

Evaluation of Sentinel-3 OLCI Level 2 products in Australian waters

Schroeder T. on behalf of the Australian S3VT 16 February 2017 S3VT meeting, ESA-ESRIN, Frascati, Italy

CSIRO OCEANS & ATMOSPHERE FLAGSHIP www.csiro.au

This presentation

- IMOS Lucinda Jetty Coastal Observatory
 - Measurements, site variability
- Radiometric match-ups "standard" and C2RCC processor
- Other IMOS activities to improve quality of measurements
 - Radiometry Task Team
- Water quality match-ups "standard" and C2RCC
- Some Bio-Argo results

Lucinda Jetty Coastal Observatory (LJCO)

Quasi-operational data acquisition re-established in early 2014 Continuous measurements + fortnightly water sampling

S3 Validation Team Meeting, 15-17 Feb 2017, Frascati, Italy

Overview above-water measurements

(A)

(B)

Weather Station Temperature Pressure Humidity Dew point Wind speed etc

(A)

Webcams Sky and Sea

Satlantic

Spectral irradiance

(D)

(C)

(C)

(B)

(B)

Marine Observing Sy

SeaPRISM (7 wavelengths) Water-leaving radiance Aerosol optical thickness Aerosol absorption Aerosol size distribution Refractive index Single scattering albedo Phasefunction Water vapor Spectral flux Radiative forcing

Overview in-water optical measurements

WetStar fluorometer CDOM absorption Chlorophyll-a Uranine Phycoeryhrin

ACs (80 wavelengths) Total absorption Total attenuation Automatic winch controller keeps cage at a constant depth

WQM Temperature Salinity Depth Dissolved oxygen Turbidity Back scattering Chlorophyll fluorescence

BB9 (9 wavelengths) Back-scattering

DAPCS Network enabled real-time data logger

ACs switching unit (filtered/unfiltered)

Fortnightly servicing and water sampling optimized for satellite match-ups

It's a variable coastal site Tidal range 0.2-4 m Water temperature 22-31°C

Salinity 27-36.5

(Image credit D. Boadle)

-

In-situ variability key water quality parameter

Water quality sampling – 73 days (2014-2016)

Total Suspended Solids, Pigments, Spectral absorption of CDOM, Detritus, phytoplankton

TSS	[1.17-35.7] g m ⁻³
Chlorophyll-a	[0.22-6.35] mg m ⁻³
CDOM 443 nm	[0.01-0.49] m ⁻¹

Sample collection times optimized for satellite match-ups

Filtration Townsville Lab

Shipment CDOM, TSS overnight Hobart, pigments and particulate absorption twice a year Absorption budget 442 nm

(Analysis: Baker B., Boadle D., Clementson L., Woizniak M.)

S3 Validation Team Meeting, 15-17 Feb 2017, Frascati, Italy

In-situ variability key water quality parameter Water quality sampling – 73 days (2014-2016)

CSIRC

(Analysis: Baker B., Boadle D., Clementson L., Woizniak M.)

S3 Validation Team Meeting, 15-17 Feb 2017, Frascati, Italy

In-situ variability atmospheric data AERONET-OC 2013-2016 and Weather Station Vaisala WXT520

Barometric pressure Relative humidity Air temperature Wind speed, direction <u>From pressure transducer</u> Water temperature, wave height

AOT 550 nm

Median0.067Min0.017Max0.278

Angström 500/870 nm

Median 0.55

Maritime [%]	Continental [%]	Angström 550/870
100	0	0,211
90	10	0,313
80	20	0,415
70	30	0,517
60	40	0,619
50	50	0,721
40	60	0,823
30	70	0,924
20	80	1,026
10	90	1,128
0	100	1,230

Level 2 validation

Focus on radiometric measurements Lucinda Jetty, Ship-borne

Hyper-spectral measurements (DALEC) added to Lucinda in May Funding secured to continue radiometric measurement under IMOS until June 2017 Anticipated +5 years until 2022

Sentinel-3A Expert Users Meeting 28-30 June 2016, ESA-ESRIN, Frascati

me to Conernicus Australia

a provides free and open access to data from the European Comm coional data hub supports Europe's must ambitious and multi-faceted Earth observation programme vet ess points to the Scientific Hub and API Hub along with links to the user guide and roadmap

The Scientific Hub provides access points for all ESA and EUMETSAT produced Sentinel data in this region utilising a basic download interface.

The API Hub offers a Machine to Machine interface to the data which is currently under construction, expected late 2016.

Sentinel-3A Data Access

S3VT: EUMETSAT ODA Rolling Archive

- **OLCI** L1+L2 FR+RR Australia + LJCO subsets since 12 May 2016 Volume: 4.2 TB
- SLSTR L2 since 21 June 2016 Volume ~150 GB

Public: EUMETCast Terrestrial on NCI

- OLCI L1 FR+RR Asia-Pacific since 18 Oct 2016
- SLSTR L1 since Asia-Pacific 16 Nov 2016

Radiometric match-ups OLCI vs DALEC

3x3 FR, min 5 un-flagged pixels, no reprocessed data included

Operational Pro	ocessor	C2CCR N=19				
00 INVALID 02 LAND 03 CLOUD 08 SUSPECT 09 HISOLZEN 10 SATURATED 11 MEGLINT 12 RISKGLINT 13 WHITECAPS 17 AC_FAIL	> L2 flags	22 SUN_GLINT_RISK 25 INVALID 26 STRAYLIGHT_RISK 30 COASTLINE 31 LAND 01 RTOSA_OOR 02 RHOW_OOR	$\left. \right\}$	L1 flags NN flags		

Spectral range [412.5 – 885 nm], Period 26 May – 09 Dec 2016

AC_FAIL flag seems to reject good quality spectra

S3 Validation Team Meeting, 15-17 Feb 2017, Frascati, Italy

Operational processor vs DALEC, N=15

412-708 nm

C2CCR v0.15 vs DALEC, N=19

412-708 nm

Operational processor vs DALEC, N=15

753-885 nm

C2RCC v0.15 vs DALEC, N=19

753-885 nm

Radiometric match-ups OLCI vs DALEC

Operational Processor (N=15)				C2RCC v0.15 Processor (N=19)							
OLCI	DALEC	R2	MAPE	RMSE	BIAS	OLCI	DALEC	R2	MAPE	RMSE	BIAS
400.00	405.00	0.372	25.4	0.0100	-0.0039	400.00	405.00	0.210	32.8	0.0115	-0.0088
412.50	412.50	0.413	25.8	0.0108	-0.0064	412.50	412.50	0.217	28.0	0.0113	-0.0082
442.50	442.50	0.560	19.3	0.0099	-0.0058	442.50	442.50	0.215	22.1	0.0122	-0.0082
490.00	490.00	0.690	11.7	0.0068	-0.0028	490.00	490.00	0.253	13.8	0.0106	-0.0046
510.00	510.00	0.757	10.8	0.0062	-0.0029	510.00	510.00	0.463	11.4	0.0100	-0.0044
560.00	560.00	0.851	8.8	0.0051	-0.0020	560.00	560.00	0.747	9.4	0.0081	-0.0032
620.00	620.00	0.827	21.2	0.0037	-0.0022	620.00	620.00	0.822	16.9	0.0047	-0.0019
665.00	665.00	0.822	27.2	0.0028	-0.0018	665.00	665.00	0.813	23.5	0.0050	-0.0030
681.25	681.25	0.920	30.0	0.0027	-0.0017	681.25	681.25	0.814	26.1	0.0048	-0.0030
708.75	708.75	0.942	38.7	0.0018	-0.0013	708.75	708.75	0.786	25.3	0.0025	-0.0015
753.75	753.75	0.668	48.7	0.0007	-0.0001	753.75	753.75	0.307	22.7	0.0007	-0.0001
778.75	761.25	0.720	39.1	0.0006	-0.0001	778.75	778.75	0.394	26.2	0.0006	0.0000

Why no SeaPRISM match-ups for OLCI?

Observing and site geometry limitations – JRC data QA/QC

Aligning observing geometries

Data quality improved - DALEC and SeaPRISM now 90° with respect to the Sun Example 4 Dec 2016

- DALEC and SeaPRISM radiometry now in good agreement
- More detailed quantitative analysis under RTT based on Level 2 data (not available yet)
- Working with In-situ Marine Optics on improving DALEC stability and remote operations
- DALEC required to capture AM satellite passes (Sentinel-3A)

Improving consistency of radiometric measurements

IMOS Radiometry Task Team (Antoine, Schroeder et al.) – FRM4SOC presentation next week

Spectral approach for temperature correction of cal. coeff. should be investigated

SeaPRISM

(Analysis: Slivkoff M., Klonowski W.)

Water quality match-ups

LJCO 18.5197 E 146.3858 S

Water quality match-ups Non-conclusive

More comprehensive picture once integrated into Mermaid and combined with analysis from other sites

Site can be seen in the OLCI FR data

Sometimes - Example : 23.07.2016

S3A_OL_1_EFR____20160723T234555_20160723T234600_20160724T032154_0179_006_358_3240_MAR_O_NR_001_ROI_GEO_LUCI_AER

RWNEG_O1 flagging issue

Example LJCO : 23.07.2016 (light blue mask)

S3A_OL_2_WFR____20160723T234555_20160723T234600_20160724T032342_0179_006_358_3240_MAR_O_NR_001_ROI_GEO_LUCI_AER

Bio-Argo Validation

East Coast of Australia, August 2016 – January 2017

CSIRC

Bio-Argo Validation

East Coast of Australia, ship-borne HPLC used for calibration, night profiles to avoid quenching

Acknowledgements (in alphabetical order)

David Antoine Vittorio Brando Brett Baker David Blondeau-Patissier **David Boadle** Susan Campbell **Lesley Clementson** Nick Hardman Mountford **Edward King** Wojciech Klonowski Jenny Lovell **Ross Mitchell** Yi Qin Matthew Slivkoff Larissa Valerio Monika Woizniak Bozena Wojtasiewicz

S3 Validation Team Meeting, 15-17 Feb 2017, Frascati, Italy

Tidal impact on discrete measurements

Example absorption of detritus – preliminary results

2015

How to get the data?

In progress

CSIR

S3 Validation Team Meeting, 15-17 Feb 2017, Frascati, Italy

FUB-(CSIRO) Processor Chlorophyll-a Great Barrier Reef

km

50

100

S3A_OL_1_EFR___20160608T231306_20160608T231357_20160609T015217_0050_005_101_3420_MAR_O_NR_001 Level 1b NRT ANN input constant wind speed 3 ms⁻¹ IPF-OL-1-EO version 05.03.12

8 June 2016

Inter-comparison SeaPRISM and DALEC

Preliminary based on AERONET-OC Level 1.0

02/09/2014 10:56

Severe Tropical Cyclone Yasi (Category 5) 2-3 February 2011

3 weeks of deployment ...

+

Inter-dependent processing flow

WQM \rightarrow ACs \rightarrow BB9

Temperature Salinity Absorption

http://aeronet.gsfc.nasa.gov/new_web/ocean_color.html

Data Availability Example WQM 2014 – 2016

WQM daily variability

QA/QC-ing & NetCDF conversion not through IMOS toolbox – python scripting Linux All DAPCS data back-processed to 2009

