Framework for Using Surface Water Monitoring Data Quantitatively in Pesticide Drinking Water Exposure Assessments

Rochelle F. H. Bohaty, Charles Peck, Christine Hartless, Jessica Joyce, Katrina White, Sarah Hafner, James (Trip) Hook, and Dana Spatz

CropLife America Meeting

Office of Pesticide Programs
Environmental Fate & Effects Division
Measure of Exposure: Goal

To derive reasonable upper bound pesticide concentrations

Monitoring Data
- Direct **measure**
- **Actual** pesticide use for specific site
- Often limited in time
- Often available for many sites with varying vulnerabilities
- Tends to underestimate frequency of occurrence and peak exposure

Modeling Data
- Direct **estimate**
- **Maximum** or **typical** pesticide use
- Simulations over long time
- Based on a few standard vulnerable sites
- Daily concentrations and inputs can be adjusted to be more or less conservative
History

• Surface water monitoring data are difficult to interpret for quantitative use in pesticide exposure assessment

• FIFRA SAP raised concerns that peak concentrations may not be captured in currently available monitoring data and infilling techniques

• USGS recently released a new model: SEAWAVE-QEX

• Soliciting internal and external feedback
Project Summary and Goals

• Develop a framework and overall process for using surface water monitoring data quantitatively in pesticide drinking water exposure assessments

• Evaluate (and integrate as appropriate) potential tools to account for temporal and spatial limitations in currently available surface water monitoring data to increase the utility of monitoring data

• Address concerns raised by stakeholders such as:
 • Reliance on aquatic exposure models
 • Exclusive use of upper bound exposure scenarios/conditions
 • Monitoring data can underestimate real exposure
Proposed Drinking Water Assessment Framework
Scoping

• Regulatory action (i.e., new chemical, new use, registration review) and cross divisional dialogue
• Registered uses, amount used, geographic distribution, USDA and other pesticide use surveys
• Environmental fate and transport of pesticide and transformation products
• Previous work completed
• Identification of toxicity endpoints, parent and degradate toxicity; estimated DWLOC
• Scale of assessment and level of effort required to complete; identify starting point in tiered process
Tier 1

• High-end pesticide concentration based on pesticide specific physical chemical properties or environmental fate and transport properties
 • No current Tier 1 model
 • e.g., solubility

• Results
 • Concentration < DWLoC
 • no additional work necessary
 • Concentration > DWLoC
 • go to Tier 2
Tier 2

• Modeling (PWC, PFAM)
 • Pesticide specific physical chemical properties and environmental fate and transport input values based on standard input parameter guidance
 • All use sites considered at maximum application rates, minimum retreatment intervals
 • Standard high-exposure sites representing geographically-specific conditions (e.g., soil, weather); index reservoir
 • Entire watershed is treated
 • Refine with percent cropped areas for community drinking water intake watersheds (national or regional scale)
 • Protective but within realm of possibility
 • High exposure often result from high use, large areas treated due to pest pressures

• Monitoring
 • All available data summarized highlighting range of concentrations, sample frequency
Tier 2 Results

- Single exposure site represents entire crop and/or country or region
- Highest modeling or measured pesticide concentration on a national or regional scale provided as point estimate or distribution to HED
Tier 2 Next Steps

• All concentrations < DWLoC
 • no additional work necessary

• Some concentrations < DWLoC and some concentrations > DWLoC
 • only sites and regions with concentrations > DWLOC go to Tier 3*

• All concentrations > DWLoC
 • go to Tier 3*

* if data allow
Tier 3

• Modeling (PWC, PFAM)
 • Pesticide specific physical chemical properties and environmental fate and transport input values, including a sensitivity analysis
 • Focus on major routes of dissipation and impacts not captured in standard modeling
 • Typical use information considered
 • Sites representing geographically-specific conditions (e.g., soil, weather); index reservoir
 • Confirming scenarios, uses are relevant
 • On-going method development
 • Percent cropped areas for community drinking water intake watersheds on regional scale

• Monitoring
 • All available data summarized highlighting range of concentrations, sample frequency on a regional basis; application of “standard” sampling bias factors
 • Confirming sites are in relevant use areas
What is a Sampling Bias Factor (SBF)?

- protective multiplier of the measured concentration or summary statistic from monitoring data to account for uncertainty associated with sampling frequency

- SBF can be applied to summary statistics from less than daily monitoring data to ensure that at least X% percent of the time, the SBF-adjusted monitoring concentration (i.e., measured concentration x SBF) is equal to or higher than the true unknown parameter.
 - Currently SBF is developed such that at least 95% percent of time, the SBF-adjusted monitoring concentration is equal to or higher than the true concentration
Tier 3 Results, Next Steps

- Multiple exposure sites representing crop and/or regions
- Highest modeling or SBF adjusted measured pesticide concentration provided as point estimate or distribution to HED on regional basis

- All concentrations < DWLoC
 - no additional work necessary

- Some concentrations < DWLoC and some concentrations > DWLoC
 - Only sites, sub-regions, or regions with concentrations > DWLOC go to Tier 4*

- All concentrations > DWLoC
 - go to Tier 4*

* if data allow
Tier 4

• Modeling (Spatial Aquatic Model)
 • Geographically-specific conditions (e.g., soil, weather) coupled with actual waterbodies
 • Currently not available, on-going method development

• Monitoring
 • SEAWAVE-QEX analysis on all sites (nationwide to capture known variability)
 • Map showing analysis sites relative to potential use sites and community water system intake locations/watersheds
 • Chemical specific sampling bias factors when data meet sample criteria
 • Map showing analysis sites relative to potential use sites and community water system intake locations/watersheds
SEAWAVE-QEX Model

- Time series model developed by USGS
 - Relates measured pesticide concentrations with daily streamflow (or other covariate) using a seasonal wave model to produce multiple, equally-probable simulations of daily concentration data
 - Developed to estimate “extreme” concentrations using stream flow (i.e., developed for flowing systems)

- Minimum requirements of the model
 - ≥ 12 samples/year with 3 years of data
 - ≤ 75% censoring rate

Tier 4 Results, Next Steps

- Site-specific pesticide concentrations
- SEAWAVE-QEX chemographs and SBF adjusted point estimates to HED

- All concentrations < DWLoC
 - no additional work necessary

- Some concentrations < DWLoC and some concentrations > DWLoC
 - assessment stops with combination of estimated pesticide concentrations from modeling and monitoring

- All concentrations > DWLoC
 - assessment stops with combination of estimated pesticide concentrations from modeling and monitoring
Future Directions

• FIFRA SAP in 2019 (TBD)
• White Paper
 • Evaluation of SEAWAVE-QEX
 • Development and evaluation of short-term (1-, 4-, and 21-day) and long-term (365-day) SBFs for use in drinking water assessments for pesticides with cancer and non-cancer toxicity
 • Development and evaluation of watershed regression equations
• Drinking Water Assessment Framework
• Case Studies
 • Cancer and non-cancer