Nutrition, Dietetics and Food Science
Brigham Young University

Farook Thameem, Ph.D.
Associate Professor
Department of Biochemistry, Faculty of Medicine
Health Science Center
Kuwait University

Roger Zoorob, MD, MPH, FAAFP
Richard M. Klebert, Sr. Professor and Chair
Department of Family and Community Medicine
Baylor College of Medicine
How You Can Help

Your support ensures the advancement of Diabetes Action’s mission to prevent and cure diabetes.

Donate Online

Make a general donation or pay tribute to a loved one.

Matching Grants

Many businesses sponsor matching grant programs. Ask your employer if they offer a matching grant program to multiply the value of your contribution.

Workplace or CFC Campaign

Look for Diabetes Action Research and Education Foundation in your campaign directory. Even a small contribution per paycheck will make a difference.

Planned Giving

Including Diabetes Action as a beneficiary in your will or life insurance policy is a generous way to leave a legacy of hope.