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August 15, 2019 
 

 
Ms. Tracy Perry 
Pesticide Re-Evaluation Division (7508P) 
Office of Pesticide Programs 
U.S. Environmental Protection Agency 
1200 Pennsylvania Ave., NW 
Washington, DC 20460 
 
Via Regulations.gov: EPA-HQ-OPP-2019-0185 
 
Re:  Comments on the Draft Proposed Revised Method for National Level Endangered 

Species Risk Assessment Process for Biological Evaluations for Pesticides  
 
Dear Ms. Perry, 
 
CropLife America (“CLA”)1 appreciates the opportunity to comment on EPA’s Draft Revised 
Method for National Level Endangered Species Risk Assessment Process for Biological 
Evaluations of Pesticides, 84 Fed. Reg. 22120 (EPA, May 2019) (the “Revised Method”).  The 
Revised Method is a constructive step in EPA’s ongoing process to improve how pesticide re-
registrations under the Federal Insecticide, Fungicide and Rodenticide Act (“FIFRA”) are 
reviewed for conformance with the Endangered Species Act (“ESA”) and to be more reflective 
of actual exposure.  It builds logically on EPA’s experience applying the interim pilot process 
released in 2017.  It is also fully consistent with EPA’s legal obligations and – importantly – 
could be immediately implemented to allow pending reregistration decisions to proceed.2  
Finally, the Revised Method establishes a firm foundation for further process improvements 
going forward. 
 
CLA’s comments are organized into four sections.  First on page 3, CLA provides an Executive 
Summary of these comments.  Second, beginning on page 6, we discuss the need for broader 
coordination between EPA and the U.S. Fish & Wildlife Service or the National Marine 
Fisheries Service (“FWS” and “NMFS,” collectively, “the Services”), and consideration of 

                                                 
1 Established in 1933, CropLife America represents the developers, manufacturers, formulators and distributors of 
plant science solutions for agriculture and pest management in the United States. CropLife America’s member 
companies produce, sell and distribute virtually all the crop protection and biotechnology products used by 
American farmers. 
2 See, e.g., Mada-Luna v. Fitzpatrick, 813 F.2d 1006, 1013-1014 (9th Cir. 1987) (“[t]o the extent that [a] directive 
merely provides guidance to agency officials in exercising their discretionary power while preserving their 
flexibility and their opportunity to make ‘individualized determinations,’ it constitutes a general statement of 
policy… and parties can challenge the policy determinations made by the agency only if and when the directive has 
been applied specifically to them.”). 
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conservation approaches. Third, on page 6, we provide a short summary of why the Revised 
Method is fully consistent with applicable legal requirements.  Fourth, on page 7, we present 
detailed comments on the four issues as requested by EPA regarding: (1) the method for 
incorporating usage data; (2) the interpretation that a <1% overlap of listed species’ ranges with 
potential use sites; (3) the approach to probabilistic analyses; and (4) the weight-of-evidence 
framework.  Finally, beginning on page 18, we provide additional comments regarding several 
issues, including: “no effect” determinations, aquatic exposure modelling, addressing 
uncertainty, and the use of surrogates for selecting effects endpoints.  Within each substantive 
section, CLA highlights the improvements present in the Revised Method, suggestions that 
would further improve the final version but need not delay its publication, and areas for review 
in the future. We also include estimated annual agricultural pesticide use for thirteen widely used 
crop protection active ingredients (Appendix A, starting on page 31), and a case study using 
malathion (Appendix B, starting on page 39) to support the incorporation of usage data for risk 
assessment. 
 
CLA appreciates the opportunity to comment and share information with EPA in response to the 
“Draft Revised Method for National Level Endangered Species Risk Assessment Process for 
Biological Evaluations of Pesticides, 84 Fed. Reg. 22120.” Thank you for engaging in a dialog 
with stakeholders on this important issue and please do not hesitate to reach out to us with 
questions. 
 
 
Sincerely, 

 
Manojit Basu, PhD 
Managing Director, Science Policy 
CropLife America 
(202) 296-1585  
mbasu@croplifeamerica.org 
 
  

mailto:mbasu@croplifeamerica.org
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EXECUTIVE SUMMARY 

In the Revised Method document, EPA has proposed refinements to the interim method for 
conducting national-level biological evaluations (BEs).  The Revised Method is both a 
sustainable and scientifically defensible risk assessment process to prepare BEs, developed using 
input from public comments as well as the National Research Council (NRC)3 recommendations. 
The Revised Method is consistent with the requirements of the ESA and its implementing 
regulations, in a manner that remains aligned with the NRC recommendations, while being 
responsive to regulatory mandates and public input that will result in protections for endangered 
species. Our analysis suggests that the Revised Method is a step in the right direction to allow the 
Agency to meet its legal and regulatory obligations under ESA. CLA, therefore, urges EPA to 
finalize the Revised Method to achieve the policy goals that can be supported by the industry and 
the Agency, as well as consider our feedback for improving the final Revised Method in future 
iterations. Below are the highlights of our comments: 
 

• The Revised Method is consistent with EPA’s statutory mandates and authority 
while being scientifically defensible. 

• EPA should continue and expand its collaboration with the Services and the U.S. 
Department of Agriculture (USDA) to improve the ESA pesticide risk assessment 
process. 
 

• Pesticide usage data represents the “best scientific and commercial data available,” 
and must be incorporated into BEs to ensure they are completed accurately, 
efficiently, and in compliance with the ESA.  
 

• A less than 1% spatial overlap does not compel a “May Affect” determination given 
the uncertainty inherent in the spatial data and in view of NRC’s recommendations 
that further data should be applied. 
 

• The probabilistic methods outlined in the Revised Method will improve efficiency, 
transparency, defensibility, and facilitate decision making in the risk assessment 
process. 
 

• A robust weight-of-evidence approach should be implemented when conducting a 
BE and all uncertainties should be clearly communicated to demonstrate the 
credibility of the risk assessment process  
 

• The Agency should expand the potential for Scoping (making early and efficient 
“no-effect” determinations where possible), to improve efficiency of resource use.   
 

  

                                                 
3 National Research Council of the National Academies (NRC) (2013). Assessing Risks to Endangered and 
Threatened Species from Pesticides. The National Academies Press. Washington, DC. Pp. 175. 
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ABBREVIATIONS 

 

BE Biological Evaluation  

CDPR California Department of Pesticide Regulations  

CLA CropLife America 

DA Drainage Area  

ECOFRAM Ecological Committee on FIFRA Risk Assessment Methods 

EEC Estimated Environmental Concentrations 

EOF Edge-of-Field  

EPA Environmental Protection Agency 

ESA Endangered Species Act 

ESRA Endangered Species Risk Assessment 

EXAMS Exposure Analysis Modeling System  

FIFRA Federal Insecticide, Fungicide and Rodenticide Act  

FWS U.S. Fish & Wildlife Service  

IWG Interagency Working Group 

LAA Likely to Adversely Affect  

MCnest Markov Chain Nest Model  

NAS National Academy of Sciences  

NC Normal Capacity  

NLAA Not Likely to Adversely Affect 

NMFS National Marine Fisheries Service  

NOAA National Oceanic and Atmospheric Administration  

NRC National Research Council 

PCA Percent-Cropped Area 

PCT Percent-Crop Treated  

PRA Probabilistic Risk Assessment 

PRZM Pesticide Root Zone Model  

PUR California Pesticide Use Record  
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PWC Pesticide Water Calculator  

REJV Residential Exposures Joint Venture 

SWAT Soil and Water Assessment Tool  

TIM Terrestrial Investigation Model  

UDLs Use Data Layers  

USDA U.S. Department of Agriculture 

VFSMOD Vegetative Filter Strip Modeling System  

VVWM Variable Volume Water Model  
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SUBSTANTIVE COMMENTS 

 

1 Coordination Between Agencies and Conservation Efforts  

After publishing the final Revised Method, EPA may consider publishing a detailed process on 
coordination and collaboration with the Services.  Providing clear guidance on the level of 
interaction required between scientists at EPA and the services would build greater trust between 
the agencies and result in an efficient and seamless consultation process.  A Biological 
Evaluation (BE) carried out using a well-defined, coordinated and collaborative process will 
reflect the views of all the three agencies and will assist in the process of obtaining concurrence 
or development of Biological Opinions based on the outcome of the BE. This coordination along 
with the involvement of the USDA, was directed by the Congress in the 2018 Farm Bill. CLA 
strongly supports section 10115 and looks forward to continued progress of the   Interagency 
Working Group (IWG) to drive improvements to the ESA reviews of pesticides registration 
decisions. 
 
The proposed Revised Method published by EPA focuses on minimization, and avoidance 
without considering conservation and mitigation efforts proposed by registrants and adopted by 
growers. Including conservation and mitigation measures during the BE process can reduce or 
offset anticipated adverse effects.  Conservation and mitigation approaches would further allow 
EPA and the Services to reduce the risk of a jeopardy or adverse modification finding by 
offsetting some or all of the estimated adverse effects of the pesticide action on listed species and 
their critical habitats.     
 
2 The Revised Method is Consistent with EPA’s Statutory Mandates and Authority 

The Revised Method describes EPA’s process for determining whether a pesticide review 
decision requires consultation with the Services.  The determination of whether consultation is 
required clearly and solely rests with EPA, the “action agency.”4  The Services have expressly 
agreed that the action agency determines whether consultation is required, even if (unlike here) 
the action agency in question does not possess relevant subject matter expertise and experience.  
For example, in 2008, the Services rejected the argument that action agencies “are not equipped 
to make their own [may affect] determinations either because they lack the requisite expertise, 
lack funding, will not be able to find qualified reviewers, or do not have a mission compatible 
with resource protection.” 5  More recently, in a 2017 guidance document on “‘No Effect’ 
Determinations,” NMFS’s leadership explained that “[t]he term ‘may affect’ is not defined in the 
ESA or by National Oceanic and Atmospheric Administration (NOAA) Fisheries/United States 
                                                 
4 See, e.g.,; 51 Fed. Reg 19926, 19949 (June 3, 1986) (“Federal [action] agencies have an obligation under Section 
7(a)(2) to of the Act to determine whether their actions may affect listed species and whether formal consultation is 
required under these regulations”; the “determination of possible effects is the Federal agency’s responsibility.”); 
Pacific Rivers Council v. Thomas, 30 F.3d 1050, 1054 n. 8 (9th Cir.1994), cert. denied, 514 U.S. 1082 (1995); “[I]f 
the [action] agency determines that a particular action will have no effect on an endangered or threatened species, 
the consultation requirements are not triggered.” 
5 73 Fed. Reg. 76272, 76282 (December 16, 2008). 
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(U.S.) Fish and Wildlife Services joint regulations.” Therefore, if “the federal action agency 
determines that its action will not affect any ESA listed species or designated critical habitat 
within NOAA Fisheries” jurisdiction (i.e., it makes a ‘no effect’ determination), there is no need 
to consult with NOAA Fisheries.”6 
 
Moreover, an action agency’s method of deciding whether to consult – i.e., the method it uses to 
arrive at a “no effect” decision or a “may affect” decision – is owed deference by the Courts.  
See, e.g., Sw. Ctr. for Biological Diversity v. Glickman, 100 F.3d 1443 (9th Cir. 1996).   
 
It is also appropriate that EPA use a “clarifying document,” like the final Revised Method, to 
explain the way it intends to exercise its discretionary authority.  This ensures good governance 
and transparency, fostering “communications between agencies and their regulated communities 
that are vital to the smooth operation of both government and business.” Valero Energy Corp. v. 
EPA, D.C. Cir. No. 18-1028 (June 25, 2019), at 6, citing Rhea Lana, Inc. V. Dep’t of Labor, 824 
F.3d 2023, 2028 (D.C. Cir. 2016) (quoting Independent Equip. Dealers Ass’n, 372 F.3d at 428).  
In addition, it avoids judicial interference in EPA’s and Services’ difficult effort to work out the 
implementation of the separate mandates of the ESA and FIFRA.  Cf., e.g., National Mining 
Assn v. McCarthy, 758 F.3d 243 (D.C. Cir. 2014); Mada-Luna v. Fitzpatrick, footnote 2, supra. 
 
3 Comments on the Four Specific Areas of Interest Identified by EPA  

3.1 Methodology for Incorporating Usage Data 

• The Revised Method correctly recognizes that agricultural pesticide usage data represents 
the “best scientific and commercial data available,” and must be incorporated into BEs to 
ensure they are completed accurately, efficiently, and in compliance with the ESA.  

• More non-agricultural use data is available than EPA has recognized, and CLA will help 
provide it to EPA as the Revised Method is implemented. 

• EPA should clarify how the Percent-Crop Treated (“PCT”) concept will be applied. 
• Appendix B presents a CLA-sponsored case study that demonstrates an approach to 

applying usage data at the state and county level.  EPA should consider this approach and 
others going forward as it builds upon the Revised Method. 

 
CLA strongly supports the inclusion of usage data by EPA in the Revised Method.  Usage data 
can reliably predict how products will be applied based on usage volumes and patterns.  It is well 
established that pesticide usage data tends to be robust and reliable years after the introduction of 
products containing a new active ingredient.7  Thus, for active ingredients and related products 

                                                 
6 NMFS Procedural Instruction 02-110-20 (January 13, 2017), http://www.nmfs.noaa.gov/op/pds/index.html, (Last 
accessed August 2, 2019).   The paragraph from which the quotations in the text are excerpted concludes: “Neither 
the ESA nor the NOAA Fisheries/U.S. Fish and Wildlife Services’ joint consultation regulations mandate 
consultation when federal action agencies determine their proposed actions have ‘no effect’ on any ESA-listed 
species critical habitat.”  
7 Appendix A displays estimated annual agricultural pesticide use for thirteen widely used crop protection active 
ingredients. For all States except California, pesticide use rates were estimated for Crop Reporting Districts using 
two methods and proprietary surveys to ensure accuracy.  For California, use estimates were obtained from annual 
California Department of Pesticide Regulation use reports on county-levels. See also, Pesticides Industry Sales and 
 

http://www.nmfs.noaa.gov/op/pds/index.html


8 
 

undergoing registration review and ESA analysis, EPA’s inclusion of usage data will assist in a 
better BE.   

3.1.1 EPA’s Proposed Approach for Incorporating Usage Data 
CLA supports EPA’s Revised Method incorporating pesticide usage data at both Step 1 (No 
Effect/May Affect), and Step 2 (Likely to Adversely Affect (LAA)/Not Likely to Adversely 
Affect (NLAA)).  In both steps, the application of usage data will allow refinement of exposure 
potential and extent of the action area.  
 
In addition, the Services standard allows for using the ‘best scientific and commercial data 
available’; this standard should allow the Services to rely on pesticide use / usage data & 
recognize the limits in the available data/information 
(https://www.fwspubs.org/doi/pdf/10.3996/052017-JFWM-041, last accessed August 15, 2019).   
 

3.1.2 Incorporating Usage Data at Step 1 
At Step 1, EPA proposes to use national and state level data from the most recent five years to 
identify areas that, despite being identified as potential use sites on a Use Data Layer (UDL), 
have not received pesticide application.  These areas would then be removed from the UDL for 
purposes of establishing the Action Area.  For an entire state to be excluded from an agricultural 
UDL, all labeled uses within that UDL would have to be reported as zero usage for the past five 
years.   
 
CLA notes, however, that county-level data are available in connection with several BEs EPA is 
currently or will soon begin working on.  As explained below using malathion as a test case, 
CLA has developed a methodology that provides estimates of UDL-level (i.e., crop group) 
pesticide usage at the county level. The case study using malathion is included in Appendix B 
and the raw data can be made available to EPA upon request. CLA believes that using county 
data, where available, would allow for a more refined UDL where usage at the state-level occurs.  
EPA may consider reviewing the attached methodology to develop an approach which will 
incorporate county-level information in both Step 1 and, as explained below, Step 2 where 
possible.   

The Revised Method document states that usage data for non-agricultural purposes are less 
readily available than agricultural usage data, especially at the national scale. EPA notes that if 
data sources were to become available that provide enough evidence that usage on a UDL was 
not likely to occur, then the UDL for this non-agricultural use pattern could be constrained 
accordingly. CLA supports this approach and notes that more pertinent information is available 
than has been recognized by EPA in the Revised Method. For example, the Residential 
Exposures Joint Venture (“REJV”) task force has submitted to EPA a proprietary dataset from a 
National Pesticide Use Survey (MRIDs 49309501 and 49405901) that provides considerable 
relevant information. EPA’s 2016 review of the REJV survey concluded “The REJV National 
Pesticide Use Survey (2012-2013) represents a reliable and robust source of residential pesticide 
                                                 
Usage, 2008-2012 Market Estimates. Office of Pesticide Programs, U.S. EPA (2017)  
https://www.epa.gov/pesticides/pesticides-industry-sales-and-usage-2008-2012-market-estimates. (Last accessed 
August 2, 2019). 

https://www.fwspubs.org/doi/pdf/10.3996/052017-JFWM-041
https://www.epa.gov/pesticides/pesticides-industry-sales-and-usage-2008-2012-market-estimates
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use information.” and “EPA agrees that the survey is sufficiently representative of the U.S 
population and of pesticide users.” (US EPA, 2016).   

In addition, the American Mosquito Control Association and others have submitted usage data 
relevant to public health uses.  At the very least, EPA should add these usage data sources to 
those to be considered under the Revised Method. 

3.1.3 Incorporating Usage Data at Step 2 
The proposed approach for incorporating usage data in Step 2 is more quantitative than Step 1. 
The approach is conservative because all usage is assumed to occur on potential use sites within 
a species range before occurring anywhere outside the species range.  Using this approach may 
result in 100% Percent Crop Treated (PCT) within a species range and 0% PCT outside of a 
species range.  This has the potential to significantly over-predict potential exposure to species, 
even when the opposite is true. The treated area in a species range is then used to determine the 
percent of species range potentially affected by the pesticide use.  Based on species population 
estimates, EPA’s proposed approach then determines if >1 individual is exposed.  If this 
threshold is exceeded, steps 2b/2c are possible, based on a weight-of-evidence approach, 
including factors such as temporal factors, uncertainties in species range data, dietary 
considerations, etc.  Although mentioned in passing, methods for refinement of the distribution 
of product usage vs. the species range are not outlined.  CLA thus recommends that after the 
final Revised Method is published, the following three specific elements are addressed in 
supplemental material by the EPA: 
 

First, EPA should clarify what method(s) it will use to determine the application volume 
from the five years of historical data that is used to calculate the PCT.  Using statewide volumes 
from the year with the maximum usage may be overly conservative in certain circumstances – 
for instance, under certain crop rotation conditions or where there was a known event that caused 
elevated usage in a year that is unlikely to recur.  EPA could minimize these types of distortion 
by relying on average volumes over the five-year period, and/or by factoring in trends where the 
data allow such extrapolation.   
 

Second, accounting for actual usage rather than the maximum label rates is important to 
make the best judgment about exposure potential.  EPA, thus, should clarify whether the PCT 
calculation will be directly based upon acres treated, or whether the number of treated acres are 
inferred from usage mass estimates divided by some usage rate(s).  Using maximum label 
application rates in this context would be extraordinarily conservative because applicators rarely 
use maximum rates.  If this is what EPA intends to do, the process should be identified as 
another conservative factor.   
 

Third, EPA should recognize that the proposed approach has the potential to significantly 
over-predict the likelihood of pesticide usage within a species range and take steps to either 
avoid or, at the least, make this fact clear.  For example, assume there are 1,000,000 acres of corn 
in a state and that a 1,000 acre species range overlaps with 900 acres of corn. Assume also that 
state-level PCT data shows that only 1% of corn is treated with the pesticide being assessed, 
resulting in 10,000 acres of corn treated with pesticide in the state. Following EPA’s proposed 
approach, all 900 acres within the species’ range would be assumed to be treated (i.e., 90% of its 
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in-state range), unless portions of counties within the species range could be excluded from the 
calculation because the pesticide under consideration is not labelled for use in those counties.  
But if the 1% PCT was assumed to be evenly distributed across the state, then only nine (9) acres 
(0.9% of the species in-state range) would be assumed to be treated. The probability of an 
individual being exposed to the pesticide would be very different based in these two scenarios. 
To overcome this problem, CLA recommends that a more realistic approach to determining 
acreage treated within a species range be used when possible within the Revised Method 
framework, and that this topic be reviewed as EPA improves on the Revised Method in the 
future.  A uniform likelihood of treatment across all potential use sites in a state is one approach 
to consider.  In the meantime, any analyses that apply the approach described in the Revised 
Method should acknowledge the conservatizing influence of the proposed assumption. 

 
3.1.4 A Methodology for Quantifying Pesticide Usage at the County Scale 

There are many possible methods to account for pesticide usage at different spatial scales (state, 
county, section).  CLA recently completed a research project, focused on malathion usage, to 
develop a methodology to refine annual pesticide usage statistics at the crop group and county 
level (Appendix B).  This study used publicly available national and state-level datasets 
(including USGS Annual Pesticide Use database, Baker and Stone, 2015; USDA Agricultural 
Chemical Use Program Survey, USDA, 2019; and California Pesticide Use Record (PUR) 
database, CDPR, 2019) to provide a comprehensive understanding of agricultural pesticide usage 
nationwide.  The methodology showed excellent agreement with observed county-level, crop 
group malathion usage data from the California Pesticide Use Reporting (PUR) database.  
  
The study yielded an approach for determining annual usage and a percent of potential pesticide 
usage by county and crop group that is functionally equivalent to PCT at maximum label rates.  
By examining multiple years and multiple sources of usage data, the end results of the approach 
are probability distributions of annual usage and percent of potential usage at the crop group and 
county level.  These data can be incorporated directly into multiple components of an 
endangered species risk assessment.  CLA urges EPA to permit registrants to use such a 
methodology for incorporation of refined usage data into the Agency’s analyses rather than 
relying on state-wide usage data. 

3.1.5 Incorporating Usage Data into Probabilistic Exposure Modeling 
The 2013 National Academy of Sciences report (NRC, 2013) stated probabilistic risk assessment 
methods are preferred when evaluating the risks of pesticides to endangered species.  After the 
final Revised Method is published, CLA encourages EPA to employ usage data to refine the 
calculation of probability distributions of estimated environmental concentration (EECs) used in 
probabilistic quantitative risk assessments.  Usage data should play an integral role in refined 
exposure modeling in terms of identifying what exposure is considered reasonably certain to 
occur.8  At the local scale (field or small watershed), usage data can define the probability of a 
given field or watershed being treated.  At the broader scale, usage data can define the 
percentage of use sites treated within a watershed or species range.  At either scale, usage data 

                                                 
8 https://www.fws.gov/endangered/improving_ESA/pdf/ITS%20Final%20Rule%20FAQs%20Final%205-1-15.pdf 
(Last accessed August 15, 2019) 

https://www.fws.gov/endangered/improving_ESA/pdf/ITS%20Final%20Rule%20FAQs%20Final%205-1-15.pdf
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are one of the most important datasets for developing accurate exposure probability distributions 
for use in endangered species risk assessments.   
 
Appendix B provides a further discussion on approaches for future inclusion of pesticide usage 
data in refined exposure modeling.  In addition, several case studies of endangered species 
assessments where usage data played an important role are also available in the peer-reviewed 
literature (Clemow et al., 2018; Whitfield-Aslund et al., 2017a,b), as are case studies 
incorporating pesticide usage data in refined aquatic exposure modeling (Winchell et al., 
2018a,b).  CLA members have also contributed recommendations and examples of incorporating 
pesticide usage data in exposure modeling and endangered species risk assessments as a part of 
previous public comment submissions on EPA’s pilot BEs (CLA, 2016; Padilla and Winchell, 
2016; Winchell et al., 2016).  The refined, spatially explicit and species-specific exposure 
modeling examples and recommendations/comments provided in these case studies remain valid 
and merit EPA’s attention to build upon the Revised Method.   

3.2 Interpretation of the <1% Spatial Overlap at Step 1 

• CLA supports EPA’s conclusion that <1% spatial overlap does not compel a “May 
Affect” determination given the uncertainty inherent in the spatial data and in view of 
NRC’s recommendations that further data should be applied. 

• CLA encourages EPA to ensure that sources of uncertainty and the directional 
implications of the assumptions made in the assessment, e.g., AgDrift parameters and 
results, are identified in the assessment and clearly explained in a manner accessible to 
and comprehendible by general audience. 

• After the Revised Method is in place, CLA recommends that EPA re-examine its use of 
AgDrift and Kenaga nomograms to ensure these tools do not result in estimated 
exposures that are hyper-conservative. 

• CLA looks forward to providing recent research on chronic effects metrics, so that EPA 
may integrate it into future analyses. 

 
CLA supports EPA’s proposed <1% overlap rule as a positive step forward as it recognizes the 
limits in precision of the best available data but urges that after it begins implementing the final 
Revised Method, the EPA take further efforts to minimize the overestimation of exposure that 
persist in Step 1 of the analyses.  
 
The final Revised Method documentation also should more clearly explain the continuing 
conservatism of EPA’s approach.  In the past, EPA has had limited success communicating the 
level of conservatism in its exposure estimations, particularly to general audiences who take 
greater interest in EPA’s work at this phase.  The final Revised Method should strengthen 
stakeholder and public understanding of this process, wherein EPA could mention some of the 
conservative assumptions in AgDrift modelling as documented in a submission by CLA9 in 
docket EPA-HQ-OPP-2013-0676-0002.  For example, the drift estimates produced by AgDrift 

                                                 
9 CropLife America. 2014. Comments on Pesticides: Consideration of Spray Drift in Pesticide Risk Assessment. 
OPP Docket. Submitted by Michael Leggett, Ph.D., Sr. Director of Environmental Policy, CropLife America. EPA-
HQ-OPP-2013-0676-0044  
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are upper limit values of distributions derived from empirical studies designed to assure 
measurable levels of drift.  The estimates are not representative of typical pesticide applications 
under normal circumstances with current spray technology and best practices.  CLA suggests that 
the final Revised Methodology present lower bound and median estimates of drift exposure from 
best available data in addition to the upper bounds currently being used.10 
 
Many of the default assumptions used by EPA in modeling drift are not representative of typical 
practice.  An abundance of studies demonstrates that the mass of chemical moving off-site due to 
drift of spray droplets from ground applications rapidly declines within the first 10 meters from 
the field edge.  Within 30 meters of the field edge, there generally is greater than 90% reduction 
in chemical deposition from that at the field edge.  The Revised Method document indicates that 
drift exposure will be capped at 2600 feet, but regardless of limitations of the data, at 2600 feet 
the probability of detecting any chemical applied in accordance with label restrictions is likely to 
be infinitesimal.  The EPA assumptions do not reflect this reality.  These issues should be 
acknowledged in the near term and fixed in the future. 
 
If 1% of a species range was exposed at concentrations understood to have an adverse effect, it 
may have significance for the well-being of the species.  However, 1% overlap of an assumed 
range with a greatly inflated exposure zone (drift exposure capped at 2600 feet based on the 
limits of the spray drift models)11 relative to actual exposure will thus yield a much-exaggerated 
level of potential exposure.  The result would lead to diverting resources to species that have a 
very low probability of being exposed and thus potentially affected.  In the short term, CLA 
recommends that EPA acknowledge the conservatism in the proposed approach for estimating 
off-field exposure.  In the longer term, CLA recommends that EPA develop a more realistic 
approach to estimating on and off-field exposure. 
 
EPA should also consider updating its models for exposure through food sources to better 
approximate reality than the current use of the Kenaga nomograms allows.  EPA should review 
CLA’s prior comments on this issue in connection with the organophosphate BEs (CLA, 2016). 
The probabilistic approach described in CLA’s prior comments and our recommended approach 
is to adjust the Kenaga nomograms (or empirical nomograms if available) for proximity based on 
the upper-bound estimates of off-site movement. 
 
Once the Revised Method is finalized, CLA urges EPA take the additional steps described below 
in our comments to increase efficiency by reducing the number of “May Affect” determinations 
based on overly conservative exposure analyses.   
 

                                                 
10 The biased dataset used as a foundation for AgDrift has a distribution that should be reported in each assessment 
and considered in estimation of the potential for exposure to endangered species.  This is especially true because it is 
conservatively assumed that off-site movement of pesticides from spray drift always occurs uniformly in every 
direction from a treated field, without interception from near field vegetation, under the worst possible conditions 
for application, with application methods known to promote off-site pesticide movement.  The reality is that drift 
exposure to areas adjacent a treated field is likely to range from levels that are non-detectable – effectively zero – to 
the upper bound levels estimated using EPA default assumptions.   
 
11 EPA (Environmental Protection Agency). 2019. DRAFT EPA Proposed Revised Method for National Level 
Endangered Species Risk Assessment Process for Biological Evaluations of Pesticides.  
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3.3 CropLife America Supports Use of Probabilistic Methods in the Endangered Species 
Risk Assessment (ESRA) Process 

• The probabilistic methods outlined in the Revised Method will improve transparency and 
credibility, focus data collection, and improve decision making. 

• Models exist, or could be readily adapted, to address more species groups than presently 
contemplated in the Revised Method in the future. 

• EPA’s proposal to report a “yes/no” determination for impacts to individuals will hinder 
effective decision making and de-emphasizes more critical variables and data. 

• EPA should provide a more explicit set of criteria for how the outputs of the probabilistic 
methods will be applied to the weight-of-evidence assessment to ensure consistent, 
transparent, and effective decision making.  

3.3.1 Advantages of probabilistic methods 
CropLife America strongly concurs with EPA’s decision to make greater use of probabilistic 
analyses than was employed in the pilot BEs. There are numerous advantages to the use of 
probabilistic methods. 

3.3.1.1 Probabilistic risk assessment improves transparency 
Although the degree of over- or under-protection resulting from specific risk-based decisions 
(e.g., mitigations to protect listed species) is inherently uncertain, decisions that are not 
supported by an explicit, quantitative uncertainty analysis hide that uncertainty.  As a result, 
groups of stakeholders may have a different perception regarding the direction of bias in the 
assessment.  An open and explicit probabilistic risk assessment (“PRA”), including discussion of 
the sources of uncertainty not explicitly included in the PRA, will enhance transparency and 
improve the understanding of all parties involved. 

3.3.1.2 Probabilistic risk assessment improves credibility 
Even in the case of well-studied listed species and pesticides, there will always be numerous 
sources of uncertainty, including variability (which cannot be reduced but can be better 
understood) and lack of knowledge (which can be reduced with further empirical effort).  
Presentation of risk quotients with several significant digits exacerbate the failure to adequately 
describe uncertainty, because it implies a level of confidence that does not exist.  As the NRC 
(1994) stated, “[q]uantitative uncertainty analysis is the only way to combat the ‘false sense of 
security,’ which is caused by a refusal to acknowledge … and quantify the uncertainty in risk 
predictions.”   

3.3.1.3 Probabilistic risk assessment identifies where additional data 
collection is necessary 

All PRAs should include sensitivity analyses to identify the most important sources of 
uncertainty.  If risk estimates are not certain enough to allow sound decision making, sensitivity 
analysis may be used to target data collection to improve the understanding of risk and, if 
necessary, allow EPA and other stakeholders to adopt mitigation measures that will protect listed 
species without adversely impacting farmers, manufacturers, and consumers. 
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3.3.1.4 Probabilistic risk assessment improves decision making 
When risk is routinely overestimated, one cannot determine where to focus risk mitigation efforts 
because the high concern risk scenarios have not been separated from the no concern risk 
scenarios.  There are many possible risk mitigation measures for pesticides (e.g., in-field buffers, 
droplet size restrictions, prohibitions on application in sensitive areas, restrictions on timing of 
application) and choosing the optimal mitigation measures, given the benefits of each pesticide, 
requires a detailed and unbiased understanding of risk.   
  
The proposed Revised Method recognizes the above and the other benefits of probabilistic risk 
assessments.  CropLife America is encouraged by EPA’s decision to more fully implement the 
NRC’s 2013 recommendation to include probabilistic analyses in future ESRAs for pesticides. 

3.3.2 Recommendations to Ensure Realistic, Useful Probabilistic Risk 
Assessments 

The Revised Method document provides some details on how EPA will conduct PRAs for 
aquatic and terrestrial listed species.  For example, EPA indicates that a modified version of the 
Terrestrial Investigation Model (“TIM”) will be used to assess risk to listed bird species.  The 
major modifications include incorporating usage data to determine the proportion of a species 
range that could be treated, using proximity of different parts of the species range to treated areas 
to adjust dietary residues to which birds will be assumed to be exposed, and including variability 
in sensitivity between individuals to the pesticide.  For aquatic exposure assessments, the 
document indicates that variability in application date and hydrologic soil group, two critical 
factors affecting pesticide concentrations in water bodies, will be incorporated in future PRAs.  
These modifications will lead to significant improvements in future PRAs for listed bird and 
aquatic species. 
 
CropLife America also believes that more can be done to fully realize the value of probabilistic 
exposure assessments in pesticide ESRAs.  We urge that the following additional issues 
concerning probabilistic risk assessments for terrestrial and aquatic species receive attention 
from EPA after the finalization of the Revised Method.   

3.3.2.1 Terrestrial Species 
The Revised Method section on probabilistic exposure analysis for terrestrial habitats addresses 
acute risks from flowable pesticides to listed bird species that forage primarily on surface and 
crop-dwelling invertebrates and plant parts (i.e., seeds, fruit, foliage).  That is the current scope 
of TIM.  But TIM is not applicable to listed carnivorous, piscivorous or scavenger bird species, 
nor can it be used to estimate risk to bird species arising from use of granular, seed treatment or 
bait formulations.  There is no mention in the Revised Method document of the probabilistic 
methods that will be used to estimate chronic risk to listed bird species (e.g., Markov Chain nest 
model (MCnest)) for flowable pesticides.  Nor is there any mention of the probabilistic models 
that would be used to estimate direct risks to listed terrestrial mammals, herptiles, plants, or 
invertebrate species, or indirect risks to any listed terrestrial species.  
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There are probabilistic models that could be adopted or adapted to fill some of these needs. For 
example, a probabilistic version of EPA’s KABAM12 could be used to estimate pesticide 
concentrations in aquatic prey.  EPA’s T-HERPs13 includes a component that estimates residues 
in small mammals.  The outputs from these models could be linked to TIM.  This would enable 
risk to be estimated for listed bird species that primarily forage on aquatic invertebrates, fish 
and/or small mammals.  Similarly, EPA’s probabilistic MCnest was used previously to estimate 
chronic risk to listed bird species (Etterson et al., 2017) and needs only be linked to the modified 
TIM to produce more realistic estimates of exposure.  The modified TIM could be expanded to 
address acute risk to listed mammal and herptile species from flowable pesticides by adding in 
the required diet, body weight, and ingestion rate input data from the Services species status 
information and related equations.  
 
For risks to birds from granular pesticides, the probabilistic GranPARAM model developed by 
Moore et al. (2010, 2014) could be expanded to include listed bird species that forage for grit on 
treated fields. 

Finally, EPA should incorporate life history and ecological information and scrutinize range 
maps for listed birds. Often habitats clearly not used by the species, but contained in the range 
maps, are included in determining the potential for exposure.  

3.3.2.2 Aquatic Species 
As with terrestrial exposure modeling, there are additional steps that EPA could take after 
finalization of the Revised Method to produce more realistic and useful probabilistic aquatic 
exposure assessments.  For example, Whitfield-Aslund et al. (2017a) used a probabilistic version 
of EPA’s standard aquatic exposure model (Surface Water Concentration Calculator, version 
1.106), as well as a specialized vegetative filter strip model (VFSMOD) to estimate 
concentrations of imidacloprid in a 1 ha pond that drains a 10 ha field for various agricultural use 
patterns.  Rather than relying on standard scenarios representative of high runoff and erosion 
potential to define model input values, Latin Hypercube sampling of the probability distributions 
of key characteristics (i.e., application date, proximity, soil profile and land surface slope, pond-
integrated spray drift fraction and percent cropped area) was used to develop 1000 unique sets of 
the required model input parameters for each use scenario.  The results indicated that use of 
probabilistic input distributions for the variables cited by EPA in its revised guidance (i.e., 
application date, hydrological soil group) produced much more realistic exposure predictions 
than did the standard screening-level exposure assessment.  However, several other probabilistic 
input variables (e.g., percent cropped area, filter strip efficiency) were found to have larger 
effects on the predicted exposures, by approximately an order of magnitude each for median 
predictions (see Figure 1, below). Thus, EPA could further improve its probabilistic modeling 
tool for aquatic exposure assessment by incorporating distributions for a larger number of 
important input variables beyond the two cited in the final Revised Method. 
 

                                                 
12 https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/kabam-version-10-users-guide-and-technical 
(Last accessed August 15, 2019) 
13 https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/t-herps-version-10-users-guide-risk-
amphibians-and (Last accessed August 15, 2019) 

https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/kabam-version-10-users-guide-and-technical
https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/t-herps-version-10-users-guide-risk-amphibians-and
https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/t-herps-version-10-users-guide-risk-amphibians-and
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An even more advanced modeling system was used by Clemow et al. (2018) to estimate the risks 
of malathion to the listed California red-legged frog, delta smelt and California tiger salamander. 
Five probabilistic exposure models were linked and used to estimate exposure in worst-case 
scenarios for each species in California: Pesticide Root Zone Model (PRZM), Vegetative Filter 
Strip Modeling System (VFSMOD), Exposure Analysis Modeling System (EXAMS), Soil and 
Water Assessment Tool (SWAT), and Variable Volume Water Model (VVWM).  Rather than 
relying on a hypothetical standard farm pond, the modeling system was specific to the 
agricultural setting and habitats of each of the three listed species.  The results indicated 
negligible risks to the 3 listed species for both direct and indirect effects. These two case studies 
show the breadth of factors that can affect aquatic exposure and demonstrate that more rigorous 
exposure simulation methods are readily available.  Utilization of these methods could greatly 
increase the robustness of EPA analyses under the Revised Method, as well as allow greater 
understanding of the uncertainties inherent in the exposure analysis.   CLA recommends that 
EPA consider the deployment of such methods in further iterations of the final Revised Method. 
 

 
Figure 1. Predicted distributions of imidacloprid in a farm pond for Florida citrus use pattern 
(see Whitfield-Aslund et al., 2017(b) for method details). The figure illustrates how the predicted 
exposure distributions changed as successive model refinements were added to the analysis. 
 

3.3.3 Interpretation of Probabilistic Outputs 
The Revised Method indicates that probabilistic risk analyses will be used to determine the 
likelihood that one or more individuals are being adversely impacted as well as “the most likely 
number of impacted individuals” (page 36 of the Revised Method document, 2019).  CropLife 
America strongly supports EPA providing additional information on probability, magnitude, and 
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consequences of adverse effects across entire populations or sub-populations of listed species.  
This information will better inform the Biological Opinions (if necessary) and is required for 
population modelling.  It can also be used to prioritize the need for mitigation actions (e.g., 
identify which listed species are at greatest risk) and to determine how much risk reduction can 
be achieved with different mitigation options.  
 
Although CLA generally supports the Revised Method’s approach to making effects 
determinations, EPA needs to provide more information – either in the final version of the 
Revised Method or in supplemental or subsequent documents – to indicate exactly how 
probabilistic outputs will be used in weight of evidence determinations.14  EPA should provide 
or reference a more explicit set of criteria to ensure that the outputs from a probabilistic risk 
assessment are used in a way that ensures consistent, transparent, and effective decision making. 
Criteria for categorizing risk as negligible, low, intermediate or high have been proposed in 
previous probabilistic risk assessments (e.g., Moore et al., 2010, 2014; Whitfield-Aslund et al., 
2017; Clemow et al., 2018) and could be a starting point for EPA’s development of decision 
criteria for listed species over time, after the Revised Method document is finalized.   

3.3.4 Guiding Principles for Conducting Probabilistic Risk Assessments 
In conducting their probabilistic assessments, EPA should follow the principles developed by 
Burmaster and Anderson (1994), the U.S. EPA (1997), and others.  Fairbrother et al. (2016) 
adapted those principles for use in pesticide assessments for listed species.  If adhered to, the 
principles identified in Fairbrother et al. (2016) will make EPA’s future PRAs easier to 
understand and more transparent. 
 
3.4 Weight-of-Evidence Framework 

• CropLife America agrees that a robust weight-of-evidence approach should be 
implemented when preparing a BE.  

• EPA should explain more clearly how it will weigh lines of evidence, but the 
development of this explanation should not delay implementation. 

• Looking ahead, options exist for both qualitative and quantitative expression of the 
results of the weight-of-evidence assessment. 

 
CLA applauds EPA for greater use of weight-of-evidence (WoE) principles in Step 2 and Step 
3.15  The list of lines of evidence EPA mentioned in the proposed revised method could be 
refined and expanded, but it is a good start at cataloging the many sources of information that 
should be considered in a NLAA/LAA or a jeopardy decision.   
 
Unfortunately, however, the Revised Method says nothing about how the weight of evidence 
process will work in practice.  CLA does not believe EPA’s development of such an explanation 
                                                 
14 For example, would a 1% probability of affecting the most at-risk individual in a listed species population be used 
as support for, or to refute, a “Not Likely to Adversely Affect determination”?  If the probability of affecting one or 
more individuals is non-negligible but other important lines of evidence (e.g., field and mesocosm studies, 
population trends) indicate negligible risk, how will EPA make its effects determination? 
15 EPA also has identified many of the critical factors that could be included in the analysis, but also notes that “the 
list of factors considered in this WoE approach is not exhaustive.” Revised Method at p. 23.   
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should delay adoption of the Revised Method but urges EPA to turn to doing so after the final 
Revised Method is published.  At some point, a system must be implemented to objectively 
weigh each piece of evidence, evaluate the overall relevance and reliability of each line of 
evidence, and combine the weighted lines of evidence into a useful conclusion.  Particularly as 
the Services make it clear that this approach (e.g., professional judgement) is appropriate for 
endangered species decisions.  Therefore, the Services should acknowledge that EPA has 
expertise in the assessment of pesticides including such things as selection of endpoints, potential 
for exposure, and the use of a WoE approach. (https://www.fws.gov/policy/E1620fw1.html, last 
accessed August 15, 2019).   
 
Ideally, the final information from all lines of evidence on exposure and response would be 
available in the form of probability distributions.  Strategies for integrating exposure 
probabilities with sensitivity distributions have been proposed (and implemented) since before 
ECOFRAM (Ecological Committee on FIFRA Risk Assessment Methods) (ECOFRAM, 1999).  
The outcome can be expressed categorically (e.g. low, medium, and high risk) or quantitatively 
(e.g., area under the risk curve).  A categorical result may be helpful for No Effect/May Affect 
decisions. A quantitative result is useful for ranking the relative risk to species, or prioritizing 
species for further analysis, mitigation, or conservation.  A quantitative result is especially useful 
if the results indicate a clear gradient among species from low risk to high risk, rather than 
simply concluding that “risk is excessive for 97% of listed species.”16 

4 Further Comments on Step 1 and Step 2 Methods 
CLA has identified and provides the comments below on four additional aspects of the EPA 
revised guidance – “scoping,” the approach to estimating aquatic exposures, dealing with 
uncertainty, and the use of surrogate species in ecological risk assessment.  These topics are 
important to the scientific defensibility and transparency of the re-envisioned methods. 

4.1 Scoping as an Important Tool Early in a Biological Evaluation 

• Scoping (making early and efficient “no-effect” determinations) is critical to conserving 
limited Agency resources and properly focusing efforts. 

• The Revised Method could include additional avenues for determining that an exposure 
pathway is incomplete. 

• Lack of sensitivity to the chemical is another logical basis on which to include/exclude a 
species/group. 

 
Part of the considerable challenge of conducting endangered species risk assessments for 
hundreds of pesticides and over 1600 listed species and their critical habitats is finding 
scientifically defensible approaches to assign “no effect” determinations to those species that will 
not be affected.  This is in part due to the need to balance efforts and scientifically defensible 
decision making using available resources. 

 

                                                 
16 EPA (US Environmental Protection Agency). 2016a. Biological Evaluation Chapters for Malathion ESA 

Assessment. https://www.epa.gov/endangered-species/biological-evaluation-chapters-malathion-esa-
assessment. (Last accessed August 15, 2019). 

https://www.fws.gov/policy/E1620fw1.html
https://www.epa.gov/endangered-species/biological-evaluation-chapters-malathion-esa-assessment
https://www.epa.gov/endangered-species/biological-evaluation-chapters-malathion-esa-assessment
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CLA refers to the process of concluding that no further attention needs to be directed to effects 
on a species or its critical habitat as “off-ramping.”  In the Revised Method, EPA describes two 
criteria early in the assessment that will distinguish between listed species that would clearly be 
assigned a no effect determination and those that would not: whether an exposure pathway is 
incomplete, or whether a species is most likely extinct or extirpated (steps 1a and 1b on p. 7). 
 
The Revised Method indicates that an incomplete exposure pathway may be determined by 
examining the species characteristics such as where they are located (e.g., an island with no 
pesticide use).  Exposure may also be unlikely if a pesticide is contained in a bait station or other 
device used indoors that would eliminate the potential for exposure to listed species (or the 
species on which they may depend).  
 
However, there are other ways to conclude that the exposure pathway is incomplete, and EPA 
should recognize them in future iterations of its methodology.  For example, use of a pesticide 
product may not be restricted by the federal label, but there may be state or county level 
restrictions.  New York State may not allow the use of a pesticide in Nassau and Suffolk 
counties, because these two counties are found on Long Island, which is underlain by sensitive 
groundwater aquifers.  California is similarly attentive to local conditions in granting 
registrations.  Listed species found only in counties with county-level bans are not at risk of 
exposure. 
 
Determinations to off-ramp species also can be based on label, chemical, or biological 
information.  For example, if a pesticide is labelled for use on minor crops found well away from 
the coast, and the fate and behavior characteristics of the pesticide indicate it is unlikely to move 
off-field (e.g., tightly binds to soil and is not water soluble) then, estuarine and marine species 
could be assigned a no effect determination early in the problem formulation.  There are other 
possible exclusions for lack of sensitivity.  Existing FIFRA analyses routinely determine that one 
or more species groups are not sensitive to a compound being evaluated.  In these cases, this lack 
of sensitivity should be considered at the onset of the risk assessment for listed species of that 
group. 

4.2 Aquatic Exposure  
CLA urges EPA to move forward with elements of the Revised Methods that relate to aquatic 
exposure, because they include improvements to the aquatic exposure modeling approach that 
allow for an efficient tiered process, opportunities for reasonable off-ramping of species, and 
more appropriate use of previously vetted and accepted tools.  However, the description of the 
Revised Method regarding aquatic exposure leaves some important details unstated, so our 
comments below are necessarily limited in scope.  

4.2.1 Qualitative Evaluation of Downstream Dilution Off-site Transport Zone 
for Aquatic Species in Medium and High Flow Habitats 

• CLA agrees with EPA that the tool used for this analysis previously should be discarded. 
• After publication of the final Revised Method, EPA should clarify how the replacement 

approach will address hydrologic connectivity, and how the presence of possible effects 
from “upstream” usage will be determined. 
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• CLA refers EPA to its prior comments for available tools to analyze medium and larger 
high-flow habitats. 

 
CLA supports the EPA proposal of discarding the previously implemented downstream dilution 
tool for future BEs.  As EPA notes, the methodology and tool have not been fully validated and 
vetted.  In addition, the tool was overly conservative and did not consider many important fate 
and transport processes, including dissipation and dispersion. 
 
In place of the previous downstream dilution methodology, the Revised Method (page 12) 
proposes to “qualitatively evaluate the potential for downstream impacts to aquatic species in the 
medium and high-flowing bins located in areas that have been removed from consideration 
during Steps 1 and 2 based solely on usage data, as pesticide may be transported from upstream 
states where usage occurs to states where there is no usage.”  CLA has interpreted this statement 
to mean that EPA will look at state-level usage data for the watershed, and if there is usage in a 
state “upstream” of an area (assumed to be a watershed), then aquatic species found in medium 
and high flow habitats located in it could be not be assigned a “no effect” at Step 1 or a NLAA at 
Step 2.  If our interpretation is correct, we request EPA to provide additional details about how 
the method will be applied after the final Revised Method has been published.  Issues that should 
be addressed are:   
 

1. How upstream/downstream relationships are to be determined. The hydrologic 
connectivity of watersheds can be complex, with flowing waterbodies both following 
state boundaries and flowing into and out of adjacent states.  EPA should provide details 
concerning the methods and datasets it believes should be used to determine downstream 
locations from states where usage is occurring, and how to relate this back to species 
ranges. 

2. How the upstream usage thresholds for “No Effect” / “May Affect” determinations at 
Step 1 or LAA/NLAA determinations at Step 2 will be documented.  CLA is concerned 
that the proposed approach will be difficult to apply consistently and in an unbiased and 
scientifically defensible manner across assessments for different products if analyses do 
not clearly indicate underlying assumptions and applicable thresholds.  EPA has already 
proposed adopting a 1% direct usage overlap threshold for co-occurrence analysis.  CLA 
recommends a similar, 1% quantitative threshold for upstream usage when making “No 
Effect” / “May Affect” and NLAA/LAA determinations at Steps 1 and 2, respectively.  
At the very least, however, a report on the application of the methodology should specify 
the threshold employed. 

 
In previous comments, CLA has provided extensive options for modeling methods appropriate 
for medium and larger flowing water bodies that can consider land use characteristics and habitat 
relevant assumptions.  For Step 3 analysis, EPA is currently not using tools available for 
modelling potential exposure in larger waterbodies flowing away from treatment sites and 
analyzing the time-dependent nature of pesticide concentrations. As outlined in our previous 
comments (CLA, 2016; Breton et al., 2016 a,b), these tools are available to the EPA for use . 
CLA urges that EPA apply these tools in future iterations of its methodology to more accurately 
represent aquatic exposure potential. 
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4.2.2 Simulation of Aquatic Habitat Exposure with Modified Receiving 
Water Bodies and Modeling Approaches 

EPA’s Revised Method includes some improvements for simulating exposure in aquatic habitats. 
These changes are consistent with previously submitted CLA comments and constitute a positive 
step forward.  Notably, several approaches applied in the pilot BEs that resulted in highly 
variable watershed/receiving water body characteristics across geographic regions (most 
importantly, drainage area to water body normal capacity ratio [DA/NC]) have been discarded.  
In addition, the updated methodology is greatly simplified, particularly regarding receiving water 
bodies that will be simulated. 

4.2.3 Step 1 Aquatic Exposure Modeling  
CLA understands that EPA intends to retain the pilot BE aquatic “bin” concept but will be using 
a smaller number of water bodies in exposure modeling to represent those same aquatic bins.  
This should be explicitly stated in the final Revised Method.  In addition, it would be helpful for 
the final Revised Method document to clarify what aquatic exposure tools will be used to 
estimate conservative concentrations for the Step 1 analysis.  It currently is not clear if the intent 
is a single conservative exposure or, if regional, crop-specific variations on exposure potential 
will be used. 
 
For example, from the presentation at the June 10th public meeting, it appears the analysis will 
include a drift-only analysis using the pilot BE aquatic habitats along with Pesticide Water 
Calculator (PWC) modeling for edge-of-field (EOF), standard pond, and index reservoir 
concentrations for use areas adjacent to waterbodies.  But it is not clear from the Revised Method 
whether species-relevant crop/soil scenarios, assignments of relevant aquatic bins, and relevant 
labeled use assumptions based on species location will be utilized at this step and, if so, to what 
extent.  If not included in this iteration of the final Revised Method, these matters should be 
addressed in future updates.  

4.2.4 Step 2 Aquatic Exposure Modeling; Receiving Water Bodies and 
Scenarios 

• The Revised Method approach is an improvement but continues to include conservative 
assumptions that should be clearly communicated. 

• CLA proposes specific revisions for modelling within individual Bins that should be 
incorporated into the next iteration of the Revised Method. 

 
The revised aquatic exposure modeling approach proposed by EPA relies largely upon existing 
regulatory exposure models (PRZM and VVWM) and scenarios (associated with PWC) in Step 
2.  Again, CLA agrees that this is an improvement over the interim methodology but believes 
that the method will continue to be overly conservative.  EPA should acknowledge the inherent 
conservatism in future versions of the final Revised Method.  As discussed in previous CLA 
comments9, the surrogate waterbodies are useful for screening but continue to employ 
conservative assumptions such as: worst case drift exposure; high runoff soils; high slopes and 
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erosion; 100% Percent Cropped Area (PCA); 100% PCT (Percent Crop Treated); and concurrent 
pesticide application timing throughout an entire watershed.17 

Furthermore, CLA has several concerns with the explanations in the Revised Method, 
particularly regarding how flowing habitats and small static water habitats are modelled.  
Additional details should be provided prior to publication of the Revised Method, or soon after it 
is published. 

4.2.4.1 Exposure in medium and large static water bodies (Bins 6 and 7) 
EPA has proposed that the standard Farm Pond and associated landscape scenarios be used to 
represent exposure in these aquatic habitats.  The Farm Pond scenarios have been used 
successfully for several decades to represent conservative aquatic exposure concentrations for 
ecological risk assessments required for pesticide registrations under FIFRA. CropLife America 
agrees that this approach is generally appropriate.  

4.2.4.2 Exposure in medium and high flow water bodies (Bins 3 and 4) 
EPA has proposed that the Index Reservoir and associated landscape scenarios be used to 
represent exposure in these flowing water aquatic habitats.11  On a short-term basis this would be 
an improvement over current methodologies but is ultimately not appropriate for medium and 
high flow habitats.  A reservoir hydrological system is very different from medium to high flow 
rivers and streams.  For products with moderately broad use patterns, an Index Reservoir 
scenario would result in a PCA of 100%, and for many chemicals, the exposure concentrations in 
the Index Reservoir exceed concentrations in a static Farm Pond.  This is due to a combination of 
the Index Reservoir’s higher DA/NC, 100% PCA, and sluggish water flow-through.  An aquatic 
exposure methodology that results in EECs in medium/large flowing systems exceeding EECs in 
high vulnerability medium/large static water bodies is inconsistent with scientific consensus. 
 
CLA thus recommends that, after the final Revised Method is published, EPA reconsider its 
approach for modeling Bin 3 and Bin 4 exposure.  This can be kept very simple for Step 2 yet 
made much more physically realistic. Our suggestions include: 
 

1. Maintain well-tested characteristics of the Farm Pond scenario, including a DA / NC ratio 
of 5. 

2. Allow flow through to occur on a 1-day timestep (flow-averaging period), which follows 
the real-word hydrologic dynamics stream/river systems. 

3. Include baseflow at the design flow rate for the habitat bin, another real-world process 
that differentiates exposure in flowing water bodies compared to static water bodies. 

                                                 
17 As a species moves to more refined Step 3 analysis (if not off-ramped in Step 1 or 2), species-specific habitat 
characteristics should be evaluated in comparison to the assumption of this framework with modifications to 
represent the variable and specific hydrology and conditions related to potential use sites. Furthermore, more 
appropriate watershed scale models such as SWAT (see previous CLA comments (CLA, 2016)] will be required to 
more accurately reflect exposures in flowing water habitat.  
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4. Include the original bin depth and width characteristics so that drift exposure can be 
accurately simulated for the intended habitat. 

4.2.4.3 Exposure in small static and low flow water bodies (Bins 5 and 2) 
EPA has proposed that exposure in these water bodies be represented by EOF concentrations 
from PRZM.  This approach would not incorporate the VVWM receiving water body.  While 
PRZM EOF concentrations have been used by EPA historically to represent EECs for terrestrial 
species, and may be appropriate in the terrestrial context, CLA does not believe this is an 
appropriate approach for aquatic species in Bins 5 and 2.  CLA is concerned that the proposed 
approach: (1) results in unrealistically high concentration predictions associated with very low 
runoff events; (2) is unable to determine chronic EECs based on multi-day averages in the 
absence of a receiving water body; and (3) is unable to calculate exposure for benthic organisms 
when no pore water of sediment calculations can be determined.  
 
Thus, CLA recommends that in the next iteration of the methodology EPA reconsider how 
exposure is calculated for the species in bin 2 and bin 5 aquatic habitats.  Our specific 
suggestions are: 
 

1. Bin 2 (low flowing): Adopt an approach like CLA’s recommendations for Bin 3 and Bin 
4 species in Section 4.2.4.2, above. 

2. Bin 5 (small static): A receiving water body needs to be simulated for calculating chronic 
EECs and benthic concentrations.  A small water body can be simulated to approximate 
the inflow of EOF runoff concentrations by establishing a relatively large drainage area 
providing inflows, while allowing outflows from the receiving water at a daily timestep.  
 

Finally, EPA’s Revised Method does not discuss how water quality monitoring data will be 
evaluated.  For registered pesticides and aquatic systems with extensive monitoring datasets (e.g. 
USGS NAWQA18; Heidelberg datasets19), measured concentrations in the environment can be 
used to both validate exposure model predictions and, in some situations, used in place of 
modeled concentrations.  This issue should be addressed in future iterations.  

4.2.5 Aquatic Exposure Modeling Conducted at Step 2, Monte Carlo Analysis 
The addition of a Monte Carlo analysis to combine variability in effects and exposure is a 
welcome addition to Step 2.  The details and implementation are not fully documented in the 
Revised Method, but as summarized and presented by EPA staff on June 10th, having a method 
to account for variable exposures in the aquatic environment based on variable conditions that 
occur in a species range/habitat will be useful in the final Revised Method.  Moreover, CLA 
agrees that application timing and hydrologic soil group are key factors and important to include 
in a Monte Carlo analysis, and would suggest considering additional factors based on sensitivity 
analysis, such as slope, soil organic carbon, and environmental fate properties.  In addition, the 

                                                 
18 https://www.usgs.gov/mission-areas/water-resources/science/national-water-quality-assessment-nawqa?qt-
science_center_objects=0#qt-science_center_objects (Last accessed August 15, 2019) 
19 https://www.heidelberg.edu/academics/research-and-centers/national-center-for-water-quality-research (Last 
accessed August 15, 2019) 

https://www.usgs.gov/mission-areas/water-resources/science/national-water-quality-assessment-nawqa?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/mission-areas/water-resources/science/national-water-quality-assessment-nawqa?qt-science_center_objects=0#qt-science_center_objects
https://www.heidelberg.edu/academics/research-and-centers/national-center-for-water-quality-research
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assignment of appropriate scenario-specific weather stations will capture habitat-relevant 
weather conditions near listed species.   
 
CLA is concerned about the use of “scaling factors” to reflect an adjustment to a baseline EEC 
relative to simulations where two inputs have been modified, the application date and the 
hydrologic soil group.  EPA has suggested that this “scaling factor” strategy will be simpler and 
more efficient than a traditional Monte Carlo analysis where comprehensive permutations of 
model inputs are sampled for each exposure scenario; however, given modern computer 
resources and technology, we are unclear whether any efficiencies gained with this simplification 
are meaningful.  We suggest that EPA should, at a minimum, better explain its reasoning in the 
final Revised Method and provide examples that demonstrate that the simplified “scaling factor” 
approach results in exposure distributions that are comparable to those from a full Monte Carlo 
analysis.  Preferably, EPA should run a complete ensemble of exposure scenarios where the most 
sensitive inputs are varied across a defined range.  These multiple exposure scenario simulation 
results can be combined to generate a probability distribution. The distribution can then be used 
to predict the probability of exceedance of an appropriate effect metric or combined with an 
effects distribution (e.g. concentration-response, species sensitivity distribution) to generate risk 
curves.  If EPA does not make this revision in the Revised Methodology in the short term, it 
should be considered as a goal for the immediate future. 

4.3 Uncertainty 

• General audiences do not appreciate the distinction between risk and uncertainty, which 
is understandable as uncertainty is often incorrectly characterized as risk. 

• EPA should take steps to properly delineate the two, both in its substantive analysis and 
in the explanations that it provides for general audiences in BEs and elsewhere. 

• EPA should explicitly report the sources, direction, and magnitude of uncertainty. 
 
Failure to adequately communicate the directional implications of risk assessment assumptions 
can result in the misperception that the Agency is not adequately addressing the needs of 
endangered species. Without systematic description and characterization of assumptions made in 
risk assessment, the conservatism intended to eliminate potential Type II errors (false negative) 
becomes normative at the expense of highly increased Type I error (false positive).  As a result, 
uncertainty is communicated as risk; the public is confused; government and industry resources 
are wasted; and the use of needed crop protection tools is drawn into question.   
 
Even with the proposed revisions, it is clear the Revised Method will produce very conservative 
effects determinations.  However, the sources of this conservatism are not adequately described 
or characterized.  This information should be more clearly presented, so that the public is better 
informed by reported findings.  CLA urges EPA to include language recognizing this 
conservatism in the final Revised Method (and in future BEs).  EPA should also compile the 
supporting evidence available from the long history of EPA documentation that contains the 
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underlying uncertainties, including FIFRA Scientific Advisory Panel reports,20 and explain the 
directional implications of each source of uncertainty. 
 
Consistent with EPA’s Information Quality Guidelines,21 ultimately EPA should identify and 
report the expected risk or central estimate of risk for the potentially exposed or susceptible 
subpopulations affected; each appropriate upper-bound or lower-bound estimate of risk; and each 
significant source of uncertainty identified in the process of the assessment of risk. 
 
Table 1 contains a partial list of assumptions excerpted from a recent Agency risk assessment 
(EPA, 2015).  The assumptions were identified in the text of the assessment, but there was no 
indication of the directional implication of individual assumptions or the probability of their 
occurrence.  Table 1 could serve as a model for identifying and communicating assumptions and 
directional implications either in the body of a risk assessment or in a standard-form Appendix. 
 
Table 1. Examples of Step 1 assumptions and directional implications (EPA, 2015) 
 

Assumption Directional Implications 

100% efficiency of applications 
Assumption that 100% of applications reach soil and are 
subject to runoff and partially drifts away from field, 
inflates the assumed level of off-site exposure. 

Most sensitive species endpoint 
used 

Likely to over-estimate the potential for effect because 
there is no evidence that listed species are generally more 
sensitive than tested species. 

Run-off and drift are uniform 
dispersing from the target area 

Assumption over-estimates the actual level and 
significance of potential exposure to chemical since 
dispersion is understood to occur in a gradient from 
treated area and will decline at greater distances. 

Adsorption desorption and 
degradation kinetics 

The assumed soil or water DT50 and soil absorption 
coefficient used in modeling off-site movement of 
chemical is a conservative value obtained from 
laboratory studies.  The potential for leaching, or off-site 
movement of chemical may be over-estimated. The range 
in measured values was x, the value used in modeling 
was y, if the least conservative measured values were 
used the estimate would be z. There is uncertainty 
because not all soils are tested. 

                                                 
20 The National Academies of Sciences (NAS) has recommended in multiple reports that “risk assessments should 
provide a quantitative, or at least qualitative, description of uncertainty and variability consistent with available 
data” (NRC, 2013). The NAS has further suggested that “EPA should develop guidelines that define key terms of 
reference used in the presentation of uncertainty and variability, such as central tendency, average, expected, upper 
bound, and plausible upper bound.”  
21 https://www.epa.gov/quality/epa-information-quality-guidelines (Last accessed August 15, 2019) 

https://www.epa.gov/quality/epa-information-quality-guidelines
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4.4 Use of Surrogates 

• The Agency should reconsider the narrow view of surrogacy taken in the Revised 
Method document for selecting appropriate effects metrics once the revised method is 
published. 

 
In the Revised Methodology, the Agency states its intention to use the most sensitive species 
within each broad taxonomic group of each listed species for deriving effects metrics. Although 
this approach may be justified in the case of a screening-level FIFRA risk assessment intended to 
protect all species including unknown species, we believe that more specific effects data would 
be preferable for refined risk assessment of individual listed species.  
 
There is a significant opportunity to decrease the uncertainty of risk assessments when 
toxicological data are available for other species that are both reliable and relevant to the species, 
or species group, being evaluated.  It is not uncommon for the EPA to consider toxicity 
information in FIFRA risk assessments from species other than those typically required by 
guidelines (https://www.epa.gov/test-guidelines-pesticides-and-toxic-substances, last accessed 
August 15, 2019).  For ecological risk assessments of pesticides under ESA, the opportunity to 
apply additional, best available, toxicity data on a much wider range of representative species 
exists for some chemicals with robust databases.   
   
5 Conclusion 
CLA appreciates the work done by EPA to publish the Revised Method and supports the 
proposed draft published by the Agency. As reflected in our comments, we would request that 
EPA acknowledge the conservatism in the Revised Method, make uncertainties clear throughout 
the documentation, and consider the following improvements after the agency publishes the final 
Revised Method: 
 

• A detailed process on coordination and collaboration with the Services and USDA 
pursuant to the 2018 Farm Bill.   
 

• A mechanism to include conservation and mitigation measures during the BE process to 
offset anticipated adverse effects.   

 
• A realistic approach be used to determining acreage treated within a species range, when 

possible.  
 

• Provide guidance permitting registrants to use an approach for determining annual usage 
and a percent of potential pesticide usage by county and crop group that is functionally 
equivalent to PCT at maximum label rates.  

 
• Provide guidance on modeling of usage data like case study submitted by CLA. 

  
• Provide explicit set of criteria for how the outputs of the probabilistic methods will be 

applied to the weight-of-evidence assessment to ensure consistent, transparent, and 
effective decision making.   

https://www.epa.gov/test-guidelines-pesticides-and-toxic-substances
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• The Agency should expand the potential for Scoping (making early and efficient “no-

effect” determinations), to facilitate cost savings and improve efficiency in resource use.  
 

• EPA applies appropriate modeling tools in future iterations of its methodology to more 
accurately represent aquatic exposure potential. 

 
• Discuss how water quality monitoring data will be evaluated.   

 
 
We once again thank the Agency for the developing he Revised Method and for the opportunity 
to submit comments.  



28 
 

6 References 

Baker, N.T. and W.W. Stone. 2015. Estimated annual agricultural pesticide use for counties of 
the conterminous United States, 2008–12. US Geological Survey Data Series 907. 9 p. 
https://dx.doi.org/10.3133/ds907. 

Breton, R.L. S.I. Rodney, K. Wooding, G.E. Manning, Y. Clemow, C.D. Greer, R.S. Teed, M.F. 
Winchell, N. Pai, L. Padilla, T. Estes, and K. Budreski. 2016a. Response to EPA’s Draft 
Biological Evaluation for Diazinon. Prepared for ADAMA, Raleigh, NC. June 10, 2016. 
EPA-HQ-OPP-2008- 0351-0075 

Breton, R.L. S.I. Rodney, K. Wooding, G.E. Manning, Y. Clemow, C.D. Greer, R.S. Teed, M.F. 
Winchell, N. Pai, L. Padilla, T. Estes, and K. Budreski. 2016b. Response to EPA’s Draft 
Biological Evaluation for Malathion. Prepared for Cheminova A/S, Arlington, VA. June 10, 
2016. EPA-HQ-OPP-2008- 0351-0059 

Burmaster, D.E. and P.D. Anderson. 1994. Principles of good practice for the use of Monte Carlo 
techniques in human health and ecological risk assessment. Risk Analysis 14:477-481.  

California Department of Pesticide Regulation (CDPR). 2019. California Pesticide Information 
Portal (CALPIP), Pesticide Use Reporting (PUR). Available Online at: 
https://calpip.cdpr.ca.gov/main.cfm  

CLA (CropLife America). 2016. Comments by CropLife America on EPA OPP Draft Biological 
Evaluations of Chlorpyrifos, Diazinon, and Malathion Docket Identification Number EPA–
HQ–OPP–2016–0167, 81 FED. REG. 21341 (April 11, 2016). Unpublished report prepared 
by CropLife America, Washington, DC. Final report dated June 10, 2016. 

Clemow, Y.H., G.E. Manning, R.L. Breton, M.F. Winchell, L. Padilla, S.I. Rodney, J.P. Hanzas, 
T.L. Estes, K. Budreski, B.N. Toth, K.L. Hill, C.D. Priest, R.S. Teed, L.D. Knopper, D.R.J. 
Moore, C.T. Stone and P. Whatling. 2018. A refined ecological risk assessment for California 
red-legged frog, delta smelt, and California tiger salamander exposed to malathion in 
California. Integrated Environmental Assessment and Management 14:224-239. 

ECOFRAM (Ecological Committee on FIFRA Risk Assessment Methods). 1999. ECOFRAM 
Scientific Peer Input Workshop on Probabilistic Methods. May 12, 1999. 
https://www.federalregister.gov/documents/1999/05/12/99-11715/ecological-committee-for-
fifra-risk-assessment-methods-scientific-peer-input-workshop-on 

EPA (Environmental Protection Agency). 1992. Framework for Ecological Risk Assessment. 
Washington, D.C., EPA/630/R-92/001 

EPA (Environmental Protection Agency). 1997. Guiding Principles for Monte Carlo Analysis. 
Risk Assessment Forum, United States Environmental Protection Agency, Washington, D.C. 
EPA/630/R-97/001. 

EPA (Environmental Protection Agency). 2015. Preliminary ecological risk assessment for 
registration review of 22 sulfonylurea herbicides. Office of Chemical Safety and Pollution 
Prevention. August 26th, 2015.  Washington, D.C. 

https://calpip.cdpr.ca.gov/main.cfm
https://www.federalregister.gov/documents/1999/05/12/99-11715/ecological-committee-for-fifra-risk-assessment-methods-scientific-peer-input-workshop-on
https://www.federalregister.gov/documents/1999/05/12/99-11715/ecological-committee-for-fifra-risk-assessment-methods-scientific-peer-input-workshop-on


29 
 

EPA (Environmental Protection Agency). 2019. Draft EPA Proposed Revised Method for 
National Level Endangered Species Risk Assessment Process for Biological Evaluations of 
Pesticides. United States Environmental Protection Agency, Washington, D.C.  

Etterson, M., K. Garber and E. Odenkirchen. 2017. Mechanistic modeling of insecticide risk to 
breeding birds in North American agroecosystems. PLoS One 12(5): e0176998. 
https://doi.org/10.1371/journal.pone.0176998 

Fairbrother, A., B. Hartl, B.K. Hope, J.J. Jenkins, Y.-W. Li and D.R.J. Moore. 2016. Risk 
management decisions for pesticides and threatened and endangered species: The role of 
uncertainty analysis. Human and Ecological Risk Assessment 22:502-518. 

Moore, D.R.J., D.L. Fischer, R.S. Teed and S.I. Rodney. 2010. A probabilistic risk assessment 
model for birds exposed to granular pesticides. Integrated Environmental Assessment and 
Management 6(2):260-272. 

Moore, D.R.J., R.S. Teed, C.D. Greer, K.R. Solomon and J.P. Giesy. 2014. Refined avian risk 
assessment for chlorpyrifos in the United States. Reviews of Environmental Contamination 
and Toxicology 231:163-217. 

NRC (National Research Council) 2013. Assessing Risks to Endangered and Threatened Species 
from Pesticides. Committee on Ecological Risk Assessment under FIFRA and ESA, Board on 
Environmental Studies and Toxicology, Division on Earth and Life Studies, National 
Research Council of the National Academies. The National Academies Press, Washington, 
DC. http://www.nap.edu/catalog.php?record_id=18344.  

NRC (National. 1994. Science and Judgment in Risk Assessment. National Research Council, 
National Academy of Sciences, Washington, D.C. 

Padilla, L. and M. Winchell. 2016. Refined Malathion Aquatic Exposure Modeling for 
Endangered Species in Static Water Habitats: Ohio River Basin HUC2 Case Study: Final 
Report. Project Number: 14/244, 28/FYF, 45/FYF. Unpublished study prepared by Stone 
Environmental, Inc. 69p. [MRID 49949507]. 

USDA (US Department of Agriculture). 2019. Agricultural Chemical Use Program Survey.      
Available Online at:                
https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Chemical_Use/index.php 

Whitfield-Aslund, M., R. Breton, L. Padilla, M. Winchell, K.L. Wooding, D.R.J. Moore, R.S. 
Teed, R. Reiss, and P. Whatling. 2017a. Ecological risk assessment for Pacific salmon 
exposed to dimethoate in California. Environ Toxicol Chem, 36: 532–543. 
doi:10.1002/etc.3563. 

Whitfield-Aslund, M., M. Winchell, L. Bowers, S. McGee, J. Tang, L. Padilla, C. Greer, L. 
Knopper and D.R.J. Moore. 2017b. Ecological risk assessment for aquatic invertebrate 
communities exposed to imidacloprid as a result of labeled agricultural and non-agricultural 
uses in the United States. Environmental Toxicology and Chemistry 36:1375-1388. 

Winchell, M., N. Pai, and R. Srinivasan. 2016. Refined Chlorpyrifos Aquatic Exposure Modeling 
for Endangered Species in Flowing Water Habitats: Ohio River Basin HUC2 Case Study. 
Unpublished study prepared by Stone Environmental Inc., Montpelier, VT, Lab Study No. 

http://www.nap.edu/catalog.php?record_id=18344
https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Chemical_Use/index.php


30 
 

160823 for Dow AgroSciences LLC, Indianapolis, IN. Final Report date June 9, 2016. 100 
pp. 

Winchell, M., Pai, N., Brayden, B., Stone, C., Whatling, P., Hanzas, J., Stryker, J. 2018a. 
Evaluation of Watershed-Scale Simulations of In-Stream Pesticide Concentrations from Off-
Target Spray Drift. Journal of Environmental Quality, 47(1):79-87. doi: 
10.2134/jeq2017.06.0238.  

Winchell, M., Peranginangin, N., Srinivasan, R., Chen, W. 2018b. Soil and Water Assessment 
Tool model predictions of annual maximum pesticide concentrations in high vulnerability 
watersheds. Integrated Environmental Assessment and Management. 4(3):358-368. doi: 
10.1002/ieam.2014. Epub 2018 Jan 12. 

 



31 
 

7 Appendix A 

     Estimated Annual Agricultural Pesticide Use 
(https://water.usgs.gov/nawqa/pnsp/usage/maps/index.php) 

 
Estimates of Pesticide Use EPest-low and EPest-high methods 

For all States except California, two different methods, EPest-low and EPest- high, are used to estimate a range of pesticide use. Both 
EPest-low and EPest-high methods incorporate proprietary surveyed rates for Crop Reporting Districts (CRDs), but EPest-low and 
EPest-high estimates differ in how they treat situations when a CRD was surveyed and pesticide use was not reported for a particular 
crop present in the CRD. In these situations, EPest-low assumes zero use in the CRD for that pesticide-by- crop combination. 
EPest--high, however, treats the unreported use for that pesticide-by- crop combination in the CRD as missing data. In this case, 
pesticide -by- crop use rates from neighboring CRDs or CRDs within the same region are used to estimate the pesticide-by- crop 
EPest-high rate for the CRD. 

State-based restrictions on pesticide use were not incorporated into EPest- high or EPest-low estimates. However, EPest-low estimates 
are more likely to reflect these restrictions than EPest-high estimates. Users of the maps and data should consult the methods 
presented in Thelin and Stone (2013) and Baker and Stone (2015) to understand the details of how both estimates were determined. 
Maps are provided for both EPest-low and EPest-high estimates. 

Use estimates for California are obtained from annual California Department of Pesticide Regulation pesticide use reports. Because 
these reports provide county-level use estimates, they are incorporated into the data without further processing and low and high rates 
are the same for counties in California. California county data are appended after the estimation process is completed for the rest of 
the Nation. 

 

 

 

 

 

https://water.usgs.gov/nawqa/pnsp/usage/maps/index.php
http://pubs.usgs.gov/sir/2013/5009/
https://pubs.usgs.gov/ds/0907/
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Active 
Ingredient 

EPest-Low Chart EPest-High Chart 
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8 Appendix B 

(Blank Page – Malathion case study from next page) 
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Executive Summary 

 

This study develops a methodology for estimating pesticide usage and actual percent of potential usage 
estimates at the highest spatial resolution practical using publicly available data sources. The study focuses on 
agricultural uses of pesticides. An important objective of the study was the estimation of usage for individual 
crops or crop groups at the sub-state-level, namely county-level or Crop Reporting District (CRD) level. The 
final usage estimates generated in this assessment are expressed probabilistically as annual usage percentiles, 
which reflects both the temporal variability in usage and the uncertainty in the source data and estimation 
methods. 

Pesticide usage data represent the actual historical usage of a registered pesticide. At a minimum, the data 
describe the amount of pesticide applied over a specified geographic region over a given period of time. 
Pesticide usage data can often include the specific crop or group of crops (e.g., orchards and grapes) that the 
pesticide was applied to. Pesticide use information represents where and how a registered pesticide can be 
legally applied in accordance with its approved label. While pesticide use information describes how a 
pesticide could be potentially used, pesticide usage data describe how a pesticide is used in practice. Pesticide 
usage data is important to human health and ecological risk assessments, and in particular, endangered 
species risk assessments. Pesticide usage data provides the information necessary to refine the assumption that 
labeled pesticide use reflects pesticide usage on all potential use sites. 

Pesticide usage by crop group at the county-level can be estimated from best available, publicly available 
nationwide data sources. Several methods to generate these estimates were developed. These methods were 
evaluated against observed crop group county-level annual malathion usage from the Pesticide Use Reporting 
(PUR) database in California using malathion as a case study. The best performing method considered 
county-level total usage, state-level crop group usage, and potential usage based on CDL crop acreage and 
label use rates. This method resulted in strong agreement with the PUR across all counties and crop groups, 
with an R2 of 0.7974 for county-level estimates and 0.8417 for CRD-level estimates. The method was applied 
nationally using seven years of malathion usage data (2010-2016) resulting in probability distributions of 
annual usage and percent of potential usage. The percent of potential usage was based on crop acreage 
estimates from both CDL and USDA AgCensus and annual surveys. These usage statistics were generated for 
malathion at the county, CRD, and state-levels for nine crop groups (alfalfa corn, cotton, orchards and grapes, 
other crops, pasture and hay, rice, vegetables and fruit, and wheat) and are provided as Excel spreadsheets that 
accompany this report. Example maps of county level actual usage and percent of potential usage were 
provided to demonstrate how the data generated can be used to visualize the spatial distribution and 
magnitude of usage. Maps depicting usage associated with the specific locations of crops showed how 
locations of pesticide usage can be reconciled at the sub-county scale. 

The pesticide usage statistics generated in this study represent probability distributions of usage that can be 
incorporated into multiple phases of an endangered species risk assessment. The more conservative 90th 
percentile or maximum usage rates and percent of potential usage data would be appropriate at screening-
level steps or initial refinements of exposure, while the 50th percentile estimates represent the most likely usage 
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scenarios for more refined exposure and ecological modeling. Several examples of incorporating usage data 
into endangered species risk assessments include refined crop footprint and co-occurrence analysis, refined 
exposure modeling, and weight-of-evidence analysis.  

The pesticide usage data sources and the estimation and analysis methodologies presented in this report 
represent an unbiased and reproducible approach to maximizing the utility of publicly available pesticide 
usage data in human health and ecological risk assessments, including endangered species assessments. This 
report demonstrates that a tremendous amount of valuable information on the spatial distribution and 
magnitude of pesticide usage nationwide can be garnered with the currently available datasets. Thoughtful 
application of this data will enable more defensible and scientifically accurate assessments concerning the 
potential risks of pesticide use to humans and the environment. 
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1. Background 

Pesticide usage data represent the actual historical usage of a registered pesticide. At a minimum, usage data 
describe the amount of pesticide applied over a specified geographic region over a given period of time. 
Pesticide usage data can often include the specific crop or group of crops (e.g., orchards and grapes) that the 
pesticide was applied to. The spatial scale of the reporting units of pesticide usage data can vary from the sub-
county scale to the national scale, with finer spatial scales more desirable when available. In addition to the 
amount of pesticide usage (i.e., pounds or kilograms), the area treated with the pesticide can also be reported. 
Some pesticide usage databases will also include other information, such as the specific timing of applications, 
the method of application, and the specific product used.  

Pesticide use information represents where and how a registered pesticide can be legally applied in accordance 
with its approved label. Critical elements of pesticide use information include the potential use sites where the 
pesticide may be applied, the maximum single and annual application rates, the number of applications per 
year or crop cycle, the minimum interval between applications, and the permissible application methods. 
While pesticide use information describes how a pesticide could be potentially used, pesticide usage data 
describe how a pesticide is used in practice and accounts for market share relative to competitive products, 
climatic factors, integrated pest management practices, and the variability in annual pest pressures. 

Pesticide usage data is important to human health and ecological risk assessments, and in particular, 
endangered species risk assessments. The goal of an endangered species risk assessment is to understand 
whether the registration of a pesticide is likely to adversely affect a species or its critical habitat. The EPA’s 
guidance on conducting ecological risk assessments for pesticides (EPA, 1998; EPA, 2004), including 
endangered species risk assessments, follows a tiered approach, starting with a conservative screening level risk 
assessment (SLERA) and moving on to incorporating more data and more sophisticated models and methods 
in a refined risk assessment. Screening-level environmental exposure modeling, and subsequent risk 
assessment methods, typically assume that the pesticide use described on a pesticide label reflects the actual 
pesticide usage. This implicitly assumes that all potential use sites for a pesticide receive applications at the 
maximum annual rate and for every year, often 30 consecutive years. In reality, actual pesticide usage is far 
different from this conservative assumption. Pesticide usage data provides us the information necessary to 
refine the assumption that the labeled pesticide use reflects pesticide usage on all potential use sites.  

The utility of actual pesticide usage data is increased when the potential pesticide usage is also well-
understood. When both of these quantities are known, we can determine the actual usage as a percent of 
potential usage. The percent of potential usage is very similar to the Percent of Crop Treated (PCT) for a 
given pesticide. When the PCT reflects the area of crop treated at maximum label rates, the percent of 
potential usage is equivalent to the PCT. If the PCT reflects the area of crop treated at less than maximum 
label rates, the percent of potential usage will be lower than the PCT. In the case where the PCT and the 
percent of potential pesticide usage are different, the percent of potential usage is a better indicator of the 
likely spatial extent and magnitude of pesticide exposure.  
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Pesticide usage data in the United States is available from both publicly-available and proprietary sources. 
Publicly available sources are published by federal government agencies (US Geological Survey [USGS], US 
Department of Agriculture [USDA]) and state government agencies (California Department of Pesticide 
Regulation Pesticide Use Reporting [PUR]). The ways in which these public datasets can be applied in 
scientific research and assessments are unrestricted. Proprietary pesticide usage data sources, such as the 
AgroTrak® database of agricultural pesticide usage (Kynetec, 2019), come with associated costs and 
restrictions in how the raw data can be used and published. The analyses in this study will focus on publicly 
available usage data sources, in large part because the most comprehensive proprietary dataset available 
(Kynetec, 2019) serves as the source data for the most comprehensive public dataset developed by the USGS 
(Baker and Stone, 2015). 

The goal of this study was to develop of a methodology for estimating pesticide usage and actual percent of 
potential usage estimates at the highest spatial resolution practical using publicly available data sources for 
agricultural pesticide uses. .  An important objective of the study was the estimation of usage for individual 
crops or crop groups at the sub-state-level, namely county-level or Crop Reporting District (CRD) level. The 
final usage estimates generated in this assessment are expressed probabilistically as annual usage percentiles, 
which reflects both the temporal variability in usage and the uncertainty in the source data and estimation 
methods. This report begins with a review of publicly available datasets that can be used to estimate pesticide 
usage and potential pesticide usage at the scales of interest. The sections that follow present an evaluation of 
the potential methods for estimating crop group pesticide usage at the county-scale, using the 
organophosphate insecticide malathion as an example. The results of applying the usage estimation method to 
malathion at the national-level are then presented and discussed for both actual pesticide usage and percent of 
potential usage. The discussion concludes with recommendations for how the pesticide usage estimates 
derived from the methodology developed here can be applied in the context of refined environmental exposure 
modeling and endangered species risk assessments. 
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2. Materials and Methods 

2.1. Datasets 
This first step of this study was to evaluate publicly available datasets that can be used to derive pesticide usage 
statistics at the crop group and county-scale. The pesticide usage statistics of interest included the annual 
usage (i.e., kg/year) and the percent of potential usage, where potential usage is defined by maximum label 
rates. Both national level and state-level datasets were considered.  In order to ensure a robust analysis, the 
datasets included in the study were limited to those that provide quantitative estimates of usage for all crops 
within a crop group. In addition, to usage datasets, crop acreage datasets were also reviewed for estimating 
potential pesticide usage by crop group, both at the state- and county-scales. As with the usage estimates, crop 
acreage estimates needed to be quantitative and complete for a crop group at either the state- or county-scale 
for inclusion in this study  

2.1.1. Pesticide Usage 
The review of datasets found that the following pesticide usage datasets were sufficiently robust to include in 
this analysis: 

1. USGS Annual Pesticide Use database(Baker and Stone, 2015): State-level crop group annual usage 
and county-level total annual usage; 

2. USDA Agricultural Chemical Use Program Survey (USDA, 2019a): State-level crop/crop group 
annual usage; and the 

3. California Pesticide Use Record (PUR) database (CDPR, 2019): Subcounty-level crop/crop group 
annual usage. 

Other potential state-level datasets reviewed (e.g., Arizona (APMC, 2014), Massachusetts (MDAR, 2019), 
Minnesota (MDA, 2019), New York (NYSDEC, 2016), New Hampshire (NHDA, 1997), Oregon (ODA, 
2000), and Washington (ODA, personal communication, 2019)) did not prove to be robust enough to provide 
meaningful usage estimates at the state and/or county-levels. 

The USGS usage datasets (Baker and Stone, 2015) include both a county-level total annual usage estimate 
and a state-level annual usage estimate by crop group. For each of these estimates, the USGS provides a low 
estimate of usage (referred to as EPest-low) and a high estimate of usage (referred to as EPest-high). These 
two estimates can be thought of as providing upper and lower bounds on the usage estimates. These USGS 
datasets are derived from more detailed proprietary market surveys (Kynetec, 2019) and aggregated to a level 
that preserves the required confidentiality of the survey respondents. Details concerning the EPest-low and 
EPest-high usage estimates are provided in Baker and Stone (2015). As a result of their spatial and temporal 
completeness, both the USGS county-level total usage and the state-level crop group usage represented the 
most important datasets used in this assessment.  

The USDA provides state-level estimates of pesticide usage as part of their annual Agricultural Chemical Use 
Program survey (USDA, 2019a). The survey is conducted for a selection of commodities on a rotating 
schedule (i.e., each commodity is surveyed only once every few years). The surveyed crops available for this 
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analysis included: 1.) vegetables, corn & potatoes (2016), 2.) fruits, cotton, oats, soybeans, and wheat (2015), 
3.) vegetables, corn & potatoes (2014), 4.) peanuts & rice (2013), 5.) soybeans and wheat (2012), 6.) fruits, 
barely & sorghum (2011), and 7.) vegetables, corn, cotton and potatoes (2010). The USDA surveys are targeted 
at the top-producing states for each commodity. As is typical of USDA survey data, the estimates of pesticide 
usage are sometimes undisclosed due to limited sample size and confidentiality requirements. While this 
information provides an indication of the presence of pesticide usage, there is no way quantify the amount of 
usage. This data source was often incomplete for a given year, state, and crop group, and was incorporated 
into the assessment only when the data provided a usage estimate that reasonably covered the entire crop 
group. 

The California Pesticide Use Record (PUR) database (CDPR, 2019) is maintained by CDPR and has been 
comprehensively recording agricultural usage of pesticides since 1990. The source data provides actual usage 
records at the one square mile section level and reports the crop, acreage, rate, and the date of application. The 
PUR database is broadly viewed as the “gold standard” when it comes to pesticide usage data. Thus, for the 
purposes of this study, the PUR will be the single pesticide usage dataset considered in California. 

2.1.2. Crop Acreage 
Crop acreage estimates at both the county- and state-levels are needed to estimate the potential pesticide usage 
based on the pesticide label. Three sources of crop acreage data were evaluated in this assessment, all of which 
are managed by the USDA. These include: 

1. Cropland Data Layer (Boryan et al., 2011; USDA, 2019b): a nationwide 30 m resolution spatial 
dataset of crop class, produced annually;  

2. Census of Agriculture (USDA, 2019c): county- and state-level census of crop acreage by county and 
state; and 

3. National Agricultural Statistics Service Annual Survey (USDA, 2019d): county- and state-level 
survey of crop acreage by county and state. 

The USDA Cropland Data Layer (CDL) provides a seamless, national data layer depicting crop classes at a 
30-meter (m) resolution from remote sensing data (Boryan et al., 2011; USDA, 2019b). This dataset is used 
extensively in pesticide exposure risk assessments to define the spatial extent of potential pesticide use sites. In 
this assessment, the CDL estimates of crop acreage were used to calculate county-level crop group pesticide 
usage estimates from source datasets, as well as the potential malathion usage by year, crop group, and county.  

In addition to the CDL, the USDA also produces crop acreage estimates based on producer surveys, including 
the Census of Agriculture (AgCensus) conducted once every five years (e.g., 2012, 2017), and annual 
commodity surveys. The AgCensus (USDA, 2019c) seeks to compile county-level acreage (harvested acres are 
reported) for nearly all agricultural crops grown in the US. The annual commodity surveys (USDA, 2019d) 
are less comprehensive than the AgCensus, but can provide useful information for the more dominant crops 
and production regions. They also provide estimates of planted acreage, which can be a better indicator or 
potential pesticide usage than the harvested acres reported in AgCensus. The biggest challenge with the use of 
the AgCensus and National Agricultural Statistics Service (NASS) survey data is missing or undisclosed data. 
Missing data is most common for the years of NASS survey data (years when the full AgCensus does not 
occur), and typically arises for lower acreage crops and counties where acreage is low for the major crops. 
Undisclosed data occurs when USDA determines that the number of samples in their survey/census is small 
enough that confidentiality concerns would arise in reporting actual values (e.g., acres planted or harvested) 
for a particular commodity and county or state. In these cases, USDA only reports that a commodity occurred 
in the county/state, but the actual values (e.g., acreages) are not disclosed. The methods developed in this 
study for estimating county and crop group level pesticide usage, as well as potential usage, are heavily 
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dependent on a complete picture of the crop acreage at both the state- and county-levels. For this reason, the 
application of the USDA survey estimates of crop acreage were used in a more limited way than the USDA 
CDL estimates of crop acreage. The details of how each dataset was incorporated into the analysis are 
provided in the methodology discussions that follow.  

2.2. Methods 
The potential pesticide usage by county and crop group is critical to understanding the context of actual 
pesticide usage. For example, usage of 500 kilograms could represent nearly 100% of potential use sites being 
treated at the maximum label rate, or it could represent less than 1% of potential use sites being treated. 
Understanding this percent of potential usage is essential to interpreting screening level exposure and risk 
assessments, as well as parameterizing models applied in refined exposure modeling and analyses. In this 
assessment, potential pesticide usage estimates were derived using both CDL-based crop acreages and crop 
acreages adjusted using AgCensus and NASS Survey data (USDA “Survey-Adjusted”). Given the uncertainty 
in both the CDL and AgCensus/NASS Survey data, both acreage estimates were treated with equal likelihood 
when calculating potential pesticide usage. These two calculation methods are described in the sections that 
follow. 

Estimating actual pesticide usage statistics at the county and crop group level is a primary goal of this 
assessment and method development. The USGS pesticide usage data at the state/crop group level and the 
county/total level, along with crop group acreage estimates from CDL, provides several options for making 
county/crop group estimates. The USDA chemical use survey data, which provides only state-level crop group 
use for a subset of crop groups each year, is more limited in how county/crop group level use can be estimated. 
Several different methods were evaluated for developing these county/crop group estimates using the USGS 
usage data. These estimates were evaluated in the State of California and compared with measured 
county/crop group level malathion usage from the PUR to assess the robustness of each estimation 
methodology. In these evaluations, the PUR data was aggregated to be analogous to the USGS EPest-
Low/EPest-High data, resulting in total pesticide usage by year at the county-level and crop group usage by 
year at the state-level (note that EPest-Low and EPEst-High are the same in California). This “surrogate” 
USGS data was then used as the basis to apply and evaluate three different disaggregation methods to 
estimate pesticide crop group usage at the county-level. California is the only state where these methods could 
be evaluated against ground truth data, i.e., the PUR.  The results of these comparisons informed the choice of 
a methodology applied to the entire US. These methods and the comparisons with PUR are discussed 
following the potential pesticide usage estimate sections.  

2.2.1. Potential Pesticide Usage by Crop Group and County, CDL-Based 
The labels of two products containing malathion as the sole active ingredient were used to identify the crops 
to which this pesticide can be used, namely: Fyfanon® 57EC (EPA Reg. No. 279-3607; formerly EPA Reg. No. 
67760-40)and Fyfanon® ULV AG (EPA Reg. No. 279-3450; formerly 67760-35). Annual maximum application 
rates (in a.i. lbs/acre) for each of the crops were also obtained from these labels. In cases where the labels listed 
different application rates for the same crop, the highest value of the set was selected to represent the use 
pattern. The CDL was then used to estimate county- and state-level crop group acreage for malathion-labeled 
crops between 2010–2016. As a first step, each malathion-approved crop was matched to one or more of the 
crop classes in the CDL datasets. Most of the crops in the malathion labels were matched to specific crop 
classes in the CDL dataset. The “Grassland/Pasture” (code 176) CDL crop class was excluded from this 
analysis; this crop class includes both managed and naturally occurring grasslands and would require 
additional analysis to differentiate these potential use sites. Next, all CDL classifications representing 
malathion labeled crops were assigned to one of the USGS crop groups used in their pesticide usage estimates. 
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These malathion-labeled crops, CDL crop classes, USGS crop groups, and annual use rates are summarized 
in Appendix A, Table A- 1. 

Using ArcGIS 10.5 and ArcPy, spatial analysis was conducted to determine the crop acreages, and ultimately 
the potential annual malathion usage for each USGS crop group, county, and year combination. First, a 
spatially explicit malathion crop footprint was produced from each year of CDL by extracting and reclassifying 
those classes to one of the crops potentially treated with malathion into a new raster dataset. Each crop 
footprint raster plus a feature class depicting the county boundaries were added as inputs to the tabulate area 
tool in ArcGIS. This tool was then used to determine the crop group acreage for each county in the 
contiguous United States across all seven years evaluated (2010–2016). Using these crop acreage estimates and 
the following equation, malathion annual potential usage was estimated for each USGS crop group, county, 
and year combination: 

݁݃ܽݏܷ	݈ܽ݅ݐ݊݁ݐ݋ܲ	݌ݑ݋ݎܩ	݌݋ݎܥ െ ௜,௝ܮܦܥ ൌ ෍ܿ݌݋ݎ	݁݃ܽ݁ݎܿܽ௜,௝,௖ ൈ 	max ௖݁ݐܽݎ	݁ݏݑ	݈ܽݑ݊݊ܽ

௡

௖ୀଵ

 

where, 
      c = individual CDL crop class 
      i = county 
      j = year 
      n = number of individual crop classes in crop group 

2.2.2. Potential Pesticide Usage by Crop Group and County, USDA Survey-Adjusted 
The USDA AgCensus and NASS Surveys provide valuable estimates of crop acreage at the county- and state-
levels. As discussed previously, the shortcoming of these datasets for this assessment is that acreages can often 
be undisclosed due to confidentiality requirements, making estimates of crop group total acreage and potential 
pesticide use incomplete. Nevertheless, we recognize the CDL estimates of crop group acreage are imperfect, 
thus incorporating survey-based crop group acreage estimates into this assessment will help in accounting for 
uncertainty the CDL data. 

The USDA AgCensus and NASS Survey data were used to calculate state-level crop-group acreage bias 
factors that were then used to adjust the CDL-based crop group acreage values at the county-level. State-level 
bias factors were chosen instead of county-level bias factors because the frequency of undisclosed data at the 
state-level was much less than undisclosed data at the county-level. In addition, two years of AgCensus/NASS 
survey data were considered, 2012 and 2017. Only these years were selected because they correspond with the 
AgCensus, which contains much more complete data than years with only NASS Survey data. 

For each year, state, and crop group, the total crop group acreage was calculated. Information from the 
AgCensus served as the primary data in this calculation. The acreage of each crop was represented by the 
“Area Harvested” (field crops, vegetables, other crops), “Area Grown” (berries), or “Area Bearing & Non-
Bearing” (orchards). In cases where a crop had disclosed data in the NASS Survey dataset, then the NASS 
Survey “Area Planted” data was used in place of the AgCensus “Area Harvested” data. The choice to use 
“Area Planted” in place of “Area Harvested” was based on comparison with CDL, which showed better 
agreement with “Area Planted”, and to be more conservative in estimating the area of potential pesticide use. 
In cases where AgCensus was NASS Survey was undisclosed, a nominal area of 160 acres was assigned.  

Bias factors for USDA Survey (BiasFactor) crop group acreage compared to CDL-based crop acreage were 
calculated at the state and crop group level by averaging the ratios of USDA Survey acreage to CDL acreage 
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based on 2012 and 2017 estimates. We then used these bias factors to calculate additional estimates of 
potential pesticide use at the county and crop group level following the equation below: 

݁݃ܽݏܷ	݈ܽ݅ݐ݊݁ݐ݋ܲ	݌ݑ݋ݎܩ	݌݋ݎܥ െ ௖௚,௜,௝݀݁ݐݏݑ݆݀ܣ	ݕ݁ݒݎݑܵ
ൌ ݁݃ܽݏܷ	݈ܽ݅ݐ݊݁ݐ݋ܲ	݌ݑ݋ݎܩ	݌݋ݎܥ െ ௖௚,௜,௝ܮܦܥ ∗ BiasFactor௖௚,௦	

where, 
 cg = individual CDL crop class 
       i = county 
       j = year 
       s = state 

2.2.3. Actual Pesticide Usage by Crop Group and County 
State and county-level malathion usage data from multiple sources were used to derive  the county-level usage 
estimates for each crop group. Three different county-level crop group usage estimation methods were applied 
and evaluated in California . The starting point of usage estimates for each method was state-level crop group 
usage by year and county-level total usage by year derived by aggregating PUR data. This starting point is 
analogous to the USGS EPest-Low/EPest-High data and was used in place of the USGS data to allow for a 
more direct comparison with PUR data and a more accurate performance evaluation of each estimation 
method. All three methods incorporated crop group acreage estimated from CDL. Crop group acreage from 
AgCensus/NASS Survey data were not used in these actual usage estimates due to the missing/undisclosed 
data limitations of these datasets at the county-level. The best performing method of the three was then 
applied to all the lower 48 states. 

2.2.3.1. Actual Pesticide Usage Methods 1 Calculation 
For the first method, the county-level crop group usage was calculated as a fraction of the state-level crop 
group usage, which was assumed to be proportional to the fraction of crop group acreage in the county relative 
to the state-level crop group acreage. This method maintains the source data’s state-level crop group usage 
estimate but is not necessarily consistent with the source data’s county-level total usage estimate. The Method 
1 estimate was calculated according to the following equation:  

݁݃ܽݏܷ	݌ݑ݋ݎܩ	݌݋ݎܥ	ݕݐ݊ݑ݋ܥ െ 1௜,௝ܯ ൌ
௜,௝݁݃ܽ݁ݎܿܣ	݌ݑ݋ݎܩ	݌݋ݎܥ	ݕݐ݊ݑ݋ܥ
௝݁݃ܽ݁ݎܿܣ	݌ݑ݋ݎܩ	݌݋ݎܥ	݁ݐܽݐܵ

	ൈ ௝݁݃ܽݏܷ	݌ݑ݋ݎܩ	݌݋ݎܥ	݁ݐܽݐܵ  

where, 
      i = county 
      j = year 

2.2.3.2. Actual Pesticide Usage Methods 2 Calculation 
For the second method, the county-level crop group usage was calculated as a fraction of the total county-level 
usage which was assumed to be proportional to the fraction of potential crop group usage in the county 
relative to the total (all crop groups) potential usage in the county. This method maintains the source data’s 
county-level total usage estimate but is not necessarily consistent with the source data’s state-level crop group 
usage estimate. The Method 2 estimate was calculated according to the following equation: 

݁݃ܽݏܷ	݌ݑ݋ݎܩ	݌݋ݎܥ	ݕݐ݊ݑ݋ܥ െ 2௜,௝ܯ ൌ ൬	
஼௥௢௣	ீ௥௢௨௣	௉௢௧௘௡௧௜௔௟	௎௦௔௚௘೔,ೕ

்௢௧௔௟	௉௢௧௘௡௧௜௔௟	௎௦௔௚௘௜೔,ೕ
	ൈ   ௜,௝൰݁݃ܽݏܷ	݈ܽݑݐܿܣ	݈ܽݐ݋ܶ
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where, 
      i = county 
      j = year 

2.2.3.3. Actual Pesticide Usage Methods 3 Calculation 
The Method 1 and Method 2 calculations each have their shortcomings. Neither of the two consider both the 
state-level crop group usage information and the county-level total usage data together. To improve upon 
these two methods, a third approach was developed to incorporate both the state-level and county-level data. 
This approach, Method 3, begins with the Method 2 estimate and then iteratively adjusts those county-level 
crop group usage estimates to conform to the state-level crop group usage estimates. The mechanics of this 
approach are best demonstrated though the example shown in Table 1 below. In this example, the source data 
is highlighted in red. The table includes the county-level total usage estimates for four counties, as provided 
by the USGS pesticide usage datasets. It also includes the state-level usage estimates by crop group for three 
crop groups, which was also provided from USGS pesticide use datasets. In examining this portion of Table 1, 
we see that summing the county-level total usage results in 2,000 (kg) of usage, and that summing the state-
level crop group usage also results in 2,000 (kg) of usage. The third piece of source data, as presented, is the 
county-level crop group potential usage estimates, derived from the county-level crop acreages determined 
from CDL and the labeled maximum annual application rates for the pesticide.  

The first derived portion of the calculation is the Method 2 estimates shown at the top right of Table 1 in blue. 
These county-level crop group estimates maintain the county-level total usage estimates from the source data; 
however, the resulting state-level crop group usage deviates from the source data, sometimes significantly. For 
example, the Method 2 calculations result in an estimated 700 (kg) of usage on Crop3; however, the source 
data reported 400 (kg) of usage on Crop3. Method 3 addresses this inconsistency by rescaling the county-level 
crop group estimates back towards the state-level crop group estimates.  

In Iteration 1, the county-level crop group usage estimates from Method 2 are multiplied by the ratio of the 
source data state-level crop group usage to the state-level crop group usage estimated from Method 2. For 
example, for Crop1 in County 2, the Method 2 estimate of 250 (kg) is multiplied by (800/750) to get an 
adjusted estimate of 267 (kg). Similarly, for Crop 3 in County 2, the Method 2 estimate of 250 (kg) is 
multiplied by (400/700) to get an adjusted estimate of 143 (kg). In making this adjustment, as presented in the 
table, the estimated state-level crop group usage is now equal to the source data, with a bias of 1.0 (no bias) for 
all crop groups. However, our county-level total usage estimate at Iteration 1 is now not equivalent to our 
source data, with bias ranging from 0.82 (County 2) to 1.45 (County 1).  

Iteration 2 adjusts the estimates from Iteration 1 back toward the source data county-level total usage 
estimates. Here, the county-level crop group usage estimates from Iteration 1 are multiplied by the ratio of the 
source data county-level total usage to the county-level total usage estimated at Iteration 1. For example, for 
Crop1 in County 2, the Iteration 1 estimate of 267 (kg) is multiplied by (500/410) to get an adjusted estimate 
of 326 (kg). Similarly, for Crop 3 in County 2, the Iteration 1 estimate of 143 (kg) is multiplied by (500/410) to 
get an adjusted estimate of 174 (kg). In making this Iteration 2 adjustment, the estimated county-level total 
usage is now equal to the source data, with a bias of 1.0 (no bias) for all crop groups, as shows in Table 1. 
However, our state-level crop group usage estimate at Iteration 2 is now not equivalent to our source data, 
with bias ranging from 0.92 (Crop2) to 1.06 (Crop3).  

Subsequent iterations were performed, alternating between adjusting to the state-level crop group usage and 
the county-level total usage, until the bias in both quantities stabilized near 1.0. In this example in Table 1, 
both sets of bias values converge near 1.00 after 9 iterations. Notice that the usage estimates at Iteration 9 look 
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quite different than they did after only Method 2 was applied. Although not shown here, a purely Method 1 
estimate would have resulted in very different county-level crop group estimates as well. 

It should be noted that while Method 3 results in a balance between honoring both scales of source data 
(county-level total and state-level crop group), it is not guaranteed to achieve a “perfect” estimate. Rather, it 
represents a way in which these readily available source datasets can be combined to make a well-informed 
estimate of crop group specific usage at a higher spatial resolution than is publicly available.  



 
 

CropLife America / August 12, 2019 
National Pesticide Usage Analysis 
©2019 Stone Environmental. All rights reserved 

16

Table 1. Method 3 County and Crop Group Level Actual Pesticide Usage Calculation Example. 
County  TotalUse  Crop1Pot.Use  Crop2Pot.Use  Crop3Pot.Use  TotalPot.Use  Method 2 Estimate 

1  100  0  1000  0  1000  County  Crop1Use  Crop2Use  Crop3Use  Total Use 

2  500  1000  0  1000  2000  1  0  100  0  100 

3  1000  2000  1000  1000  4000  2  250  0  250  500 

4  400  0  1000  1000  2000  3  500  250  250  1000 

State     Crop1Act.Use  Crop3Act.Use  Crop3Act.Use  Total Use  4  0  200  200  400 

1     800  800  400  2000  Total  750  550  700  2000 

      Iteration 1  Cnty Bias  Iteration 1 

               1.45  1  0  145  0  145 

               0.82  2  267  0  143  410 

               1.04  3  533  364  143  1040 

      State Crop Grp. Bias  1.01  4  0  291  114  405 

      1.00  1.00  1.00     Total  800  800  400  2000 

      Iteration 2  Cnty Bias  Iteration 2 

               1.00  1  0  100  0  100 

               1.00  2  326  0  174  500 

               1.00  3  513  350  137  1000 

      State Crop Grp. Bias  1.00  4  0  287  113  400 

      1.05  0.92  1.06     Total  838  737  425  2000 

      Iteration 3  Cnty Bias  Iteration 3 

               1.09  1  0  109  0  109 

               0.95  2  311  0  164  475 

               1.00  3  489  380  129  998 

      State Crop Grp. Bias  1.05  4  0  312  106  418 

      1.00  1.00  1.00     Total  800  800  400  2000 

      Iteration 4  Cnty Bias  Iteration 4 

               1.00  1  0  100  0  100 

               1.00  2  327  0  173  500 

               1.00  3  490  380  130  1000 

      State Crop Grp. Bias  1.00  4  0  298  102  400 

      1.02  0.97  1.01     Total  817  779  404  2000 

      Iteration 5  Cnty Bias  Iteration 5 

               1.03  1  0  103  0  103 

               0.98  2  320  0  171  491 

               1.00  3  480  391  128  999 

      State Crop Grp. Bias  1.02  4  0  307  101  407 

      1.00  1.00  1.00     Total  800  800  400  2000 

      Iteration 6  Cnty Bias  Iteration 6 

               1.00  1  0  100  0  100 

               1.00  2  326  0  174  500 

               1.00  3  480  391  128  1000 

      State Crop Grp. Bias  1.00  4  0  301  99  400 

      1.01  0.99  1.00     Total  806  792  401  2000 

      Iteration 7  Cnty Bias  Iteration 7 

               1.01  1  0  101  0  101 

               0.99  2  323  0  174  497 

               1.00  3  477  395  128  1000 

      State Crop Grp. Bias  1.01  4  0  304  98  403 

      1.00  1.00  1.00     Total  800  800  400  2000 

      Iteration 8  Cnty Bias  Iteration 8 

               1.00  1  0  100  0  100 

               1.00  2  325  0  175  500 

               1.00  3  477  395  128  1000 

      State Crop Grp. Bias  1.00  4  0  302  98  400 

      1.00  1.00  1.00     Total  802  797  401  2000 

      Iteration 9  Cnty Bias  Iteration 9 

               1.00  1  0  100  0  100 

               1.00  2  324  0  174  499 

               1.00  3  476  396  128  1000 

      State Crop Grp. Bias  1.00  4  0  303  98  401 

      1.00  1.00  1.00     Total  800  800  400  2000 
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2.2.3.4. Evaluation of Actual Usage Estimates Against Known Actual Usage, California PUR 
The methods described in the previous three sections (Method 1, Methods 2, and Method 3) were applied in 
California and compared against the PUR data. This analysis required the following steps to prepare the data 
for comparison. 

1. The PUR data for malathion labeled crops were assigned to the USGS crop groups and aggregated to 
the state-level. This data was then analogous to the USGS state-level crop group usage estimates. 

2. The PUR data for malathion labeled crops were aggregated to the county-level for all of the USGS 
crop groups combined. This data was then analogous to the USGS county-level total usage estimates. 

3. The PUR data for malathion labeled crops were assigned to the USGS crop groups and aggregated to 
the county-level. This data the represents the “true” actual usage at the county and crop group level 
and is therefore the data that our usage estimates will be compared to. 

The estimates from each of the three county-level crop group estimation methods were compared to the “true” 
PUR estimates by pairing each county crop group usage estimate for every county and year (2010–2016) and 
performing a linear regression. The county-level estimates and actual PUR usage were then aggregated to the 
CRD level, and the pairs of usage for every CRD and year were also compared in a linear regression. The 
coefficient of determination (R2) and the slope of the linear regression (b) for the different estimation methods 
were calculated to assess the goodness of fit of each method.  

Figure 1, Figure 2, and Figure 3 show the linear regression of the estimated county-level crop group 
malathion usage versus the observed PUR malathion usage for Method 1, Method 2, and Method 3 
respectively. The poorest estimates were based on Method 1, with an R2 statistic of 0.0308 and linear 
regression slope of 0.5628. The estimates based on Method 2 were considerably improved, with an R2 statistic 
of 0.44662 and linear regression slope of 1.1948. The usage estimates were further improved following Method 
3, with an R2 statistic of 0.7974 and linear regression slope of 1.1083. Overall, Method 3 resulted in a very 
strong agreement with the observed county-level crop group annual malathion usage. The linear regression 
slope of 1.1083 indicates that Method 3 slightly underestimated the observed usage from PUR; however, this is 
largely driven by the highest usage values. As seen in Figure 3, Method 3 often resulted in county-level usage 
estimates when the PUR reported zero usage. It was much less common for Method 3 to predict zero usage 
and the PUR to show non-zero usage.  

Figure 4, Figure 5, and Figure 6 show the linear regression of the estimated county-level crop group 
malathion usage versus the observed PUR malathion usage for Method 1, Method 2, and Method 3 
respectively. The ranking of the three estimation methods for the CRD-level estimates are the same as for the 
county-level estimates, with Method 3 far outperforming the other two methods. In addition, R2 statistics and 
linear regression slope improve for all three methods for the CRD estimates compared to the county-level 
estimates. The R2 for Method 3 increased from 0.7974 to 0.8417 and the linear regression slope decreased from 
1.1083 to 1.0468. This improvement is expected, and is a result of, the lower variability in usage estimates 
when aggregating to larger spatial units.  

Method 3 was determined to be the best estimation method and was applied for all subsequent county-level 
crop group actual usage estimates in this assessment for malathion using the USGS EPest-low and EPest-
high source datasets. Method 1 was applied for the county-level crop group usage estimates using the USDA 
Chemical Use Survey data, because the USDA data did not include the needed county-level total usage data 
required by Method 3. The USDA data represented a much smaller number of source usage estimates 
compared to the USGS dataset (only 27 state-level crop group USDA usage estimates in total from 2010 - 
2016). In California, the PUR data was used for all the county-level actual usage estimates by crop group.  
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This demonstration of the county-level and CRD-level crop group usage estimations in California represents 
one of the most complex agricultural and pesticide usage landscape in the United States, where cropping 
patterns and pest pressure are spatially highly variable. Yet, the estimation method presented performed 
extremely well. In more homogeneous states, in terms of climate, agronomy, and biology, the pesticide usage 
estimation method presented is expected to perform even better. 

 

 

Figure 1. Linear Regression of Method 1 County-Level Crop Group Annual Malathion Usage Estimates and PUR 
Observed County-Level Crop Group Malathion Usage.  
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Figure 2. Linear Regression of Method 2 County-Level Crop Group Annual Malathion Usage Estimates and PUR 
Observed County-Level Crop Group Malathion Usage. 

 
Figure 3. Linear Regression of Method 3 County-Level Crop Group Annual Malathion Usage Estimates and PUR 
Observed County-Level Crop Group Malathion Usage. 
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Figure 4. Linear Regression of Method 1 CRD-Level Crop Group Annual Malathion Usage Estimates and PUR 
Observed CRD-Level Crop Group Malathion Usage. 

 

Figure 5. Linear Regression of Method 2 CRD-Level Crop Group Annual Malathion Usage Estimates and PUR 
Observed CRD-Level Crop Group Malathion Usage. 
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Figure 6. Linear Regression of Method 3 CRD-Level Crop Group Annual Malathion Usage Estimates and PUR 
Observed CRD-Level Crop Group Malathion Usage. 

2.2.4. Actual Percent of Potential Pesticide Usage 
The actual percent usage calculation is the primary indicator of how much pesticide usage is occurring 
relative to the potential annual usage allowed by the pesticide label. This quantification is critical in a refined 
ecological (endangered species) or human health risk assessment, whereas screening level exposure and risk 
analyses assume 100% of potential use sites are treated at the maximum annual pesticide application rates. 
The actual percent usage estimates can be used quantitatively in a probabilistic exposure assessment or 
qualitatively to put into context screening level exposure estimates or risk assessment results. These actual 
percent usage estimates can also be used as a component of a formal weight-of-evidence analysis.  

Actual percent of potential usage calculations were developed by county, crop group, and year based on actual 
crop group usage estimates from: 

1. USGS EPest-low (Method 3), 
2. USGS EPest-high (Method 3), and 
3. USDA Chemical Use Survey (Method 1). 

and based on potential crop group usage estimates from: 

1. CDL-based potential pesticide usage, and 
2. USDA survey adjusted potential pesticide usage. 

The actual crop group usage estimates by crop group were capped at the higher of the potential crop usage 
from the CDL-based and USDA survey adjusted estimates. This reduced the occurrence of anomalous 
percent of potential usage calculations which was occasionally occurring for low usage counties and crop 
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groups. These actual percent usage calculations by county, crop group, and year for multiple estimates of 
actual malathion use estimates using the following equation: 

௜,௝݁݃ܽݏܷ	ݐ݊݁ܿݎ݁ܲ	݈ܽݑݐܿܣ	݌݋ݎܩ	݌݋ݎܥ	ݕݐ݊ݑ݋ܥ ൌ ൬	
஺௖௧௨௔௟	஼௥௢௣	ீ௥௢௨௣	௎௦௔௚௘	ா௦௧௜௠௔௧௘೔,ೕ

௉௢௧௘௡௧௜௔௟	஼௥௢௣	ீ௥௢௨௣	௎௦௔௚௘೔,ೕ
൰ ∗ 100  

where, 
 i = year 
 j = county 

CRD-level and state-level actual percent of potential usage estimates were calculated by first aggregating the 
actual and potential usage at the county-level up to the CRD or state-levels. The calculations were then made 
according to the following equations: 

௜,௝݁݃ܽݏܷ	ݐ݊݁ܿݎ݁ܲ	݈ܽݑݐܿܣ	݌݋ݎܩ	݌݋ݎܥ	ܦܴܥ ൌ ൬	
஺௖௧௨௔௟	஼௥௢௣	ீ௥௢௨௣	௎௦௔௚௘	ா௦௧௜௠௔௧௘೔,ೕ

௉௢௧௘௡௧௜௔௟	஼௥௢௣	ீ௥௢௨௣	௎௦௔௚௘೔,ೕ
൰ ∗ 100  

where, 
 i = year 
 j = CRD 

௜,௝݁݃ܽݏܷ	ݐ݊݁ܿݎ݁ܲ	݈ܽݑݐܿܣ	݌݋ݎܩ	݌݋ݎܥ	݁ݐܽݐܵ ൌ ൬	
஺௖௧௨௔௟	஼௥௢௣	ீ௥௢௨௣	௎௦௔௚௘	ா௦௧௜௠௔௧௘೔,ೕ

௉௢௧௘௡௧௜௔௟	஼௥௢௣	ீ௥௢௨௣	௎௦௔௚௘೔,ೕ
൰ ∗ 100  

where, 
 i = year 
 j = state 

2.2.5. Crop Group Usage Statistics by and County, CRD, and State 
For each county (or CRD or state) and crop group combination, up to three usage estimates were calculated, 
dependent on the availability of USDA survey data, for seven years, resulting in up to 21 estimates. The usage 
statistics in California were based solely on the PUR; therefore, seven annual usage estimates were derived for 
each county/CRD/state and crop group. All annual estimates for a given crop group and county were 
combined into a population of estimates to calculate the minimum, 10th percentile, 25th percentile, 50th 
percentile, 75th percentile, 90th percentile, and maximum annual usage estimate in (kg/yr).  

Statistics on the percent of potential usage estimates were based on twice as many estimates as the actual usage 
statistics because two different potential crop group usage estimates were used (CDL-based and USDA 
Survey adjusted). This resulted in up to 42 estimates for each county/CRD/state and crop group. In 
California, where only the PUR was used for actual usage estimates, the inclusion of two different potential 
usage estimates resulted in 14 different percent of potential usage estimate per county/CRD/state. 
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3. Results and Discussion 

One of the primary deliverables from this study is the methodology for estimating crop group actual usage and 
crop group percent of potential usage at the county and CRD scales described in the methodology section of 
this report. Another primary deliverable is the application of this methodology to malathion and the resulting 
usage statistics. These results, applied nationwide, are provided as electronic data deliverables that accompany 
this report as Excel spreadsheet tables, as the volume of data makes it impractical to provide these results as 
tables within this report. Map examples and a discussion of the resulting malathion usage estimates are 
provided in the sections that follow. 

3.1. Usage by County and Crop Group 
Figure 7–Figure 14 show the 50th and 90th percentile estimates of malathion annual usage for corn, cotton, 
orchards and grapes, and vegetables and fruits for the years 2010–2016 (note that additional malathion crop 
groups are reported in accompanying Excel spreadsheet tables). For all crop groups mapped, the distributions 
of both 50th and 90th percentile estimates are strongly right-skewed, with the majority of counties having no or 
low (< 10 kg) total use. Counties with high use (> 1,000 kg) tend to be clustered in regions within a small 
number of states. Of the crop groups shown, the highest usage occurs on orchards and grapes and vegetables 
and fruits. Figure 15 and Figure 16 show the 90th percentile annual total usage of orchards and grapes mapped 
on to the CDL orchards and grapes footprint in Florida. In Figure 16, a zoom-in on central Florida, we can 
see the spatial detail at which the locations of malathion applications can be realized. 

3.2. Percent of Potential Usage by County and Crop Group 
Figure 17–Figure 24 show the 50th and 90th percentile estimates of actual percent of potential malathion 
annual usage for corn, cotton, orchards and grapes, and vegetables and fruits for the years 2010–2016 (note 
that additional malathion crop groups are reported in accompanying Excel spreadsheet tables). For all crop 
groups mapped, the distributions of 50th percentile estimates are strongly right-skewed, with most counties 
having no or low (< 5%) percent of potential usage. For the 90th percentile estimates, we see a broader 
number of counties where percent of potential usage is 20% or greater, particularly for the orchards and grapes 
and the vegetables and fruits (Figure 22 and Figure 24). It is important to consider the percent of potential 
usage in conjunction with the actual usage, as many counties with higher percent of potential usage (> 20%) 
have very low actual usage (in kg/yr). For example, the 90th percentile usage on vegetables and fruits in Texas 
and Oklahoma (see Figure 14) rarely exceeds 100 kg/yr per county, yet the 90th percentile percent of potential 
usage commonly exceeds 20% (see Figure 24). This is a result of the low acreage of the vegetable and fruit 
crops in those counties and the estimated malathion usage on those crops from the source usage datasets. 
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Figure 7. 50th Percentile Estimate of Malathion Annual Usage for Corn (2010-2016). 
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Figure 8. 90thPercentile Estimate of Malathion Annual Usage for Corn (2010-2016). 
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Figure 9. 50th Percentile Estimate of Malathion Annual Usage for Cotton (2010-2016). 
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Figure 10. 90th Percentile Estimate of Malathion Annual Usage for Cotton (2010-2016). 
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Figure 11. 50th Percentile Estimate of Malathion Annual Usage for Orchards and Grapes (2010-2016). 
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Figure 12. 90th Percentile Estimate of Malathion Annual Usage for Orchards and Grapes (2010-2016). 
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Figure 13. 50th Percentile Estimate of Malathion Annual Usage for Vegetables and Fruits (2010-2016). 
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Figure 14. 90th Percentile Estimate of Malathion Annual Usage for Vegetables and Fruits (2010-2016). 
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Figure 15. Florida 90th Percentile Estimate of Malathion Annual Usage for Orchards and Grapes, Mapped to CDL Crop Footprint. 
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Figure 16. Central Florida Focus, 90th Percentile Estimate of Malathion Annual Usage for Orchards and Grapes, Mapped to CDL Crop Footprint. 

 

 



 

CropLife America / August 12, 2019 / National Pesticide Usage Analysis / ©2019 Stone Environmental. All rights reserved 
 

34 

 

Figure 17. 50th Percentile Estimate of Actual Percent of Potential Malathion Annual Usage for Corn (2010-2016). 
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Figure 18. 90th Percentile Estimate of Actual Percent of Potential Malathion Annual Usage for Corn (2010-2016). 
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Figure 19. 50th Percentile Estimate of Actual Percent of Potential Malathion Annual Usage for Cotton (2010-2016). 
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Figure 20. 90th Percentile Estimate of Actual Percent of Potential Malathion Annual Usage for Cotton (2010-2016). 
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Figure 21. 50th Percentile Estimate of Actual Percent of Potential Malathion Annual Usage for Orchards and Grapes (2010-2016). 

 

 



 

CropLife America / August 12, 2019 / National Pesticide Usage Analysis / ©2019 Stone Environmental. All rights reserved 
 

39 

 

Figure 22. 90th Percentile Estimate of Actual Percent of Potential Malathion Annual Usage for Orchards and Grapes (2010-2016). 

 

 



 

CropLife America / August 12, 2019 / National Pesticide Usage Analysis / ©2019 Stone Environmental. All rights reserved 
 

40 

 

Figure 23. 50th Percentile Estimate of Actual Percent of Potential Malathion Annual Usage for Vegetables and Fruits (2010-2016). 
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Figure 24. 90th Percentile Estimate of Actual Percent of Potential Malathion Annual Usage for Vegetables and Fruits (2010-2016). 
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3.3. Application of Usage Data in Endangered Species Risk Assessments 
The county-level crop group pesticide usage statistics resulting from the data analysis approach presented in 
this report can be applied to refine endangered species risk assessments in multiple ways. This includes both 
quantitative and qualitative analysis methods that can be considered at multiple point during the risk 
assessment process. Several example applications and approaches are discussed here. 

3.3.1. Refinement of Pesticide Use Footprints 
The pesticide usage data can be applied directly in refinement of pesticide use footprints by crop group at the 
county-level. This can be done deterministically or probabilistically. A deterministic approach would first 
require determination of an appropriate exceedance probability. The most conservative approach would be to 
choose the maximum, while a slightly less conservative approach would be to choose the 90th percentile. The 
pesticide usage associated with, for example, the 90th percentile would then describe which counties the 
pesticide is expected to be used in for each crop group. For counties with no expected usage for a given crop 
group, those potential pesticide use sites would be removed from the pesticide use footprint. The resulting 
refined pesticide use site footprints would then be incorporated directly into a co-occurrence analysis with 
species ranges and critical habitats. This deterministic type of approach would be appropriate at a later stage 
in the screening level risk assessment or as an early refinement step. 

A probabilistic approach to refining pesticide use footprints by crop group would result in footprints 
comprised of a range of use likelihoods. The approach would again begin by determination of an appropriate 
pesticide usage exceedance probability, such as the 90th percentile, or 50th percentile if the most likely pesticide 
use is desired. The associated percent of potential pesticide usage data by county ad crop group can then be 
used as an overlay to the use footprint to assign use probabilities at the county level. Use probabilities can also 
be considered as being analogous to Percent Crop Treated for each county and crop group. The resulting 
refined pesticide use footprints, which include a likelihood of usage, can be applied in a co-occurrence analysis 
with species ranges and critical habitats, providing a much more comprehensive understanding of probability 
of pesticide usage impacting a species.   

3.3.2. Refinement of Pesticide Exposure Distributions 
Refined phases of endangered species risk assessments require spatially explicit and species-specific 
predictions of  exposure. These exposure predictions must also be represented probabilistically to account for 
the variability in climate, landscape conditions, agronomics, habitat conditions, and pesticide usage within a 
species range and critical habitat. The pesticide usage statistics resulting from the methods developed in this 
study can be used directly to parameterize exposure models used in refined risk assessment methods. This 
applies to both terrestrial and aquatic species and for species found in static and flowing water bodies.  

Refinement of terrestrial species exposure modeling can be achieved by quantifying the fraction of a species  
range receiving pesticide applications on different potential use sites. The percent of potential pesticide usage 
statistics developed in this assessment describe the fraction of potential pesticide use sites treated at the 
maximum label rate. A target percentile of usage, such as the 90th percentile which is equivalent to a 10% 
exceedance probability, can be selected to achieve the desired level of usage conservatism and applied 
quantitatively to terrestrial species exposure scenarios. This quantification can directly translate to the fraction 
of use sites treated within the species range or the likelihood of a pesticide treatment at a given location within 
the range. 

Endangered species exposure modeling scenarios for aquatic species in static water habitat are represented by 
water bodies ranging from 1 m2 to 1 ha in area with relatively small watersheds of less than 10 ha. 
Incorporation of usage data to refine these exposure scenarios can be achieved following an approach similar 
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to what was described for terrestrial species. The fraction of static water habitats impacted by pesticide usage 
within a species range or critical habitat can be quantified directly from the percent of potential usage statistics 
and probability distributions of exposure generated that account for water bodies within the species range 
where no use or limited use occurs.  

Species that inhabit flowing water bodies are potentially impacted by pesticide use occurring over large 
watershed areas. Predicting the potential exposure at the watershed scale requires that the likelihood of 
pesticide usage and/or the fraction of use sites treated across many different potential use sites and over broad 
regions be quantified. The percent of potential pesticide usage data at the county and crop group level can be 
used to assign fractions of pesticide use sites receiving applications at maximum label rates. The areas of 
potential use sites treated within a county can be randomly selected to achieve the target faction of use sites 
treated. The random selection of potential use sites treated within a watershed can be realized multiple times 
to achieve an ensemble of potential use scenarios for a given watershed that honors the percent of potential 
usage data covering multiple crop groups. This approach to incorporating usage data into parameterization of 
exposure models at the watershed scale accounts for the probability of use on different crop groups and the 
uncertainty in the specific locations of pesticide use within a watershed, resulting in a probability distribution 
of potential exposure that is constrained by actual usage data. 

3.3.3. Formal Weight-of-Evidence Analysis 
Pesticide usage data can be incorporated directly into a formal weight-of-evidence analysis. The results of a 
refined co-occurrence analysis, as described in Section 3.3.1, can provide a quantitative measure of the 
likelihood of pesticide use within a species range or critical habitat. Given data and assumptions regarding the 
distribution of a species across its range, these co-occurrence results can also be used to estimate the 
percentage of  individuals affected by pesticide use. A weight-of-evidence analysis that incorporates usage data 
may be conducted in place of refined exposure modeling for some species, which may result in more efficient 
use of analysis resources.  
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4. Conclusions 

Pesticide usage by crop group at the county-level can be estimated from best available, publicly available 
nationwide data sources. These data sources include the USGS Annual Pesticide Use database (Baker and 
Stone, 2015), USDA Agricultural Chemical Use Program Survey (USDA, 2019a), California Pesticide Use 
Record (PUR) database (CDPR, 2019), the USDA Cropland Data Layer (Boryan et al., 2011; USDA, 2019b), 
the USDA Census of Agriculture (USDA, 2019c), and the USDA National Agricultural Statistics Service 
Annual Survey (USDA, 2019d). Several methods to generate these estimates were developed and evaluated 
against observed crop group county-level annual malathion usage from the PUR database in California. The 
best performing method considered county-level total usage, state-level crop group usage, and potential usage 
based on CDL crop acreage and label use rates. This method (Method 3) resulted in strong agreement with 
the PUR across all counties and crop groups, with an R2 of 0.7974 for county-level estimates and 0.8417 for 
CRD-level estimates. Method 3 was applied nationally using seven years of malathion usage data (2010-2016) 
resulting in probability distributions of annual usage and percent of potential usage. The percent of potential 
usage was based on both CDL and USDA AgCensus and annual survey crop group acreages. Incorporating 
both these two data sources resulted in potential usage estimates that accounted for the uncertainty in county-
level crop acreage estimates.  

Analysis of multiple years of usage data, multiple sources of data, and multiple estimates from some sources 
(EPest-low and Epest-high from USGS) allowed for the generation of usage statistics which were presented 
as percentiles and tabulated for minimum, 10th, 25th, 50th, 75th, 90th percentiles and the maximum. These usage 
statistics were generated for malathion at the county, CRD, and state-levels for nine crop groups (alfalfa corn, 
cotton, orchards and grapes, other crops, pasture and hay, rice, vegetables and fruit, and wheat) and are 
provided as Excel spreadsheets that accompany this report. Example maps of county level actual usage and 
percent of potential usage were provided to demonstrate how the data generated can be used to visualize the 
spatial distribution and magnitude of usage. Maps depicting usage associated with the specific locations of 
crops from CDL showed how locations of pesticide usage can be reconciled at the sub-county scale.  

The pesticide usage statistics generated in this study represent probability distributions of usage that can be 
incorporated into multiple phases of an endangered species risk assessment. The more conservative 90th 
percentile or maximum usage rates and percent of potential usage would be appropriate at screening-level 
steps or initial refinements of exposure, while the 50th percentile estimates represent the most likely usage 
scenarios for more refined exposure and ecological modeling. Several examples of incorporating usage data 
into endangered species risk assessments were discussed, including refined crop footprint and co-occurrence 
analysis, refined exposure modeling, and weight-of-evidence analysis. Several case studies of endangered 
species assessments where usage data played an important role are also available in the peer reviewed 
literature (Clemow et al., 2018; Whitfield Aslund et al., 2017) as well as case studies of pesticide usage data in 
refined aquatic exposure modeling (Winchell et al., 2018a; Winchell et al., 2018b). These case studies 
demonstrate the importance of carefully considering quantitative pesticide usage data in accurately predicting 
environmental exposure and deriving risk assessment conclusions.  
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The pesticide usage data sources and the estimation and analysis methodologies presented in this report 
represent an unbiased and reproduceable approach to maximizing the utility of publicly available pesticide 
usage data in human health and ecological risk assessments, including endangered species assessments. 
Additional source data, such as proprietary or higher resolution state-level data sources, could be incorporated 
into the generation of usage statistics in conjunction with the data sources presented here. While usage data at 
the spatial and temporal resolution of the California PUR database would be ideal to have in all US states and 
internationally, this report has demonstrated that we are still able to garner a tremendous amount of valuable 
information on the spatial distribution and magnitude of pesticide usage nationwide with the currently 
available datasets. Thoughtful application of this data will enable more defensible and scientifically accurate 
assessments of the risks of pesticide use to humans and the environment. 



 
 
 

CropLife America / August 12, 2019 
National Pesticide Usage Analysis 
©2019 Stone Environmental. All rights reserved 

 

46

5. References 

 

(APMC) Arizona Pest Management Center. 2014. APMC IPM Projects. 
https://cals.arizona.edu/apmc/projects.html 

Baker, N.T., and Stone, W.W. 2015. Estimated annual agricultural pesticide use for counties of the 
conterminous United States, 2008–12. US Geological Survey Data Series 907. 9 p. 
https://dx.doi.org/10.3133/ds907. 

Boryan, C., Yang, Z., Mueller, R. and Craig, M. 2011. Monitoring US agriculture: The US Department of 
Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto International. 
26(5). 341–358. 

(CDPR) California Department of Pesticide Regulation. 2019. California Pesticide Information Portal 
(CALPIP), Pesticide Use Reporting (PUR). Available Online at: https://calpip.cdpr.ca.gov/main.cfm. 

Clemow, Y., Manning, G., Breton, R., Winchell, M., Padilla, L., Rodney, S., Hanzas, J., Estes, T.,  Budreski, 
K., Toth, B., Hill, K., Priest, C., Teed, S., Knopper, L., Moore, D., Stone, C., Whatling, P.. 2018. A Refined 
Ecological Risk Assessment for California Red-legged Frog, Delta Smelt and California Tiger Salamander 
Exposed to Malathion in California. Integrated Environmental Assessment and Management. 4(2):224-239. 
doi: 10.1002/ieam.2002. Epub 2017 Dec 19. 

EPA (US Environmental Protection Agency). 1998. Guidelines for ecological risk assessment. Office of 
Research and Development, Washington, DC. EPA/630/R- 95/002F. 

EPA (US Environmental Protection Agency). 2004. Overview of the Ecological Risk Assessment Process in 
the Office of Pesticide Programs, U.S. Environmental Protection Agency: Endangered and Threatened 
Species Effects Determinations. Office of Prevention, Pesticides and Toxic Substances, Office of Pesticide 
Programs, U.S. Environmental Protection Agency, Washington, DC. January 23, 2004 [online]. Available: 
http://www.epa.gov/espp/consultation/ecorisk-overview.pdf. 

Kynetec. 2019. AgroTrak® database. Weston Court, Weston, Newbury, Berks, RG20 8JE, UK: Kynetec. 
Available at: www.kynetec.com.  

(MDA) Minnesota Department of Agriculture. 2019. Minnesota Agricultural Statistics Division | Minnesota 
Department of Agriculture. https://www.mda.state.mn.us/minnesota-agricultural-statistics-division 

(MDAR) Massachusetts Department of Agricultural Resources. 2019. Pesticide Sales and Use Reporting 
|Mass.gov. https://www.mass.gov/how-to/pesticide-sales-and-use-reporting 

(NHDA) New Hampshire Department of Agriculture. 1998. GRANIT : Layers by Data Category. 
http://www.granit.unh.edu/data/datacat/pages/pest.pdf 



 
 
 

CropLife America / August 12, 2019 
National Pesticide Usage Analysis 
©2019 Stone Environmental. All rights reserved 

 

47

 (NYSDEC) New York State Department of Environmental Conservation. 2016. Pesticide Sales and Use 
Reporting. http://psur.cce.cornell.edu/ 

(ODA) Oregon Department of Agriculture. 2000. Oregon Pesticide Use Reporting System. 
http://www.ipmnet.org/Pesticide_Toxicology/Reports_Other/OPURS_analytical_review.pdf 

(USDA) US Department of Agriculture. 2019a. Agricultural Chemical Use Program Survey. Available Online 
at: https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Chemical_Use/index.php  

(USDA) US Department of Agriculture. 2019b. National Agricultural Statistics Service Cropland Data Layer. 
Available Online at: http://nassgeodata.gmu.edu/CropScape/  

(USDA) US Department of Agriculture. 2019c. Census of Agriculture. Available Online at: 
https://www.nass.usda.gov/AgCensus/index.php  

(USDA) US Department of Agriculture. 2019d. NASS Survey Data, Quick Stats. Available Online at: 
https://quickstats.nass.usda.gov/ 

Whitfield Aslund, M., Breton, R., Padilla, L., Winchell, M., Wooding, K. L., Moore, D. R. J., Teed, R. S., 
Reiss, R. and Whatling, P. 2017. Ecological risk assessment for Pacific salmon exposed to dimethoate in 
California. Environ Toxicol Chem, 36: 532–543. doi:10.1002/etc.3563. 

Winchell, M., Pai, N., Brayden, B., Stone, C., Whatling, P., Hanzas, J., Stryker, J. 2018a. Evaluation of 
Watershed-Scale Simulations of In-Stream Pesticide Concentrations from Off-Target Spray Drift. Journal of 
Environmental Quality, 47(1):79-87. doi: 10.2134/jeq2017.06.0238.  

Winchell, M., Peranginangin, N., Srinivasan, R., Chen, W. 2018b. Soil and Water Assessment Tool model 
predictions of annual maximum pesticide concentrations in high vulnerability watersheds. Integrated 
Environmental Assessment and Management. 4(3):358-368. doi: 10.1002/ieam.2014. Epub 2018 Jan 12. 

  

 

 

 

 

 



 

CropLife America / August 12, 2019 / National Pesticide Usage Analysis / ©2019 Stone Environmental. All rights reserved 
 

48 

Appendix A 

Table A- 1 CDL class name, USGS crop group and potential use rate assigned to the crops use pattern listed in the malathion product label 

Malathion Label Crop CDL Class Name 
CDL Class 

Code USGS Crop Group 
Potential Use Rate 

(lbs ai/ac) 

alfalfa Alfalfa 36 alfalfa 7.50 

apricots Apricots 223 orchards and grapes 3 

asparagus Asparagus 207 vegetables and fruits 2.5 

avocado Other Tree Crops 71 orchards and grapes 9.4 

barley Barley 21 other crops 2.5 

barley Dbl Crop Barley/Corn 237 other crops 2.5 

barley Dbl Crop Barley/Sorghum 235 other crops 2.5 

barley Dbl Crop Barley/Soybeans 254 other crops 2.5 

beans (dry; snap; lima) Dry Beans 42 vegetables and fruits 1.22 

beets, garden Misc Vegs & Fruits 47 vegetables and fruits 3.75 

blueberry Blueberries 242 vegetables and fruits 3.75 

broccoli ; chinese broccoli ; broccoli 
rabb Broccoli 214 vegetables and fruits 2.5 

brussels sprouts Misc Vegs & Fruits 47 vegetables and fruits 2.5 

cabbage ; chines cabbage Cabbage 243 vegetables and fruits 7.5 
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Table A- 1 CDL class name, USGS crop group and potential use rate assigned to the crops use pattern listed in the malathion product label 

Malathion Label Crop CDL Class Name 
CDL Class 

Code USGS Crop Group 
Potential Use Rate 

(lbs ai/ac) 

caneberries (blackberry; boysenberry; 
dewberry; gooseberry; loganberry; 
raspberry) Caneberries 55 vegetables and fruits 6 

cantaloupe Cantaloupes 209 vegetables and fruits 2 

carrots Carrots 206 vegetables and fruits 2.5 

cauliflower Cauliflower 244 vegetables and fruits 2.5 

celery Celery 245 vegetables and fruits 3 

chayote fruit Misc Vegs & Fruits 47 vegetables and fruits 3.5 

chayote root Misc Vegs & Fruits 47 vegetables and fruits 3.12 

cheeries (sweet and tart) Cherries 66 orchards and grapes 7 

chestnut Other Tree Crops 71 orchards and grapes 7.5 

citrus fruits (grapefruit; lemon; lime; 
orange; tangerine; tangelo) Citrus 72 orchards and grapes 4.5 

citrus fruits (grapefruit; lemon; lime; 
orange; tangerine; tangelo) Oranges 212 orchards and grapes 4.5 

citrus fruits (grapefruit; lemon; lime; 
orange; tangerine; tangelo) Citrus 72 orchards and grapes 7.5 

citrus fruits (grapefruit; lemon; lime; 
orange; tangerine; tangelo) Oranges 212 orchards and grapes 7.5 

clover Clover/Wildflowers 58 other crops 7.5 

collards Greens 219 vegetables and fruits 3 

corn (field) Corn 1 corn 2 
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Table A- 1 CDL class name, USGS crop group and potential use rate assigned to the crops use pattern listed in the malathion product label 

Malathion Label Crop CDL Class Name 
CDL Class 

Code USGS Crop Group 
Potential Use Rate 

(lbs ai/ac) 

corn (field) Dbl Crop Corn/Soybeans 241 corn 2 

corn (field) Pop or orn corn 13 vegetables and fruits 2 

corn (sweet) Sweet corn 12 vegetables and fruits 2 

cotton Cotton 2 cotton 7.5 

cotton Dbl Crop Soybeans/Cotton 239 cotton 7.5 

cucumber Cucumbers 50 vegetables and fruits 3.5 

currant Caneberries 55 vegetables and fruits 3.75 

dandelion Other Crops 44 other crops 2.5 

eggplant Eggplants 248 vegetables and fruits 6.24 

endive (escarole) Misc Vegs & Fruits 47 vegetables and fruits 2.5 

figs Other Tree Crops 71 orchards and grapes 4 

garlic Garlic 208 vegetables and fruits 4.68 

grapes (raisin, table, wine) Grapes 69 orchards and grapes 3.76 

grass, forage, hay (Bermuda, barnyard 
grass, canary grass, yellow foxtail) 
fescue, orchardgrass, red top, timothy, Other Hay/Non Alfalfa 37 pasture and hay 3.75 

grass, forage, hay (Bermuda, barnyard 
grass, canary grass, yellow foxtail) 
fescue, orchardgrass, red top, timothy, Other Hay/Non Alfalfa 37 pasture and hay 3.75 

guava Other Tree Crops 71 orchards and grapes 16.25 

hops Hops 56 other crops 1.89 

horseradish Misc Vegs & Fruits 47 vegetables and fruits 3.75 
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Table A- 1 CDL class name, USGS crop group and potential use rate assigned to the crops use pattern listed in the malathion product label 

Malathion Label Crop CDL Class Name 
CDL Class 

Code USGS Crop Group 
Potential Use Rate 

(lbs ai/ac) 

kale Greens 219 vegetables and fruits 3 

kohlrabi Misc Vegs & Fruits 47 vegetables and fruits 2.5 

leek Misc Vegs & Fruits 47 vegetables and fruits 3.12 

lespedeza Other Hay/Non Alfalfa 37 pasture and hay 7.5 

lettuce (head & leaf) Lettuce 227 vegetables and fruits 3.76 

lettuce (head & leaf) Dbl Crop Lettuce/Barley 233 vegetables and fruits 3.76 

lettuce (head & leaf) Dbl Crop Lettuce/Cantaloupe 231 vegetables and fruits 3.76 

lettuce (head & leaf) Dbl Crop Lettuce/Cotton 232 vegetables and fruits 3.76 

lettuce (head & leaf) Dbl Crop Lettuce/Durum Wht 230 vegetables and fruits 3.76 

macadamia nut Other Tree Crops 71 orchards and grapes 5.64 

mango Other Tree Crops 71 orchards and grapes 9.4 

melons (other than watermelon) Misc Vegs & Fruits 47 vegetables and fruits 2 

mint Mint 14 vegetables and fruits 2.82 

mustards (mustard greens; mustard 
spinach; chinese mustard mizuna) Mustard 35 vegetables and fruits 3 

nectarines Nectarines 218 orchards and grapes 9 

oats Oats 28 other crops 2 

oats Dbl Crop Oats/Corn 226 other crops 2 

oats Dbl Crop Soybeans/Oats 240 other crops 2 
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Table A- 1 CDL class name, USGS crop group and potential use rate assigned to the crops use pattern listed in the malathion product label 

Malathion Label Crop CDL Class Name 
CDL Class 

Code USGS Crop Group 
Potential Use Rate 

(lbs ai/ac) 

okra Misc Vegs & Fruits 47 vegetables and fruits 6 

onion Onions 49 vegetables and fruits 3.12 

papaya Other Tree Crops 71 orchards and grapes 10 

parsley Greens 219 vegetables and fruits 3 

parsnip Misc Vegs & Fruits 47 vegetables and fruits 3.75 

passion fruit Misc Vegs & Fruits 47 vegetables and fruits 8 

pasture and rangeland Other Hay/Non Alfalfa 37 pasture and hay 2.76 

peaches Peaches 67 orchards and grapes 9 

pears Pears 77 orchards and grapes 2.5 

peas Peas 53 vegetables and fruits 2 

pecans Pecans 74 orchards and grapes 5 

peppers Peppers 216 vegetables and fruits 3.12 

pineapple Misc Vegs & Fruits 47 vegetables and fruits 6 

potatoes Potatoes 43 vegetables and fruits 3.12 

pumpkins Pumpkins 229 vegetables and fruits 2 

radish Radishes 246 vegetables and fruits 3 

rice (and wild rice) Rice 3 rice 2.5 

rutabagas Misc Vegs & Fruits 47 vegetables and fruits 3 

rye Rye 27 other crops 3 

salsify Misc Vegs & Fruits 47 vegetables and fruits 3.75 
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Table A- 1 CDL class name, USGS crop group and potential use rate assigned to the crops use pattern listed in the malathion product label 

Malathion Label Crop CDL Class Name 
CDL Class 

Code USGS Crop Group 
Potential Use Rate 

(lbs ai/ac) 

shallot Misc Vegs & Fruits 47 vegetables and fruits 3.12 

sorghum Sorghum 4 other crops 2 

spinach Greens 219 vegetables and fruits 2 

squash, summer Squash 222 vegetables and fruits 5.25 

squash, winter Squash 222 vegetables and fruits 3 

strawberry Strawberries 221 vegetables and fruits 8 

sweet potatoes Sweet Potatoes 46 vegetables and fruits 3.12 

swiss chard Greens 219 vegetables and fruits 2 

tomatoes (and tomatillos) Tomatoes 54 vegetables and fruits 6.24 

trefoil (birdsfoot) Other Hay/Non Alfalfa 37 pasture and hay 7.5 

turnips Turnips 247 vegetables and fruits 3.75 

vetch Vetch 224 pasture and hay 7.5 

walnuts Walnuts 76 orchards and grapes 7.5 

watercress Greens 219 vegetables and fruits 6.25 

watermelons Watermelons 48 vegetables and fruits 2 

wheat (spring and winter) 
Dbl Crop Durum 
Wht/Sorghum 234 wheat 2 

wheat (spring and winter) Dbl Crop WinWht/Corn 225 wheat 2 

wheat (spring and winter) Dbl Crop WinWht/Cotton 238 wheat 2 

wheat (spring and winter) Dbl Crop WinWht/Sorghum 236 wheat 2 

wheat (spring and winter) Dbl Crop WinWht/Soybeans 26 wheat 2 
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Table A- 1 CDL class name, USGS crop group and potential use rate assigned to the crops use pattern listed in the malathion product label 

Malathion Label Crop CDL Class Name 
CDL Class 

Code USGS Crop Group 
Potential Use Rate 

(lbs ai/ac) 

wheat (spring and winter) Durum Wheat 22 wheat 2 

wheat (spring and winter) Spring Wheat 23 wheat 2 

wheat (spring and winter) Winter Wheat 24 wheat 2 

yams Misc Vegs & Fruits 47 vegetables and fruits 3.12 
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