This Applicant Guidance Document is designed to assist potential applicants in understanding the programmatic priorities of the WCS Climate Adaptation Fund (the Fund) and determining the key elements of a strong proposal. The Applicant Guidance Document serves as a supplement to the Fund’s Request for Proposals (RFP), which contains additional information about the application process and funding restrictions.

Minimum requirements on which projects are scored:

1. Designed with climate adaptation as a core goal or outcome of the work;
2. Proposes conservation goals and actions that are grounded in the best available science;
3. Conducts on-the-ground implementation, not research or planning;
4. Focuses on promoting ecosystem function, rather than conserving individual species;
5. Designed for long-term conservation impact;
6. Creates the potential for impact at a landscape scale;
7. Uses strategic communications activities to amplify outcomes.

Bonus characteristics that are not required but can make a proposal more competitive:

- Innovation -- proposed techniques that are new to the conservation/adaptation field.
- Novel to our portfolio -- proposed work in new or underrepresented geographies and/or ecosystem types; proposed work that addresses new or underrepresented climate challenges; implementation techniques that are new or underrepresented within our portfolio of funded projects. Applicants are encouraged to review the Climate Adaptation Fund website [https://www.wcsclimateadaptationfund.org] to learn more about what projects we have supported and where in past years. Contact Climate Adaptation Fund staff with questions about the potential fit of a project.
- Urban adaptation projects -- adaptation work implemented in urban areas and/or that provides benefits to urban wildlife, ecosystems, and people.
- Joint Mitigation and Adaptation (JMA) projects -- strategies that generate climate mitigation co-benefits along with the core adaptation benefits to wildlife and ecosystems.
- Projects that provide other co-benefits to people -- for example by positively impacting human health.
health and welfare, safety, or livelihoods.

- Projects that are set up to assess outcomes and effectiveness of an adaptation approach -- While not required, we encourage applicants to consider how they will document their methods, collect data that evaluates the efficacy of their on-the-ground action, and share their project details and results in peer-reviewed journals, grey literature reports, or other channels.
- Unique or new partnerships -- especially those that include at-risk communities and serve to increase equity and inclusion in climate adaptation efforts for wildlife and ecosystems.

Sections 1-7 further describe the required characteristics for a strong proposal. Section 8 provides more details on urban adaptation projects. Section 9 provides more details on Joint Mitigation and Adaptation proposals.

Section 1. Designed with climate adaptation as a core goal or outcome of the work.

The Fund seeks projects that are designed to address specific climate-change impacts on wildlife and ecosystems by implementing adaptation strategies. The application requires all applicants to explain how their project is different from a business-as-usual approach to conservation and is in fact a climate adaptation project. Differences might be in WHAT actions you are taking, WHERE those actions will take place, WHEN project actions are needed (including an increased sense of urgency), and the goals those actions are designed to achieve (the WHY for a project).

It is critical to provide the scientific basis and adaptation rationale of the project design. For example, what are the scientific inputs you considered (e.g., vulnerability assessments, downscaled climate models, local expert-driven impact assessments, traditional or Indigenous ecological knowledge), and how did you use these inputs to evaluate your goals and decide upon actions? Illustrate the connections between the climate change impacts, the proposed adaptation actions, and the anticipated near- and long-term outcomes that will result (e.g., see Table 1 for an example). Proposals with innovative or novel actions that have not been well-tested should discuss potential risks along with expected benefits of those actions.

Table 1. Please see below an example of how to connect climate change impacts and proposed adaptation actions and outcomes.

<table>
<thead>
<tr>
<th>Specific climate change impacts your project is designed to address</th>
<th>Adaptation actions delivered within this grant period (maximum 2 years)</th>
<th>Expected near-term conservation outcomes of proposed adaptation actions (3-10 years)</th>
<th>Expected long-term adaptation outcomes (10-50 years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>· Warmer and drier climate expected to result in decreased growth and survival of tree species at low elevations that provide habitat for</td>
<td>· Restore 525 acres of heavily grazed pasture in an area upslope from current native bird habitat.</td>
<td>· An ecologically functioning forest on 525 acres of degraded pasture that provides suitable nesting and forage habitat for at least 16 native bird species, that is located upslope from current</td>
<td>· Creation of upslope habitat that provides connectivity to higher elevation forests that provide a climate refuge for forest birds that are expected to lose lower elevation habitat as the climate becomes too warm and arid to support suitable</td>
</tr>
</tbody>
</table>
Section 2. Proposed conservation goals and actions are grounded in the latest science.

A project’s goals, strategies, and actions should be supported by explicit scientific rationale and specific climate impacts. Applicants will be asked to identify and provide literature citations for the specific sources of empirical research, modeling, vulnerability analyses, traditional or Indigenous knowledge, expert consultations, or other rationale that informs the project’s implementation activities. Many organizations work with partners to help identify and apply relevant climate science to their own particular project site or landscape.

In writing your proposal, you should:

- Be clear about the specific climatic changes that your project addresses. For example, rather than referring generally to “climate change”, the proposal should reference specific elements of climate change that are relevant to the design of the project. This can include direct climate influences, such as the consequences of changing precipitation patterns, rising temperatures, or changes in the length of the growing season; or it may include more indirect pressures related to changes in human land use or behaviors resulting from climate change.
- Clarify what is known about future projections for those impacts. If there is uncertainty in those projections, describe how those uncertainties might affect the outcomes of the proposed project activities (i.e., how might proposed project activities fare across a range of possible future conditions?).
- Describe how climate change impacts might play out within your project area, given the local context (e.g., current condition of an ecosystem, current and historical management influences, etc.).

native birds of	**trees and understory**	**habitat areas threatened by**	**tree species.**
conservation	**plants species that are**	**climate change, and is**	• Enough land managers adopt similar
concern.	**expected to thrive**	**dominated by tree species**	practices such that sufficient upslope
• Climate change	**under future climate**	**likely to thrive under future**	habitat and linkage areas are created
research suggests	**conditions.**	**climate conditions.**	to support the upslope movements of
those tree species	• Conduct two	• At least 10 managers in the	native birds in response to climate
are likely to persist	workshops that	region express interest in	change.
in higher elevation	include field trips to	targeting future restoration	• Reforested pasture provides co-
areas.**	the project site.	efforts in areas that will help	benefits by improving soil stability
	Participants will	enable native bird	and reducing erosion risks to
	include at least 20	movements in response to	downslope human communities
	private and public land	climate change effects on	during extreme storm events
	managers from	low elevation forests.	expected to be more common as
	surrounding region,	**tree species.**	climate changes.
presence of other non-climate stressors, etc.).

Section 3. Conducts on-the-ground implementation, not research or planning.

A special note on science for projects working to address sea-level rise:
The Climate Adaptation Fund does support projects focused on sea-level rise, but requires additional scientific information to justify project rationale and assumptions. The Fund requires all applicants submitting sea-level rise projects to include spatially-explicit maps demonstrating the long-term sustainability of a project given both 1m and 2m sea-level rise scenarios. Applicants should also explain how proposed project sites and construction activities are designed to remain resilient to expected climate-driven storm surge events.

Applications for funds to support planning activities will not be considered. Conservation and adaptation planning processes that have identified what actions are necessary and where to take them should be completed before the project start date. However, projects that have a minor amount of planning remaining that is needed to inform the final siting or design of implementation actions may be considered. If permits are required, it is critical that permits be secured in time to allow for deliverables to be completed within the granting period. Keep in mind the WCS will not consider no-cost extensions so be sure your required permits are attainable within the necessary time frame. Implementation work must begin before the third quarter of the second year in order to be considered.

Due to the focus on applied, “shovel ready” projects, the Fund is also unable to support applications for projects whose primary purpose is to undertake scientific research, data analyses, or vulnerability assessments, or acquire permits. The Climate Adaptation Fund does, however, place a high value on data collection to evaluate the effectiveness of adaptation actions. Therefore, a modest amount of grant funds can be used to support data collection as part of efforts to track progress and determine the ecological effectiveness of conservation interventions. The Fund will also support activities to document the processes, tools, methods, and results of the project to share with others, as long as these activities are part of a grant for an applied project, and not a stand-alone endeavor.

Section 4. Focused on the functionality of ecosystems, rather than conserving individual species.

The Fund is focused on projects designed to promote ecosystem functionality across landscapes, rather than those designed to protect or conserve individual species. Protecting and enhancing ecosystem functions will help conserve the processes and conditions necessary to support current and/or future suites of species.

Section 5. Designed for long-term conservation impact.

The Fund seeks to support conservation projects with outcomes expected to remain effective in an uncertain future. The Fund prioritizes projects addressing functionality of systems likely to persist as climate changes rather than projects aimed at protecting ecosystems that are projected to be
extremely vulnerable to climate impacts over time, unless there are compelling reasons why the project is able to overcome those vulnerabilities. These projects should address adaptation needs without requiring repeated long-term investments of management resources to maintain habitat conditions, such as through unceasing efforts to prevent encroachment of invasive species or rising sea-levels (see special note on sea level rise above). Within this context, the Fund encourages projects focused on adapting to climate changes, rather than resisting them, and facilitating ecosystem transitions.

Section 6. Creates the potential for impact at a landscape scale.

The Fund seeks projects that make a difference at a landscape level, through landscape-scale or place-based efforts that directly support broader landscape conservation goals. The first type of project is conducted at a scale that impacts an entire landscape. For example, a project might create land-use designation changes over a large area, connect management practices on private lands to large adjacent public lands, tie together core habitat areas to create a larger connected landscape, or conduct implementation activities across multiple states. The second type of project is a smaller, site-based effort which implements critical pieces of a larger landscape-wide conservation plan or has the potential to impact the broader landscape through replication of similar practices. These smaller projects often lend themselves to replicability through activities aimed at gaining stakeholder buy-in across a landscape, communicating project success to other conservation practitioners, garnering support of decision-makers to catalyze similar actions, or leverage significant funding resources for additional implementation work. The concept of having a landscape-scale impact applies in urban, rural, and wildland contexts.

Note that approaches we have funded extensively in the past (e.g., beaver translocations/beaver mimicry, living shoreline/oyster-reef restoration, and coldwater fisheries conservation) will be more competitive if they are proposed in geographies where the Fund has not yet supported a lot of similar work or if they will be implemented at a large scale. Consult our website for more information.

Hypothetical example of a project with the potential for impact at a large geographic scale:

In partnership with a state Department of Fish and Game and the U.S. Forest Service, a non-profit conservation organization plans to reintroduce beavers on public and private lands across multiple states. Beavers will be introduced into stream segments identified by recent climate studies as likely to benefit from increased water storage to ensure flows for freshwater fish species that are vulnerable to climate impacts. This proposed project takes a method that has proven effective in work previously funded by the CAF (beaver reintroductions) and scales it to a larger geographic scale (across multiple states) through unique community and agency partnerships, and leveraged funding opportunities.
Section 7. Uses strategic communications activities to engage other conservation practitioners and key audiences to amplify the project’s impact.

We are looking for strategic communications plans that go beyond informing key audiences about the project, but instead provide messages crafted specifically to incite action that will amplify the on-the-ground impact of your project. We define “amplify” as raising more funds to conduct similar work, generating attention and momentum around project goals, scaling up the on-the-ground conservation impact by encouraging adoption by other practitioners, winning the support of key agencies, authorities, or constituencies, or catalyzing supportive regulatory or policy change. Applicants must articulate a strategic approach to communications that:

- Illustrates how communication efforts will help amplify or replicate the adaptation practices;
- Identifies the target audiences for communications activities who are key to the project’s long-term success, specifically organizations, networks of practitioners, or user groups that have strong potential to replicate and/or fund the work, or decision-makers who are well-equipped to create policy or regulatory change;
- Describes key messages and means of delivering those key messages to target audiences; and
- Addresses why chosen methods are effective ways of reaching and motivating target audiences.

Applicants can allocate up to $25,000 of their grant request to communications activities. These funds can support a variety of strategic communications efforts aimed at informing other conservation practitioners, resource managers, and policymakers. Funds can be used to support communication consulting services or collaboration with partner organizations that specialize in strategic communications. For more information, consult the Climate Adaptation Fund’s Strategic Communications Guide and strategic communications webpage.
Section 8. Urban adaptation projects.

WCS recognizes that adaptation work can yield important benefits to wildlife and ecosystems in urban settings. Urban adaptation projects may take place some distance away from urban areas, but provide clear and compelling benefits to urban wildlife or human communities. Not every project applying to the Climate Adaptation Fund needs to draw a link to urban environments and communities or urban adaptation issues, but we seek to expand our portfolio of projects occurring in and around urban environments.

Communications around urban projects
Applicants proposing site-specific adaptation work in urban areas should describe the potential for replication of similar activities across that area or other similar urban environments, as well as the potential adaptation benefits of such actions to species and the ecosystems upon which they depend. Urban projects present an added opportunity to amplify the impact of the project’s work by reaching large and diverse audiences that are new to climate adaptation. Urban projects can increase their impact by raising the awareness of and motivating new and larger audiences to engage decision makers, and by informing civic change to enable more adaptation work or to expand the impact of the proposed project.

Diversity and inclusion of at-risk communities
The Fund recognizes that many communities of color and under-resourced communities are often disproportionately affected by climate change impacts. We therefore encourage applications to factor socio-economic demographics into site selection for adaptation work not just in urban areas, but from all regions across the country.

Section 9. Joint Mitigation and Adaptation (JMA) projects.

JMA applicants should also consult the JMA FAQ Document. WCS’s goal for adding JMA projects as a portion of the Climate Adaptation Fund’s portfolio is to recognize the dual importance of both
climate adaptation and mitigation. While the Fund’s primary focus remains on implementing strategies that build the adaptive capacity of wildlife and ecosystems to climate change, we also want to incentivize adaptation actions that simultaneously offer mitigation benefits. We do not expect that all applications to the Fund will address both mitigation and adaptation outcomes.

Through our focus on JMA projects, we aim to:

- Incentivize adaptation practitioners to take actions that foster carbon gains without compromising adaptation goals for target species and ecosystems.
- Encourage mitigation practitioners to incorporate adaptation considerations that enhance the wildlife and ecosystem benefits of their work, and make their carbon gains more robust to the effects of a changing climate.

To submit a JMA proposal to the Climate Adaptation Fund, applicants must comply with the requirements outlined above for adaptation project proposals, and also should:

- Apply adaptation practices that are known to increase carbon storage and/or safeguard known carbon sinks while helping your system adapt to projected climate changes in your region (reference the science used to inform the practices selected - a non-exhaustive list of examples for forest ecosystems in included in Appendix I).
- Describe the expected carbon benefits/gains of the practices being proposed, based on the known carbon storage potential of your target system type or on carbon calculation tools. WCS encourages applicants with JMA proposals to use their own region- or system-specific carbon accounting tools and resources; or one of the resources provided at the end of this guidance document. Include citations and numerical values in your estimations or calculations.
- Discuss how your project balances the needs for wildlife adaptation and mitigation at your site - Note that maximizing carbon storage is favorable only if it does not compromise adaptation outcomes for wildlife and ecosystems.
- Projects are encouraged to demonstrate how the results or information learned from their WCS-supported project could inform future policy structures to programatically incentivize or encourage other practitioners to take actions for joint adaptation and mitigation outcomes (e.g., via the US Climate Alliance).

A number of tools, resources, and papers on JMA are included in Appendices II and III in addition to JMA FAQ Document.

WCS will not fund:
- Projects that only focus on mitigation outcomes and do not include adaptation efforts.
- Carbon mitigation work conducted at the expense of wildlife and ecosystem adaptation outcomes, or primarily for the sake of mitigation.
- The development of carbon calculation tools.
- Projects that use grant money directly for: carbon offset project design or verification efforts; creating or trading offsets; monetizing mitigation benefits or other ecosystem services during the grant period; or proving additionality to receive payments.
Terms and Definitions:

Joint Mitigation and Adaptation (JMA): WCS adaptation projects that also achieve objectives of mitigation activities to reduce the source or enhance the sinks of greenhouse gases.

Climate Mitigation: A human intervention that reduces the sources or enhances the sinks of greenhouse gases (IPCC 2014). WCS supports “natural climate solutions” that increase carbon storage and/or avoid greenhouse gas emissions across forests, wetlands, grasslands, and agricultural areas through conservation, improved land management actions, restoration, or other interventions (Griscom et al 2017).

Climate Adaptation: The process of adjustment to actual or expected climate and its effects (IPCC 2014). Adaptation interventions may seek to moderate or avoid harms, facilitate adjustments to climate and its effects, or even benefit from changing conditions.

Carbon Offset: The reduction in emissions or increase in sequestration of greenhouse gases (GHG) by one entity that is used to compensate for emissions produced by another entity (Galik and Jackson 2009).

Carbon Trading: The process of buying and selling permits, or credits, to emit carbon dioxide.

Co-Benefits: Refers to additional benefits provided by project interventions. For the Fund, co-benefits refer to outcomes that are secondary to the primary adaptation benefits for wildlife and ecosystems. They could include mitigation benefits through carbon sequestration or avoided emissions, or benefits to people (e.g., human health and livelihoods) through a variety of mechanisms.

Payment for Ecosystem Services: Financial incentives offered to voluntary participants (e.g., private landowners, farmers, governments) to provide some sort of ecosystem service. For example, a landowner may receive payments to avert deforestation in order for live trees to provide other people benefits.

Hypothetical example of a JMA project:
To meet adaptation and mitigation goals, a reforestation project could be conducted using novel adaptation strategies that address future climate vulnerabilities of the newly planted forest. For example, project implementers could select trees or genotypes for planting that are predicted to be well-adapted to future climate conditions. Such a project could achieve adaptation objectives by creating forested habitat that is more likely to persist as climate changes, while simultaneously increasing carbon capture through tree growth.
Carbon cycling processes within natural ecosystems are sensitive to the effects of a changing climate. These same processes are also crucial for carbon sequestration and mitigating greenhouse gas emissions that drive climate change. Identifying and implementing actions that support both adaptation to a changing climate and carbon sequestration can promote synergies within land management to offer multiple ecosystem services. In particular, management practices that enhance ecosystem carbon stocks above current baseline levels or maintain stocks through avoiding future carbon losses can effectively address joint adaptation and mitigation goals. The table below includes several established practices as examples of forest management strategies that provide such synergies when applied in appropriate ecosystems.

<table>
<thead>
<tr>
<th>Management action</th>
<th>Example adaptation benefit</th>
<th>Potential carbon benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thinning to reduce tree density 2,5,8,15,21</td>
<td>Reduce vulnerability to drought, wind damage, pests</td>
<td>Avoided C loss</td>
</tr>
<tr>
<td>Measures to maintain water levels in wetlands and/or floodplains 1,3,7</td>
<td>Reduce vulnerability to drought, wildfire</td>
<td>Avoided C loss</td>
</tr>
<tr>
<td>Increasing tree species diversity 9,22</td>
<td>Reduce vulnerability to drought, wind damage, pests</td>
<td>Avoided C loss, enhanced storage</td>
</tr>
<tr>
<td>Increasing structural complexity 4,14,16</td>
<td>Reduce vulnerability to drought, wind damage, pests</td>
<td>Avoided C loss, enhanced storage</td>
</tr>
<tr>
<td>Reducing harvest levels (extended rotations, increased reserves) 8,11,12,13,17,18,23</td>
<td>Maintain complex structure and reserves for at-risk species</td>
<td>Avoided C loss, enhanced storage</td>
</tr>
<tr>
<td>Reducing fuels to decrease potential fire severity 10,20</td>
<td>Reduce vulnerability to fire</td>
<td>Avoided C loss from veg and soils</td>
</tr>
<tr>
<td>Planting future-adapted species 6,9,21</td>
<td>Facilitating plant community transition</td>
<td>Enhanced storage</td>
</tr>
<tr>
<td>Enhancing tree growth (site preparation, fertilization) 8,18</td>
<td>Increasing regeneration, seedling survival</td>
<td>Enhanced storage</td>
</tr>
</tbody>
</table>
Literature Cited

APPENDIX II

Climate Adaptation and Joint Mitigation-Adaptation (JMA) Resources

General adaptation knowledge and tools

The Climate Adaptation Fund’s Resources Web Page includes downloadable guides for applicants on Strategic Communications, Monitoring and Evaluation in a Climate Change context and our newest report with real world examples of the solutions that funded projects applied to specific climate change challenges: www.wcsclimateadaptationfund.org/resources

Beaver Mimicry communications case study: https://www.wcsclimateadaptationfund.org/strategic-communications

The Climate Adaptation Knowledge Exchange (CAKE) is a clearinghouse for a wide variety of information about climate adaptation: http://www.cakex.org/

Through its Conservation Gateway portal, The Nature Conservancy provides datasets, analyses, and spatial mapping for the resilience of terrestrial landscapes in the Northeast and Southeast United States, as well as other important science and information on climate change and resilience: https://www.conservationgateway.org/ConservationByGeography/NorthAmerica/UnitedStates/edc/reportsdata/terrestrial/resilience/Pages/default.aspx
The Adaptation Workbook from the U.S. Forest Service’s Northern Institute for Applied Climate Science offers an easy to use, interactive and self-guided tool that creates a custom adaptation plan for forest management and conservation: http://adaptationworkbook.org

Databasin houses numerous databases related to climate change vulnerability and impact assessment, and adaptation: http://www.databasin.org

AdaptWest is a spatial database and synthesis of methods for conservation planning aimed at enhancing resilience and adaptation potential of natural systems under climate change, for Western North America: http://adaptwest.databasin.org/

The Yale Mapping Framework offers a menu of approaches appropriate for ecological assessments that support conservation planning in a changing climate. It provides guidance on appropriate strategies for climate-smart ecological assessments and the tools to implement them: http://www.databasin.org/yale

Tools and Resources for JMA

Introductory video from The Nature Conservancy on carbon-based solutions to climate change: https://global.nature.org/content/forgotten-climate-solution

Trust for Public Land’s national carbon map shows the average amount of carbon per acre in forests by state: https://web.tplgis.org/northwoods/

TNC, DU and The Climate Trust developed this methodology for producers to calculate the carbon offsets and carbon storage benefits of avoided conversion of rangeland and grassland to cropland: https://www.c-agg.org/wp-content/uploads/acr-acogs-methodology_v1-0_final.pdf

TNC and 15 other institutions published a paper and infographic describing 20 pathways to climate mitigation via natural climate solutions: https://www.nature.org/en-us/what-we-do/our-insights/perspectives/natures-make-or-break-potential-for-climate-change/; https://www.pnas.org/content/114/44/11645to climate mitigation via natural climate solutions

“Mitigation & Adaptation Synergies in the NDCs,” a review of the synergies and tradeoffs between the two in the context of the Paris Agreement: http://norden.diva-portal.org/smash/record.jsf?pid=diva2%3A1097909&dswid=9126
Appendix III
Selected Literature

