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Background (Al-rimy, B. et al. 2018)

 Ransomware is a category of malware which hijacks victim’s data 
or machine and demands monetary returns

 Taxonomy:

– Locker-ransomware: hijack resources without encryption

– Crypto-ransomware: encrypt files

 The damage done by crypto-ransomware is irreversible in most 
cases due to the use of cryptography
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https://www.sciencedirect.com/science/article/pii/S016740481830004X
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Typical Steps of Ransomware (McAfee 2017)
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https://www.mcafee.com/enterprise/en-us/assets/white-papers/wp-understanding-ransomware-strategies-defeat.pdf
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Backup 

Solutions

Purpose of Detector:

Crypto-ransomware

Detector

Rollback

File I/O Events, Entropy, Path

Early Detection

 Find crypto-ransomware early by its behavior when AV missed it 
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Ransomware Dataset
 From VirusTotal

– Downloaded total ~22k ransomware by Microsoft and Kaspersky’s labels  

– ~5min execution for each sample

– In bare-metal sandbox system with 

anti-evasion mechanism

 Decoy files to identify crypto-ransomware 

 Total ~4.4k active samples:
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Behavior Data – File Input/Output Events

 Collected by POC Windows application

– Based on C#.Net framework, FileSystemWatcher (FSW)

– Entropy of target files calculated by normalized Shannon entropy

 Sample data:

– Time stamp, I/O event type, target filename, entropy etc.
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Machine Learning Analysis

 ~3.7k ransomware and similar amount of benign data (~100 
applications).  80/20 split for training/testing dataset

 Featuring by event type with bucketed entropy (-,0.2,0.4,0.6,0.8,0.9)

– Categorize into distinct features

 ML Algorithms for supervised learning: 

– Long-Short Term Memory (LSTM), Recurrent Neural Networks 

– Linear Support Vector Machine (SVM) with bag of N-gram, N=1 & 2
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ML Pipeline & Outcome of Supervised Learning

Model N–gram Accuracy FPR Dist. Features

Linear SVM 1 & 2 98.31% 2.89% 90

LSTM n/a 98.67% 1.38% 9

Data
Processing

ML/DL
Training

ML/DL 

Classifier
Validation

I/O 

Events 

ML/DL Iteration
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Online Detector

 A POC program utilized the ML classifier

– Sample the I/O event stream by a sliding window

– Real-time inference: small footprint and run fast

 Issues found after deployment:

1. False alarms from some applications

2. Size of sliding window affects the detection rate

3. Cannot find ransomware early
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1. Early Detection Issue

 Early detection is important

– No practical value if can’t detect encryption early

 When will the ransomware start doing encryption?

– Identify the starting time by the decoy file

Full I/O log ~300sec

: benign observation/time step

: malicious observation

First malicious I/O event 
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 Ransomware may not show malicious activities at the 
beginning of execution
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Early Detection and Sliding Window Testing
 Prepare samples to measure the performance

– From ~700 unseen out-of-sample ransomware logs

 Extract early-stage data from each logs by

– different time periods 

– different sliding windows

 Example:
0-1s

0-5s

0-10s

full

…

Size of sliding window: 250~1k obs.

~300sec

: benign observation/time step

: malicious observation
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Detection Rate of Early-stage and Sliding-window
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Data Augmentation

 Synthesize samples from existing dataset for a re-train

– Early-stage samples

– Sliding-window samples

– Exclude samples without malicious events

 “Augmented” dataset count: 17.2k ransomware (80/20 split)

Model N–gram Accuracy FPR Dist. Feature

Linear SVM 1 & 2 99.13% 1.21% 90

LSTM n/a 99.47% 0.60% 9
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Detection Rate by Augmented Classifier 
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3. False Positive Issue

 Some benign-ware has similar ransomware behaviors

– Delete or rename many files, change files with high entropy

 Solution: Add a new dimension to feature

– Path: system vs. non-system folders

– System path list: c:\Windows, c:\ProgramData, c:\Program Files, 
c:\Progra~, c:\AppData, \Downloads\, \Downlo~, c:\Config.msi
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 Lower FPR with flag added

 22k out-of-sample clean execution log: 

– FPR down from 0.18% to 0.00% for SVM (40->0/22,174) 

– FPR down from 0.09% to 0.04% for LSTM (21->9/22,174) 

Results with Path Flag

Model N–gram Accuracy FPR Dist. Features

Linear SVM 1 & 2 99.00% 1.34% 90

Linear SVM (+ path) 1 & 2 99.53% 0.54% 339

LSTM - 98.26% 3.82% 9

LSTM (+ path) - 98.35% 1.80% 18
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 Attribution: which feature/time step contribute the most? 

Model Fidelity by Integrated Gradients Sundararajan M et al ‘17
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http://proceedings.mlr.press/v70/sundararajan17a/sundararajan17a.pdf
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Explanation of LSTM Models 
 Feature attribution plot of ransomware:
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Adversarial Research
 A simulated ransomware, the Red team, was developed in C#

– Rename, encrypt and delete files etc.

– Evasive tricks to probe the detector (grey box attack):
– Behavior temporal changes: e.g. slowdown the malicious activities

– Encryption changes: e.g. insert dummy data to lower the file entropy

– It’s not difficult to evade our ML detector

 Improve model’s resiliency by: 

– Discover weakness by the Red team with various conditions

– Re-train model by the false negatives samples
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Probing LSTM Models – by Event Insertion

Original Sample, +, 0.96 Insert 7 benign events, -, 0.01
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Conclusion: ML Pipeline +++

Data
Processing

+Augmentation

Simulated
Adversarial

ML/DL
Training

Raw 

Data

ML/DL 

Classifier
Validation

+Fidelity Check

Adversarial 

Samples

ML/DL Iteration

+Adversarial ML/DL Iteration
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Our Team Members and Projects

 Erdem Aktas; Li Chen; Anindya Paul

 MLsploit: a platform for ML model comparison and sample sharing for 
adversarial research

– github.com/mlsploit

– github.com/intel/Resilient-ML-Research-Platform
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Legal Notices and Disclaimers

 No license (express or implied, by estoppel or otherwise) to any intellectual property rights is 
granted by this document. These materials are provided as-is, with no express or implied 
warranties. All products, computer systems, dates and figures specified are preliminary based on 
current expectations, and are subject to change without notice. The products described may 
contain design defects or errors known as errata which may cause the product to deviate from 
published specifications. Intel does not control or audit third-party data or the web sites 
referenced in this document. You should visit the referenced web site and confirm whether 
referenced data are accurate. 

 © 2019 Intel Corporation.  Intel and the Intel logo are trademarks of Intel Corporation in the U.S. 
and/or other countries. 

 *Other names and brands may be claimed as the property of others. 

26


