HCV and ‘immune exhaustion’
Lessons from curing hepatitis C

Lisa Barrett MD PhD FRCPC

Disclosures

• Industry:
 • AbbVie
 • Gilead
 • Merck
 • BMS
 • ViiV

• Academic:
 • Affiliation with Dalhousie University and Nova Scotia Health Authority
 • HCV virology / immunology lover

• Advocacy:
 • HCV and HIV community groups
Acknowledgements

- Department of Medicine
 - Dr. David Anderson
 - Dr. John Hanly
 - Dr. Todd Hatchette
 - Dr. Lynn Johnston
 - Dr. Shelby McNeill

- CCN / Department of Pediatrics
 - Dr. Scott Harpentin
 - Sandeeta Moraca
 - Sarah Desmaret
 - Jessica McCarthy
 - Cathy Brown

- Dalhousie University
 - Faculty of Medicine
 - Dr. Tom Marra
 - Dr. Gerry Johnston
 - Microbiology and Immunology
 - Dr. Jean Marshall
 - Pharmacology and Geriatric Medicine
 - Dr. Susan Howlett
 - Hired Ferdinandsen
 - Peter Nicholl
 - Jessica Sharpe

- NSHA
 - Dr. Patrick McGrath
 - Jennifer Thurlow

Participants and persons with lived HCV experience

- NIAID, LIR
 - Shyam Kottilil
 - Anu Osinusi
 - Anita Kohli
 - Eric Meissner
 - Anthony S. Fauci
 - Henry Masur

- Memorial University of Newfoundland
 - Dr. Michael Grant

- Abbvie
 - Nabil Ackad
 - Dale Yakuchik
 - Andrew Titus

- PEI government
 - Department of Health and Wellness
 - Department of Justice

- PEI addictions and corrections physicians
 - Dr. Lamont Sweet
 - Dr. David Stewart
 - Dr. Rob Kelley
 - Dr. Don Ling
 - Dr. George Carruthers

Lab crew
Objectives

Review the idea of immune exhaustion and why it is important

Describe changes in immune exhaustion after DAA-associated viral cure

Future directions and why immune exhaustion is still important
Objectives

Review the idea of immune exhaustion and why it is important

Describe changes in immune exhaustion after DAA-associated viral cure

Future directions and why immune exhaustion is still important

HCV and immunity

HCV exposure

20%
Self limiting disease
Viral clearance

HCV specific adaptive immunity
HCV specific innate immunity

Young and active' immune system

80%
Chronic HCV infection
Chronic immune stimulation

HCV specific adaptive immunity
HCV specific innate immunity

Immune exhaustion / aging

???
Direct acting
anti-HCV
treatment
'cure'
Immune assessment

Baseline
Day 7
End of treatment *

RIBAVIRIN CONTAINING DAA THERAPY

Immune phenotyping
Peripheral blood
Liver

HCV specific immunity
Peripheral blood

T cell
B cell
NK cell

ELISPET enumeration
Functionality
IL-2
IFN-γ
TNF-α

* 30/30 viral suppression at end of treatment

Methods

35 chronic HCV-infected patients
Peripheral blood mononuclear cells
Collected from patients at baseline, day 7, and end of treatment (EOT)

10 HCV negative individuals

Cryopreserved
Thawed
Immediate

T cell panel

<table>
<thead>
<tr>
<th>PD-1</th>
<th>Tim-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD57</td>
<td>CD3</td>
</tr>
<tr>
<td>CD27</td>
<td>CD4</td>
</tr>
<tr>
<td>CD28</td>
<td>CD8</td>
</tr>
</tbody>
</table>

NK panel

<table>
<thead>
<tr>
<th>CD3</th>
<th>KIR 3DL1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD16</td>
<td>KIR 2DL2</td>
</tr>
<tr>
<td>CD56</td>
<td>p30</td>
</tr>
<tr>
<td>CD27</td>
<td>G2D</td>
</tr>
<tr>
<td>Perforin</td>
<td>G2A</td>
</tr>
<tr>
<td>Granzyme B</td>
<td></td>
</tr>
</tbody>
</table>

B cell panel

Immature transitional
Naive
Resting memory
Activated memory
Tissue like memory
Plasmablast
(CD10, CD19, CD20, CD21, CD27)
Peripheral blood
Adaptive immunity

T cell phenotype

T cell exhaustion markers decrease with HCV clearance
Peripheral blood
Adaptive immunity

B cell phenotype

B cell abnormalities even with viral suppression
Persistently altered B cell subsets are important

- Activated Memory (AM) & Plasmablasts (PB)
 - Large & activated
 - Prone to extrinsic apoptosis (AM)
- Tissue-Like Memory (TLM)
 - Increased levels of inhibitory receptors
- Resting Memory (RM)
 - Critical for maintaining humoral immunity

Peripheral blood
Innate immunity

NK cell phenotype
Decreased inhibitory KIR expression on NK cells

Fold change (Baseline to EOT)

* *

KIR 2DL3 KIR 3DL1

Peripheral blood
HCV specific immune responses

Adaptive immunity
HCV specific responses
Methods

30 patients
Peripheral blood mononuclear cells
Collected from patients at baseline and end of treatment (EOT)

Cryopreserved

Thawed

6 hour rest

IFN-γ ELISpot assay
250,000-400,000 cells/well; duplicates

CMV pp65 2 ug/mL
PHA 5 ug/mL
HCV peptide pools: 2ug/peptide/well
11-21 pools

Augmented
HCV-specific immunity at EOT
HCV responsive polyfunctional T cells increase at the end of therapy

Pre-treatment

EOT

Neg
IFN-γ
TNF-α
IFN-γ TNF-α

HCV responsive polyfunctional T cells increase at the end of therapy
HCV responsive T cells rarely express exhaustion markers

HCV and immunity

HCV exposure

HCV specific responses
Quality and quantity

T cell exhaustion markers
Slow change in B cells
NK cell KIR expression

Viral inhibition
without interferon
associated with improved immune function
Sustained augmentation after drug therapy

% IFN-γ+ spots

Weeks

DAA therapy

SVR

Relapser

Innate T cell B cell T cell function NK cell function

Relapsers

FB

TD

DP

JS

SVR

MV

FP

VJ

LW

Innate T cell B cell T cell function NK cell function
Immunity after longer course ribavirin containing DAA therapy

- Less exhausted immune phenotype in T and NK cell compartment
- Functionally improved T cells (somewhat sustained)
- Cumulative immune function associates with clearance

Ongoing
- Shorter course multi-targeted DAA therapy and longitudinal post-cure changes
- Vaccine associated responses
- B cell characterization
- Comparison with CMV, HIV and chronologic aging

Does decreased immune senescence and in vitro immunity translate into less HCV reinfection?
Sleepy Hollow

Study design

If:
Five (5) participants have been enrolled and on treatment for at least 6 weeks;
OR there is ANY participant issue with study procedure;
OR The 4th month of enrollment occurs without (a) or (b);
Then:
There will be a 1 month enrollment pause for advisory board review of process and participant issues.
BASIC SCIENCE QUESTIONS

Does improved immunity persist and translate into less reinfection in high risk people?

And could this be a good vaccination time?

Not the same exhaustion in all chronic HCV infection:
Younger, shorter duration of infection, history of recent IDU
Objectives

Review the idea of immune exhaustion and why it is important

Describe changes in immune exhaustion after DAA-associated viral cure

Future directions and why immune exhaustion is still important

HCV IMMUNITY
DOES IT STILL MATTER?

- Immune function
- Vaccine response
 - Public health
 - HCV specific
- Clinical connections
 - Chronic fatigue and well-being
 - Understanding immune exhaustion in cancer, inflammation and aging

A rapid reversible model of aging??