Scalable Infrastructure for Malware Labeling and Analysis

Konstantin Berlin

Director, Sophos Al

October 8, 2019

Problem in a nutshell

Complexities

- Numerious Feeds
 - Multiple products
 - External intelligence feeds
 - Analyst feedback
- Data Size
 - Raw data is huge
 - Billions of events per day
 - Information distributed across multiple feeds over months
- Labeling
 - Labels change constantly
 - Complex logic
 - Constantly refined
- Validating/Monitoring
 - New files must be constantly scored
 - New model release requires rescoring of all files quickly
 - Need to roll back state to time of each event
- GDPR
 - Raw data distributed across multiple regions

Key AWS Technologies

- Fully managed message queue
- Autoscaling
- 14 day retention
- Multiple retries with delay
- Recovery from incomplete operation

- Cheap blob storage
- Automated cold storage
- Sends changes to SQS

SOPHOS

- Cheaper than Lambda
- Easy to initialize complex environment, including GPU inference
- Scaling based on SQS and CloudWatch properties

Redshift

- Column oriented distributed DB
- Large write capacity
- Very high compression level (cheap storage)
- Ok to have wide tables

Basic Paradigms

- "Data lake first"
 - No data goes into a database only
 - Easy replay if something goes wrong
 - Easy to change databases
 - Easy data sharing across groups
- Aggressive Batching
 - Minimizes number of events
 - Reduced S3 costs
 - Reduced SQS costs

- Fully Managed, When Possible
 - Let engineers work on more important problems
 - Keeps up with latest and greatest

Data Ingestion (Telemetry, VT, Model Scores)

- Minimize Cost
 - Spot instances, batching, S3 replication across GDPR regions
- Minimize Maintenance
 - Managed services, minimum components, automatic recovery via SQS and S3
- Resilience and Scaling
 - Autoscaling in all components, supports 10-100x data bursts for backpopulation

How Does Storage Look?

Metadata Aggregation and Correlation

- Columnar distributed storage
 - Wide tables

- Keep as much data as you can
- Most queries need few columns
 - Ex. Label, Prediction
- Timestamp everything!
- Daily joins between all sources
 - Keeps only first seen and last seen
 - sha256 as distribution key
 - sha256 + timestamp as sort key
- Constant vacuuming in background
- Weekly cleaning of duplicates and older data

Redshift Use Cases

Improve ML Training

- Labeling
 - Join across multiple source to form labels
 - Instantly relabel all artifacts
- Training metadata
 - Redshift unload to S3
 - Complex queries define arbitrary training labels
 - Export of 100M+ rows takes minutes
 - SQL define training and validation data for all models
- Fill gaps using smart queries
 - Implement active learning strategies
 - Find missing data and fill it

Dashboard Monitoring (Performance and Issues)

Questions?

