Compilation as a Defense
Enhancing DL Model Attack Robustness via Tensor Optimization

Stefan Trawicki, William Hackett, Lewis Birch, Neeraj Suri, Peter Garraghan
Adversarial ML (AML)

- Attacks on ML models and their systems

- Threat classification frameworks
 - Extraction (stealing)
 - Inversion (reproducing data)
 - Evasion (tricking the model)
AML Side-Channel Attacks

• Extract leaky information from running processes

• Associate data with model attributes
 • Models can have a fingerprint left by resource access and allocation

• Extract sensitive or valuable information
Risks Posed by Side-Channels

• Leaky information has many sources
 • Data not yet considered sensitive or important, hence unsecured

• Potentially model and dataset agnostic

• Undertaken in few inferences (< 1 second)

• Steal an architecture, parameters, data, stage further attacks
Current Defences

• Standard cybersec methods to secure system
 • But huge space to secure

• ModelObfuscator
 • Obscures and adds loop structures
 • But not model or framework agnostic
 • Model *fingerprint* can remain as before...

• A method to agnostically modify architecture and fingerprint is better...
Objective

• Compilation as a Defence
 • Generate bespoke neural network operator implementations

• Model operator schedule modification
 • Less readable *fingerprint* as a byproduct of optimization?
 • Break the model-process associations
 • Lower chance of reproduction

• No negative impact on inference time
Background: ML Compilers

- Tensorflow, Pytorch, etc, provide graph representations that are mapped into executable code

- Intermediate representations (IRs) are ‘lowered’
 - Graph → tuned IRs → LLVM, NVCC → machine code
 - Lowering IRs generates unoptimized code for a machine
 - Most compilers use heuristics to apply optimizations
Background: Apache TVM

- Generates bespoke implementations per machine
 - Uses simulated annealing to generate candidates
 - Runs trials guided by a tuner

- End-to-end
 - Accepts almost any frontend
 - Optimizes flow graph and operators
 - Targets almost any backend

- Model/framework agnostic
 - Leverages a very mature ecosystem
Goal

• Apply TVM to different models
 • Different domains, architectures, sizes

• Perform increasing amounts of optimization
 • More trials and better-performing tuners

• Assess whether attack success is decreased with optimized models
Experiment Setup

- ResNet18, DenseNet121, RoBERTa & YoloV4
 - 8-124 million parameters
 - Multi-domain (image classifier, text, object detection)
 - All ONNX framework

- TVM parameters
 - 0 to 500 trials
 - Random and XGB rank tuner
 - Additionally, graph optimisation was tested

= ~240 combinations
= 83 hours of compute
Method: Assessment pipeline

- Nvidia NCU to measure kernel memory reads/writes

- Measure reconstruction accuracy (fidelity) of stolen model with the DeepSniffer Side Channel Attack
Preliminary Results
Random Tuner

Trials

Fidelity

ResNet18
YoloV4
RoBERTa
DenseNet121
Discussion
Graph Optimization

XGB Rank Tuner

Random Tuner
Selective Operator Optimization

• Find operators conducive to fingerprinting and optimize them heavily
 • Would require far less compute
 • Use to better guide the tuner
Utilize Ansor

- This experimentation used AutoTVM
- Ansor/Auto-Scheduler generates even more bespoke implementations

<table>
<thead>
<tr>
<th>Step</th>
<th>AutoTVM Workflow</th>
<th>Auto-scheduler Workflow</th>
</tr>
</thead>
</table>
| 1. Write a compute definition | # Matrix multiply
C = te.compute((M, N), lambda x, y:
te.sum(A[x, k] * B[k, y], axis=k)) | # The same |
| (relatively easy part) | # 20-100 lines of tricky DSL code | # Not required |
| 2. Write a schedule template | # Define search space
cfg.define_split("tile_x", batch, num_outputs=4)
cfg.define_split("tile_y", out_dim, num_outputs=4) | |
| (difficult part) | # Apply config into the template
bx, txz, tx, xi = cfg["tile_x"].apply(s, C, C.op.axis[0])
by, tyz, ty, yi = cfg["tile_y"].apply(s, C, C.op.axis[1])
s[C].reorder(by, bx, tyz, txz, ty, tx, y1, xi)
s[C].compute_at(s[C], tx) | |
| 3. Run auto-tuning (automatic search) | tuner.tune(...) | task.tune(...) |
Other Ideas

• Frequently changing the applied optimizations
 • Moving-target

• Applying in combination with existing approaches
 • Theoretically fully compatible with ModelObfuscator
Conclusions

• Demonstrated automatic & agnostic method to increase model robustness to attack

• Attack success decreases of over 40% using tensor optimization

• Discussed avenues to expand on the preliminary work