A Membrane-Tethered Ubiquitination Pathway Regulates Hedgehog Signaling and Heart Development

Graphical Abstract

Highlights

- A cell-surface ubiquitination pathway negatively regulates Hedgehog signaling strength.
- This pathway promotes the ubiquitination and downregulation of Smoothened.
- Defects in this pathway cause limb, heart, and left-right patterning defects.
- Mutations in genes associated with this pathway show oligogenic inheritance.

Authors

Jennifer H. Kong, Cullen B. Young, Ganesh V. Pusapati, ..., Teresa M. Gunn, Cecilia W. Lo, Rajat Rohatgi.

Correspondence

tmg@mclaughlinresearch.org (T.M.G.),
cel36@pitt.edu (C.W.L.),
rrohatgi@stanford.edu (R.R.)

In Brief

Kong et al. discovered a membrane-tethered ubiquitination pathway that plays a role in the patterning of multiple tissues during development by dampening Hedgehog signaling strength. Defects in this pathway lead to disrupted left-right patterning (called heterotaxy) of the entire body plan, as well as organ-specific defects in the heart, limb, and skeleton.

Kong et al., 2020, Developmental Cell 55, 432–449
November 23, 2020 © 2020 Elsevier Inc.
A Membrane-Tethered Ubiquitination Pathway Regulates Hedgehog Signaling and Heart Development

Jennifer H. Kong,1,6 Cullen B. Young,2,6 Ganesh V. Pusapati,1,6 Chandni B. Patel,1 Sebastian Ho,2 Arunkumar Krishnan,5 Jiuann-Huey Ivy Lin,2 William Devine,2 Anne Moreau de Bellaing,2,3 Tejas S. Athni,1 L. Aravind,5 Teresa M. Gunn,4,6 Cecilia W. Lo,2,* and Rajat Rohatgi1,7,*

1Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
2Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
3Department of Pediatric Cardiology, Necker-Sick Children Hospital and The University of Paris Descartes, Paris 75015, France
4McLaughlin Research Institute, Great Falls, MT 59405, USA
5National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
6These authors contributed equally
7Lead Contact
*Correspondence: tmg@mclaughlinresearch.org (T.M.G.), cel36@pitt.edu (C.W.L.), rrohatgi@stanford.edu (R.R.)
https://doi.org/10.1016/j.devcel.2020.08.012

SUMMARY

The etiology of congenital heart defects (CHDs), which are among the most common human birth defects, is poorly understood because of its complex genetic architecture. Here, we show that two genes implicated in CHDs, \textit{Megf8} and \textit{Mgrn1}, interact genetically and biochemically to regulate the strength of Hedgehog signaling in target cells. MEGF8, a transmembrane protein, and MGRN1, a RING superfamily E3 ligase, assemble to form a receptor-like ubiquitin ligase complex that catalyzes the ubiquitination and degradation of the Hedgehog pathway transducer Smoothened. Homozygous \textit{Megf8} and \textit{Mgrn1} mutations increased Smoothened abundance and elevated sensitivity to Hedgehog ligands. While mice heterozygous for loss-of-function \textit{Megf8} or \textit{Mgrn1} mutations were normal, double heterozygous embryos exhibited an incompletely penetrant syndrome of CHDs with heterotaxy. Thus, genetic interactions can arise from biochemical mechanisms that calibrate morphogen signaling strength, a conclusion broadly relevant for the many human diseases in which oligogenic inheritance is emerging as a mechanism for heritability.

INTRODUCTION

Morphogens are secreted ligands that influence differentiation, patterning, or morphogenesis in a dose-dependent manner. Temporal and spatial gradients of Hedgehog (Hh) ligands (such as Sonic Hedgehog, SHH) pattern the spinal cord and limb during development. Varying concentrations or durations of morphogen exposure produce different cellular outcomes by changing the strength or persistence of signaling in target cells (Harfe et al., 2004; Stamataki et al., 2005). The focus in morphogen signaling has largely been on understanding how ligands, such as SHH, are produced and distributed across tissues to form gradients. However, signaling strength in target cells is a function of both ligand exposure and ligand sensitivity. Less is known about the mechanisms in target cells that modulate ligand reception and whether such mechanisms are damaged in developmental disorders.

In CRISPR screens for regulators of Hh signaling, we recently discovered several proteins that attenuate signaling strength in target cells (Pusapati et al., 2018). Because of similarities in their loss-of-function phenotypes, we focus here on three of these proteins: multiple epidermal growth factor-like domains 8 (MEGF8), a type I single-pass transmembrane protein, and two paralogous RING superfamily E3 ubiquitin ligases, mahogunin ring finger 1 (MGRN1) and RNF157. \textit{Megf8} was identified as a regulator of both left-right patterning and cardiac morphogenesis in mouse genetic screens (Aune et al., 2008; Engelhard et al., 2013; Zhang et al., 2009). Human mutations in \textit{MEGF8} result in Carpenter syndrome, an autosomal recessive syndrome similarly characterized by heterotaxy (defects in left-right patterning), severe congenital heart defects (CHDs), preaxial digit duplication, and skeletal defects (Twigg et al., 2012). Unlike many other genes associated with heterotaxy, loss of \textit{Megf8} does not result in any detectable defects in either primary or motile cilia (Aune et al., 2008; Pusapati et al., 2018; Zhang et al., 2009). Loss of MGRN1 was also previously shown to cause CHDs and heterotaxy with low penetrance in mice (Cota et al., 2016). How MEGF8 and MGRN1 regulate these critical developmental events has remained unknown for over a decade.

We investigated the biochemical and biological functions of MEGF8, MGRN1, and RNF157 using a combination of mechanistic studies in cultured cells and mouse genetics. MEGF8,
Figure 1. Elevated Hh Signaling Causes Birth Defect Phenotypes in Megf8^{mn/mn} Embryos

(A and B) Hh signaling strength was assessed using qRT-PCR (A) to measure mRNA for Gli1 (a direct Hh target gene used as a metric for signaling strength) or ciliary SMO abundance (B) in pMEFs with the indicated genotypes. Each cell line tested was derived from a different embryo. Bars in (A) denote the median Gli1 mRNA levels. The legend is continued on the next page.

(C) Vismodegib Treatments

WT or Megf8^{mn/mn}

- Vismodegib | + Vismodegib

Megf8^{mn/mn}

- Vismodegib | + Vismodegib

(D) Number of digits per limb

<table>
<thead>
<tr>
<th></th>
<th>wild-type</th>
<th>Megf8<sup>mn/mn</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>[Vismo]</td>
<td>n=44</td>
<td>n=72</td>
</tr>
<tr>
<td>[Vismo]</td>
<td>n=100</td>
<td></td>
</tr>
</tbody>
</table>

(E) Digits per limb and Laterality of embryos

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Digits per limb</th>
<th>Laterality of embryos</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT or Megf8<sup>mn/mn</sup></td>
<td>5 (5, 5)</td>
<td>100%</td>
</tr>
<tr>
<td>WT or Megf8<sup>mn/mn</sup> + Vismo</td>
<td>3 (3, 3.75)</td>
<td>100%</td>
</tr>
<tr>
<td>Megf8<sup>mn/mn</sup></td>
<td>6 (5, 6)</td>
<td>0%</td>
</tr>
<tr>
<td>Megf8<sup>mn/mn</sup> + Vismo</td>
<td>5 (5, 6)</td>
<td>0%</td>
</tr>
</tbody>
</table>

(F) Polydactyly and Oligodactyly

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Oligodactyly</th>
<th>Polydactyly</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT or Megf8<sup>mn/mn</sup> + Vismo</td>
<td>WT or Megf8<sup>mn/mn</sup> + Vismo</td>
<td>Megf8<sup>mn/mn</sup></td>
</tr>
</tbody>
</table>

(legend continued on next page)
MGRN1, and RNF157 anchor a ubiquitination pathway at the cell surface that regulates the sensitivity of target cells to Hh ligands. They assemble into an unusual transmembrane E3 ubiquitin ligase complex that functions as a traffic control system for signaling receptors, including the Hh transducer Smoothened (SMO). Mouse studies revealed striking genetic interactions and gene dosage effects involving Megf8, Mgrn1, and Rnf157 that impact the penetrance of a wide spectrum of birth defects, including CHDs, heterotaxy, skeletal defects, and limb anomalies. Our work shows how genetic interactions between components of a ubiquitin ligase complex that tunes morphogen signaling strength can lead to a birth defect syndrome inherited in an oligogenic pattern.

RESULTS

Megf8 and Mgrn1 Are Negative Regulators of Hedgehog Signaling

Among the top gene hits identified in our genome-wide screen for attenuators of Hh signaling (Pusapati et al., 2018), we pursued a detailed analysis of Megf8 and Mgrn1 (Figure S1A) because of similarities in their loss-of-function phenotypes. In both NIH/3T3 fibroblasts and cultured neural progenitor cells (NPCs), loss-of-function mutations in Megf8 and Mgrn1 resulted in an elevated response to SHH ligands caused by the accumulation of SMO at the cell surface and primary cilium (Pusapati et al., 2018). To determine if Megf8 and Mgrn1 can attenuate Hh signaling in a more physiological context, we isolated primary mouse embryonic fibroblasts (pMEFs) from embryos homozygous for previously characterized mutant alleles of Megf8 (C193R) or Mgrn1 (md-nc) (Figure S1A) (He et al., 2003; Phillips, 1963; Zhang et al., 2009). As we observed in the NIH/3T3 cells, Megf8C193RpMEFs and Mgrn1md-nc/md-nc (hereafter referred to as Megf8mm and Mgrnm1mm) pMEFs were more sensitive to SHH. When exposed to a sub-saturating concentration of SHH (1 nM), Gli1 (a direct Hh target gene) was only partially induced in wild-type pMEFs, but this same low concentration induced Gli1 to maximum levels in Megf8mm and Mgrnm1mm pMEFs (Figures 1A and S1B). Heightened SHH sensitivity was caused by an elevated abundance of SMO in the primary cilia of Megf8mm and Mgrnm1mm pMEFs, both in the absence and presence of SHH (Figures 1B and S1C).

The accumulation of ectopic ciliary SMO was also observed in multiple tissues within Megf8mm and Mgrnm1mm embryos (Figure S2). In wild-type embryos, Hh signaling activity is restricted to early embryonic development and by e12.5 is turned off in most tissues, resulting in ciliary SMO restricted to cells that were exposed to only the highest concentrations of SHH, like the progenitor cells within the ventral neural tube (Figure S2) (Corbit et al., 2005; Rohatgi et al., 2007). In contrast, SMO was concentrated in the primary cilia of nearly all Megf8mm embryonic tissues, regardless of whether it had been exposed to Hh ligands (Figure S2). Tissues from Mgrnm1mm embryos did not have a widespread accumulation of ciliary SMO (Figure S2). However, ciliary SMO was inappropriately present sporadically in the dorsal neural tube and brain of Mgrnm1mm embryos (Figure S2), consistent with our observation that Mgrnm1+/− NPCs exhibited a moderately elevated response to SHH (Pusapati et al., 2018).

To test if the phenotypes in Megf8mm embryos were caused by elevated Hh signaling, we employed a pharmacological strategy to attenuate signaling strength in utero using vismodegib, a specific small molecule SMO inhibitor that is FDA-approved for the treatment of Hh-driven basal cell cancer in humans. Vismodegib is also a teratogen. Its acute administration to pregnant mice can produce “dose-dependent dysmorphology” in embryos, demonstrating that it can be used to tune the strength of Hh signaling during development (not simply to turn it off) (Lipsinski et al., 2014). As predicted by the well-known role of Hh signaling in establishing the number of digits in the limb (Litingtung et al., 2002; Riddle et al., 1993; te Welscher et al., 2002), vismodegib administered between e8.25 and e10.75 induced oligodactyly (reduced digit number) in wild-type and Megf8mm embryos (Figures 1C–1F). Remarkably, vismodegib rescued the preaxial digit duplication universally seen in Megf8mm embryos, restoring digit numbers to 5 in the majority of the treated embryos (Figures 1C–1F). Heterotaxy, defined as randomized organ situs, is another completely penetrant phenotype seen in Megf8mm embryos (Figure 1E) (Aune et al., 2008). Megf8mm embryos exposed to vismodegib also showed a partial rescue of heterotaxy: ~70% displayed concordant organ situs that was mirror symmetric (situs inversus) (Figure 1E). Vismodegib-treated Megf8mm embryos still displayed CHDs, likely because heterotaxy was not fully rescued and because vismodegib was not delivered during some of the critical periods of heart morphogenesis. Future experiments varying the dose and time period of vismodegib administration should help clarify the role of Hh signaling in all the birth defect phenotypes seen in Megf8mm embryos.

Mgrnm1mm embryos displayed a very low (<10%) rate of preaxial digit duplication (because of lower levels of SMO in cilia; Figure S2), making the assessment of vismodegib rescue challenging. However, compared with wild-type or Mgrnm1+/+ embryos, Mgrnm1mm embryos were resistant to vismodegib-induced oligodactyly (Figures S1D and S1E), consistent with
Figure 2. RNF157 Partially Compensates for the Loss of MGRN1

(A) Immunoblots showing GLI1 as a measure of Hh signaling strength and SMO abundance in the indicated NIH/3T3 cell lines treated with various concentrations of SHH. α-tubulin (α-TUB) is a loading control. Two populations of SMO, localized in the ER or in post-ER compartments, are marked. An analysis of additional clonal cell lines is shown in Figure S3C.

(B) Unrooted maximum-likelihood tree topology showing the evolutionary relationship between MGRN1 and RNF157, with the vertebrate-specific RNF157 lineage highlighted in purple. The open circle denotes 100% confidence support (1,000 replicates) and the scale bar indicates phylogenetic distance. The full Newick tree file is provided in Data S1.

(legend continued on next page)
the fact that they have a higher Hh signaling setpoint (Figure S1F).

The striking difference in digit number between littermate control and Megf8^{m/m} or Mgrn1^{m/m} embryos exposed to vismodegib (Figures 1D and S1D) supports the idea that a just-right “goldilocks” level of Hh signaling is required for proper digit patterning. Vismodegib restores SMO to this optimal level in Megf8^{m/m} limbs but reduces SMO activity below the levels required for normal digit patterning in wild-type embryos (Figure 1F).

Rnf157 Is a Genetic Modifier of Mgrn1

In both mice and cultured cells, loss of MEGF8 consistently produced stronger phenotypes than the loss of MGRN1 (Figures 1, S1, and S2), suggesting the involvement of additional genes (Puspati et al., 2018). The reported penetrance and expressivity of CHDs, heterotaxy, and preaxial digit duplication was much higher in Megf8^{m/m} embryos compared with Mgrn1^{m/m} embryos (Cota et al., 2006; Zhang et al., 2009) (Table S1). Similarly in NIH/3T3 cells, when compared with the loss of MGRN1, the loss of MEGF8 resulted in more Hh signaling activity at baseline and a greater abundance of SMO at the plasma and ciliary membranes (Figures 2A and 2C). Evolutionary sequence analysis indicated that RNF157, which also encodes a RING superfamily E3 ligase, is a vertebrate-specific paralog of MGRN1 (Figure 2B). Although MGRN1 is more widely distributed, found among almost all major eukaryotic lineages, MGRN1 and RNF157 share a RING domain and a distinctive predicted substrate-binding domain that is unique among other members of the RING superfamily (Figures 2B and S3A).

These analyses raised the possibility that RNF157 may partially compensate for the loss of MGRN1. Depletion of both RNF157 and MGRN1 in NIH/3T3 cells and NPCs using CRISPR methods (Figure S3B) enhanced Hh signaling activity (Figures 2A and S3C–S3E). Mgrn1^{−/−}:Rnf157^{−/−} NIH/3T3 cells constitutively expressed GLI1, even in the absence of SHH (Figure 2A). In addition, the abundance of SMO carrying mature glycan modifications acquired in the Golgi after trafficking from the endoplasmic reticulum (hereafter “post-ER SMO”) and the abundance of SMO in primary cilia was much higher in Mgrn1^{−/−}:Rnf157^{−/−} compared with Mgrn1^{−/−} cells (Figures 2A and 2C). In all assays, Hh signaling in Mgrn1^{−/−}:Rnf157^{−/−} cells was enhanced compared with that in Mgrn1^{−/−} cells (and equivalent to Megf8^{−/−} cells) (Figures 2A, 2C, and S3C–S3E).

To assess the relationship between RNF157 and MGRN1 in vivo, we generated Rnf157^{−/−} mice (hereafter referred to as Rnf157^{m/m} mice) using CRISPR methods (Figure S3B). Consistent with data collected by the International Mouse Phenotyping Consortium (IMPC) using a different knockout strategy (Dickinson et al., 2016), the Rnf157^{m/m} mice were viable, fertile, and without obvious developmental defects (Figures 2D and 2F). The penetrance of birth defects in Mgrn1^{−/−}:Rnf157^{m/m} double null embryos was comparable with that in Megf8^{m/m} embryos (and much higher than single null Mgrn1^{−/−} or Rnf157^{m/m} embryos) (Figures 2D–2F and Table S1).

Based on the consequences of the simultaneous disruption of Rnf157 and Mgrn1 in both cultured cells and mice, we conclude that RNF157 can partially compensate for the function of MGRN1 in Mgrn1^{−/−} NIH/3T3 cells, NPCs, and embryos (Figures 2A, 2C–2F, and S3C–S3E). This compensation is asymmetric, as the loss of RNF157 alone had few developmental consequences (Figures 2D and 2F), presumably because MGRN1 can fully cover RNF157 functions. In conclusion, Rnf157 is a modifier gene: mutations in Rnf157 are insufficient to cause a phenotype alone, but they increase the penetrance of phenotypes caused by mutations in a different gene (Mgrn1).

MEGF8 Binds to MGRN1

Mouse embryos and cells that lack MEGF8 are indistinguishable from those that lack both MGRN1 and RNF157 (Figure 2 and Table S1), leading us to speculate that MEGF8, MGRN1, and RNF157 may work together to regulate SMO trafficking. We transiently expressed MEGF8 in HEK293T cells and observed that it could be co-immunoprecipitated (coIP) with either endogenous or over-expressed MGRN1 (Figures 3A and 3C). Deleting the ~170 amino-acid (aa)-long cytoplasmic tail (hereafter called the “Ctail”) of MEGF8 (MEGF8^{ΔCtail}), but not its large ~2,500-aa extracellular domain (MEGF8^{ΔEC}), abolished the interaction with MGRN1 (Figures 3A–3C). The MEGF8 Ctail contains a peptide motif (with the sequence “MASRPFA”) that is highly conserved across a family of single-pass transmembrane proteins found in Filozoaa, animal-like eukaryotes, including Filasterea, Choanoflagellatea, and Metazoa (Figures 3B and S4A) (Gunn et al., 1999; Haqq et al., 2003; Nagle et al., 1999). The deletion of this motif (MEGF8^{ΔCtail}MA) abrogated the interaction between MEGF8 and MGRN1 (Figure 3C), establishing an E3 ligase recruitment function for this mysterious sequence element.

To test if the association between MEGF8 and MGRN1 was relevant for the regulation of Hh signaling, we stably expressed wild-type MEGF8 or the interaction-defective MEGF8^{ΔCtail} mutant in Mgrn1^{−/−} NIH/3T3 cells (Figure 3D). Stably expressed MEGF8, but not its truncated MEGF8^{ΔCtail} variant, bound to endogenous MGRN1 (Figure 3D) and suppressed the elevated basal GLI1 and ciliary SMO seen in Mgrn1^{−/−} cells (Figures 3D and 3E). The MEGF8-MGRN1 interaction was unchanged when signaling was activated by the addition of SHH (Figure 3D). These data establish that MGRN1 in the cytoplasm stably associates with the Ctail of MEGF8, and this interaction is required to suppress ciliary SMO levels and attenuate Hh signaling.

(C) Violin plots (left) with horizontal lines denoting the median and interquartile range and corresponding representative confocal fluorescence microscopy images (right) of SMO (red) at primary cilia (green, marked by ARL13B) in NIH/3T3 cells with the indicated genotypes (n = 70 cilia/condition). Arrowheads identify individual cilia captured in the zoomed images above each panel. Statistical significance was determined by the Kruskal-Wallis test; ***p value ≤ 0.01 and ****p value ≤ 0.0001. Scale bars, 10 μm in merged panels and 2 μm in zoomed displays. See Figure S3D for analysis of additional clonal cell lines.

(D) Necropsy (top row) and ECM (bottom row) images of embryonic hearts from e13.5-14.5 embryos of the indicated genotypes. Scale bars, 200 μm.

(E) Forelimbs of embryos show preaxial digit duplication (PDD). Asterisks (*) mark the duplicated digits. Scale bar, 200 μm.

(F) Table summarizes the frequency of CHDs, heterotaxy, and PDD in Mgrn1^{−/−} (n = 15), Rnf157^{m/m} (n = 6), Megf8^{m/m} (n = 12), and Mgrn1^{−/−}:Rnf157^{m/m} (n = 3) embryos. A detailed list of phenotypes observed in each embryo can be found in Table S1. See also Figure S3, Table S1, and Data S1.
Figure 3. The Interaction between MGRN1 and MEGF8 Is Required to Attenuate Hedgehog Signaling

(A) Depictions of full-length MEGF8, truncated MEGF8 (MEGF8ΔN, MEGF8\textsuperscript{ΔC\textsubscript{tail}}, MEGF8ΔMASRPFA), functional MGRN1, and catalytically inactive MGRN1 (MGRN1Mut1 and MGRN1Mut2) proteins. The multiple domains in the extracellular region of MEGF8 are shown as circles and colored as in Figure S1A.

(legend continued on next page)
The Ubiquitin Ligase Activity of MGRN1 Is Required to Attenuate Hh Signaling

MGRN1 regulates processes ranging from skin pigmentation to spongiform neurodegeneration by directly ubiquitinating multiple substrates (Chakrabarti and Hegde, 2009; Gunn et al., 2013; Jiao et al., 2009). We constructed two variants of MGRN1 (MGRN1Mut1 and MGRN1Mut2) carrying mutations in highly conserved residues of the RING domain (Figure S4B). These mutations are known to abolish binding between RING domains and their cognate E2 partners, thereby preventing ubiquitin transfer to substrates (Garcia-Barcena et al., 2020; Gunn et al., 2013). We stably expressed wild-type MGRN1, MGRN1Mut1, or MGRN1Mut2 in Mgrn1−/−;Rnf157−/− NIH/3T3 cells and measured the abundance of GLI1, post-ER SMO, and ciliary SMO (Figures 3F and 3G). In all three assays, wild-type MGRN1 was able to fully attenuate Hh signaling and SMO levels, but the MGRN1Mut1 and MGRN1Mut2 variants were inactive. Importantly, MGRN1Mut1 and MGRN1Mut2 were expressed at equivalent levels to MGRN1 (Figure 3F) and maintained their stable interaction with MEGF8 (Figure S4C), demonstrating their integrity. These results support the conclusion that both the stable interaction of MGRN1 with MEGF8 and its E3 ligase function are required to attenuate Hh signaling.

The MEGF8-MGRN1 Complex Ubiquitates SMO

At this point, our data suggested that MGRN1 functions as a membrane-tethered ubiquitin ligase complex that attenuates Hh signaling by reducing SMO abundance at the cell surface and primary cilia. Trafficking assays revealed that both the steady-state abundance and the stability of cell-surface SMO were markedly greater in MEGF8−/− and Mgrn1−/−;Rnf157−/− NIH/3T3 cells compared with wild-type cells (Figures 4A and S5). Since the endocytosis and degradation of cell-surface receptors are often regulated by their ubiquitination, we sought to test whether SMO is a substrate of the MEGF8-MGRN1 complex.

We established an assay to measure SMO ubiquitination by expressing SMO and hemagglutinin (HA)-tagged ubiquitin (UB) together in HEK293T cells and then measuring the amount of HA-UB conjugated to SMO (Figures 4B and 4C). SMO was isolated by immunoprecipitation and the attached UB chains detected (as a smear) by immunoblotting with an anti-HA antibody. Co-expression of MGRN1 alone had no effect on SMO ubiquitination, co-expression of MEGF8 alone slightly increased SMO ubiquitination (Figure 4B), and co-expression of both MEGF8 and MGRN1 dramatically increased levels of ubiquitinated SMO and concomitantly reduced SMO abundance (Figure 4B). A ubiquitin mutant lacking all lysine residues (UBK0) was poorly conjugated to SMO, suggesting that SMO is attached to poly-UB chains, rather than to a single ubiquitin (Figure S6A). Inactivating mutations in the RING domain of MGRN1 (MGRN1Mut1 and MGRN1Mut2) failed to promote SMO ubiquitination (Figure 4B). SMO was a selective substrate for MGRN1 and MEGF8 because their co-expression did not change the abundance of a different ciliary GPCR, SSTR3 (Figure S6B). SMO contains 21 lysine (K) residues exposed to the cytoplasm that could function as acceptors for ubiquitin. Changing all of these lysines to arginines (R) impaired MGRN1-mediated ubiquitination (Figure S6C), but changing specific clusters of lysines in each of the cytoplasmic loops or the tail of SMO did not reduce ubiquitination (Figure S6C). Thus, MGRN1 does not seem to favor a particular lysine residue or set of lysine residues on the cytoplasmic surface of SMO, at least in this over-expression-based HEK293T assay.

Efficient SMO ubiquitination required both MEGF8 and the E3 ligase function of MGRN1. The small increase in SMO ubiquitination seen in the presence of MEGF8 alone is likely due to the presence of endogenous MGRN1 in HEK293T cells (see asterisks in the MGRN1 panel in Figure 4B). To directly test whether the physical interaction between MEGF8 and MGRN1 was required to mediate SMO ubiquitination, we co-expressed MGRN1 with one of three MEGF8 variants (diagrammed in Figure 3A); (1) MEGF8K0, (2) MEGF8MASRPF, which both of which cannot bind to MGRN1; Figure 3C), or (3) MEGF8AN, which lacks the large extracellular domain of MEGF8 but retains its transmembrane (TM) helix and Ctail. MEGF8K0 and MEGF8MASRPF failed to support SMO ubiquitination (Figure 4C). In contrast, MEGF8AN, which can still bind to MGRN1 (Figure 3C), efficiently promoted SMO ubiquitination and degradation (Figure 4C). Interestingly, MEGF8AN was much more active than full-length MEGF8 (despite both proteins being expressed at comparable levels), suggesting that the extracellular domain of MEGF8 may negatively regulate the function of the Ctail or interfere with its recognition of SMO. In addition to recruiting MGRN1 to the plasma membrane, the association between MEGF8 and MGRN1 promoted the intrinsic E3 ligase activity of MGRN1, evident through the ability of MEGF8AN to reduce the abundance of co-expressed wild-type MGRN1 (Figure 4C). Most E3 ligases catalyze their own ubiquitination and de-stabilization, a property that reflects their intrinsic catalytic activity.

Unexpectedly, MEGF8AN, which includes only the TM helix and Ctail of the protein (232 out of the 2,778 aa in the full-length protein), was sufficient to promote SMO ubiquitination (Figure 4C). To further narrow down the region of MEGF8 required for SMO recognition, we constructed a set of chimeric proteins
Figure 4. Smoothened Is Ubiquitinated by the MEGF8-MGRN1 Complex

(A) Degradation of cell-surface SMO in NIH/3T3 cells of the indicated genotypes. See Figure S5 for details. Circles represent the mean and error bars represent the standard error of two independent replicates.

(legend continued on next page)
that fused the MEGF8 Ctail, TM helix, or both to heterologous extracellular and TM domains from CD16 and CD7, respectively (diagrammed in Figure S6D). In the HEK293T assay, both the TM helix and the Ctail of MEGF8 were required to promote SMO ubiquitination, simply tethering the isolated Ctail to the plasma membrane by fusing it to a CD16-CD7 hybrid protein was not sufficient. Abrogating the interaction with MGRN1 by deleting the “MASRPFFA” motif abolished the function of these chimeric proteins, demonstrating that they still require MGRN1 to promote SMO ubiquitination (Figure S6D).

If the biochemical function of MEGF8 in Hh signaling is to ubiquitinate SMO, a key prediction is that the CD16EC-D,MEGF8TM+CTail chimera, a minimal engineered protein that is sufficient to carry proteins, demonstrating that they still require MGRN1 to promote SMO ubiquitination (Figure S6D).

Genetic Interactions between Megf8 and Mgrn1

After identifying the MEGF8-MGRN1 interaction and elucidating the ubiquitination-based mechanism through which it regulates the sensitivity of target cells to Hh ligands, we sought to investigate the role of this protein complex in embryonic development using the previously published Megf8m/m and Mgrn1m/m mouse lines (He et al., 2003; Phillips, 1963; Zhang et al., 2009). Notably, both Megf8m/m and Mgrn1m/m mutant embryos display CHDs, heterotaxy, and preaxial digit duplication. While phenotypes are fully penetrant in the Megf8m/m mutants, they show lower penetrance in the Mgrn1m/m mutants (likely due to partial redundancy with Rnf157) (Figure 2F) (Cota et al., 2006; Zhang et al., 2009). To determine whether the developmental defects exhibited by these two mutants are a product of the same pathway (as predicted by our biochemical studies), we assessed for a genetic interaction by intercrossing the Megf8m/m and Mgrn1m/m mice and examining the phenotypes of the resultant double heterozygous Megf8m/+;Mgrn1m/+ embryos.

As reported previously (Cota et al., 2006; Zhang et al., 2009), the single heterozygous Megf8m/+ and Mgrn1m/+ embryos were normal without any developmental defects, consistent with the adult viability of Megf8m/+ and Mgrn1m/+ mice (Figures 5 and 6; Tables S2 and S3). In contrast, the Megf8m+/-;Mgrn1m/+ double heterozygous embryos showed preaxial digit duplication, heterotaxy, and CHDs, phenotypes similar to those seen in homozygous Megf8m/m and Mgrn1m/m embryos (Figures 5 and 6; Table S4). Detailed anatomic phenotyping was conducted on e13.5–14.5 Megf8m/+;Mgrn1m/+ embryos using both necropsies (Figures 5B and 5C) and epicardial confocal microscopy (ECM) to generate 3D histological reconstructions of intracardiac anatomy (Figure 6B).

The limb, heart, and left-right patterning defects observed in 100% of Megf8m/m embryos (Table S1) were incompletely penetrant in Megf8m+/-;Mgrn1m/+ double heterozygous embryos (Figures 5 and 6; Table S4). Preaxial digit duplication, a hallmark of elevated Hh signaling in the limb bud, was observed in only 61% of Megf8m+/-;Mgrn1m/+ embryos (Figures 5A and 6C). Defects in left-right patterning were seen in only 36% of Megf8m+/-;Mgrn1m/+ embryos (Figures 5A and 6C). Heart defects were seen in ~52% of Megf8m+/-;Mgrn1m/+ embryos.

In addition to reduced penetrance, the CHDs seen in Megf8m+/-;Mgrn1m/+ double heterozygous embryos were also milder compared with Megf8m/m embryos. All Megf8m/+ embryos suffered from a transposition of the great arteries (TGA), an outflow tract (OFT) malalignment defect in which the aorta emerges from the right ventricle and the pulmonary artery from the left ventricle (Figures 6A and 6B; Table S1). Among the 52% of Megf8m+/-;Mgrn1m/+ embryos with CHDs, only 41% of these embryos displayed TGA and 47% displayed double outlet right ventricle (DORV) with or without atrioventricular septal defect (AVSD) (Figures 6A and 6B; Table S4).

Given the known co-occurrence of heterotaxy with severe CHDs in clinical data from human birth registries (Lin et al., 2014; Pradat et al., 2003), we examined the correlation between these two types of birth defects in our mutant mouse embryos. All Megf8m/+ embryos had both heterotaxy and TGA (Figures 2F and 6C; Table S1). In Megf8m+/-;Mgrn1m/+ embryos, heterotaxy was associated 100% of the time with CHDs and, conversely, CHDs were associated 64% of the time with heterotaxy (Figure 6C; Tables S4, S6, and S7). Interestingly, the presence of heterotaxy was also correlated with different CHDs: ~60% of these embryos also had TGA (Figure 6A). In contrast, Megf8m+/-;Mgrn1m/+ embryos with normal left-right patterning (situs solitus) did not have TGA and instead had CHDs in ~20% of cases (Figure 6A). These correlations are remarkably similar to data from human birth registries, which report that ~85% of the heterotaxy cases are associated with CHDs that include DORV, TGA, and AVSD (Lin et al., 2014; Pradat et al., 2003).

(B and C) SMO ubiquitination was assessed after transient co-expression of the indicated proteins in HEK293T cells (see Figure 3A). Cells were lysed under denaturing conditions, SMO was purified by IP, and the amount of HA-UB covalently conjugated to SMO was assessed using immunoblotting with an anti-HA antibody. An asterisk (*) indicates endogenous MGRN1.

(D and E) Total GL11 and SMO abundances were measured by immunoblotting (D) and cellular SMO (n~50 cilia) by fluorescence confocal microscopy (E) in Megf8−/− cells expressing various CD16/CD7/MEGF8 chimeras. The ability of these chimeras to support SMO ubiquitination is shown in Figure S6D and the abundances of chimeras at the cell surface is shown in Figure S6E. SMO fluorescence was quantified and represented as violin plots in (E), with horizontal lines denoting the median and interquartile range. Statistical significance in (E) was determined by the Kruskal-Wallis test; not-significant (ns) > 0.05, ***p value ≤ 0.01, and ****p value ≤ 0.0001. Scale bars, 10 μm in merged panels and 2 μm in zoomed displays. See also Figures S5 and S6.

440 Developmental Cell 55, 432–449, November 23, 2020
Figure 5. A Genetic Interaction between *Megf8* and *Mgnr1* Causes Heart Defects and Heterotaxy

(A) Summary of phenotypes observed in mouse embryos with the indicated genotypes (e13.5-14.5). Dex, dextrocardia; Lev, levocardia; LPI, left pulmonary isomerism; PDD, preaxial digit duplication; RPI, right pulmonary isomerism; SIT, situs inversus; SS, situs solitus. A detailed list of phenotypes observed in each embryo can be found in Tables S2–S4.

(B) Representative light microscopy and ECM images of the developing lungs and limbs of single (control) and double heterozygous embryos. The normal right lung has 4 lobes (1R, 2R, 3R, and 4R) and the left lung has one lobe (1L). Asterisks (*) mark the duplicated preaxial digits. Scale bars, 200 μm.

(C) Representative necropsy images showing the position of the heart, symmetry of the liver, and location of the stomach in single (control) and double heterozygous embryos. Arrow (top row) denotes the direction of the cardiac apex. Scale bar, 1000 μm. See also Tables S2, S3, and S4.
Figure 6. Spectrum of Heart Defects in Mice Carrying Mutant Alleles of Megf8 and Mgrn1

(A and B) Summary of CHDs in mouse embryos of various genotypes (e13.5-14.5) as determined by ECM imaging. (B) shows representative ECM images of the many defects observed in double heterozygous embryos, along with normal hearts from control (single heterozygous) embryos. The white arrow in the control cardiac septation panel denotes an intact atrial primum. The asterisk (*) in the Megf8m/+; Mgrn1m/+ AVSD panel marks an ostium primum atrial septal defect (a failure of the septum primum to fuse with the endocardial cushions). Ao, aorta; AVSD, atrioventricular septal defect; Dex, dextrocardia; LA, left atrium; LV, left ventricle; mLV, morphological left ventricle; mRV, morphological right ventricle; PA, pulmonary artery; RA, right atrium; RV, right ventricle; VSD, ventricular septal defect. A detailed phenotypic analysis of each embryo can be found in Tables S2–S4. Scale bars, 100 μm.

(legend continued on next page)
The tight association between CHD and heterotaxy is also supported by the observation that all seven embryos with only preaxial digit duplication (but no CHD) had normal situs solitus (Table S4). Thus, the double heterozygous Megf8m/+;Mgmrn1m/+ embryos recapitulate the known association between severe CHD and heterotaxy seen in human clinical data. The wider spectrum of CHDs seen in these embryos, including DORV, compared with homozygous Megf8mm embryos resembles the more diverse range of CHDs seen in human patients with heterotaxy (Figure 6A; Table S7) (Lin et al., 2014; Pradat et al., 2003).

Gene Dosage Effects Involving Mgmrn1, Megf8, and Rnf157

Our comparison of double heterozygous Megf8m/+;Mgmrn1m/+ embryos to homozygous Megf8mm embryos suggested that both the penetrance and expressivity of birth defect phenotypes may be determined by the precise magnitude of ubiquitin ligase activity, which, in turn, determines the abundance of SMO and the strength of Hh signaling. This hypothesis predicts that the dosage of Megf8, Mgmrn1, and Rnf157 should influence the penetrance of birth defect phenotypes.

We analyzed embryos carrying varying numbers of loss-of-function Megf8m, Mgmrn1m, and Rnf157m alleles (Figure 6C). Megf8mm and Mgmrn1mm;Rnf157m/mm embryos have a 100% penetrance of CHDs, heterotaxy, and preaxial digit duplication, presumably because the functions of both the transmembrane adaptor (MEGF8) and the cytoplasmic E3 ligases (MGRN1 or RNF157) are essential for SMO ubiquitination. Loss of one allele of Megf8 (Megf8m+ embryos), one allele of Mgmrn1 (Mgmrn1m+ embryos), or both alleles of Rnf157 (Rnf157m/mm embryos) did not lead to birth defects, likely because the abundance of the MEGF8-MGRN1/RNF157 complex remains above the threshold required for normal development. However, between these two extremes, decreasing the cumulative gene dosage (by increasing the number of mutant alleles) of Mgmrn1 and Megf8 led to a progressive increase in the penetrance of CHDs, heterotaxy, and preaxial digit duplication (Figure 6C). In addition, the incidence of TGA (Table S6) and the co-occurrence of heterotaxy (Figure 6C) increased with decreasing gene dosage. These striking gene dosage effects support the model that a progressive decrease in ubiquitin ligase function leads to a progressive increase in the penetrance and expressivity of birth defects, likely by driving a graded increase in Hh signaling strength.

The exquisite sensitivity of heart development to mutations in Megf8, Mgmrn1, and Rnf157 seen in mouse embryos prompted us to look for potentially damaging variants in these genes in patients with CHDs. Using whole-exome sequencing data from a cohort of 652 CHD patients, we searched for missense variants with a combined annotation dependent depletion (CADD) score >10. We additionally used a stringent mean allele frequency (MAF) filter of <0.5% for MEGF8 and MGRN1, but a more relaxed MAF filter (<5%) for RNF157, since the Rnf157m/m mouse has no phenotype. Using these criteria, we identified one patient (7501) with two mutations each in MEGF8 and MGRN1 and one mutation in RNF157 (Figures S7A and S7B; Table S6). Genotyping the parents of patient 7501 revealed that the two mutations in MEGF8 and MGRN1 were both present in the same allele, with the former transmitted from the mother and the latter from the father (along with the RNF157 variant). Patient 7501 clinically presented with OFT anomalies: pulmonary atresia, a severely hypoplastic right ventricle with an intact interventricular septum and an atrial septal defect (Figures 7B and S7C). Primary fibroblasts from patient 7501 displayed an increased abundance of ciliary SMO (Figure 7C) and elevated Gli1 expression (Figure 7D), both at baseline and in response to SHH when compared with fibroblasts generated from a subject without CHD. Collectively, our mouse and human data support a model where disruption of the MEGF8-MGRN1/RNF157 ubiquitin ligase complex can lead to elevated SMO, increased Hh signaling strength and, consequently, to the emergence of CHDs.

DISCUSSION

Using a combination of mechanistic studies, mouse genetics, and deep anatomical phenotyping, we uncovered a unique membrane-tethered ubiquitination pathway that regulates developmental patterning in a variety of tissues by controlling the trafficking of signaling receptors. MEGF8 functions as a TM substrate adaptor that recruits a cytoplasmic E3 ligase (MGRN1) to catalyze the ubiquitination of SMO, leading to its endocytosis and degradation (Figure 7E). This ubiquitination reaction reduces the abundance of SMO at the cell surface and primary cilium, and consequently, dampens Hh signaling in target cells.

While cilia-localized ubiquitination is emerging as a mechanism that regulates ciliary trafficking (Desai et al., 2020; Shinde et al., 2020), the function of the MEGF8-MGRN1 complex is unlikely to be related to cilia or ciliary trafficking. Cell-surface biotinylation experiments (see Figure S5) clearly show that overall cell-surface SMO (not just ciliary SMO) rises dramatically in mutant cells. In addition, we have not been able to detect MGRN1 or MEGF8 in cilia. Hence, the ciliary accumulation of SMO in Megf8mm and Mgmrn1mm cells and embryos is likely to be a secondary consequence of increased cell-surface SMO.

Receptor-like Ubiquitin Ligases Attenuate Signaling Strength

The architecture of the MEGF8-MGRN1 complex is notable for its extracellular and luminal domain (Figure 7E). This feature suggests a receptor-like function, conceptually analogous to receptor kinases, to transmit extracellular or luminal signals across the membrane to alter the ubiquitination of substrates in the cytoplasm. Interestingly, Frizzled (FZD) proteins, receptors for WNT

(C) Table shows the frequencies of CHDs, preaxial digit duplication, and laterality defects observed in mouse embryos carrying increasing numbers of mutant alleles of Megf8, Mgmrn1, and Rnf157. Darker shades of orange and green indicate a higher penetrance of the indicated birth defect and laterality phenotype, respectively. A detailed phenotypic analysis of every embryo of each genotype can be found in Tables S1–S5 and a full compilation of the penetrance of various phenotypes is provided in Table S6. For a more detailed analysis of the correlation between laterality and CHD phenotypes observed in Megf8mm;Mgmrn1mm embryos, refer to Table S7. See also Tables S1–S7.
Hh signaling pathway

Melanocortin signaling pathway

Regulation of amino acid export (in plants)

Wnt signaling pathway

MGRN1 (membrane recruited E3 ligase)

MEGF8 (substrate adapter)

SMO

Unknown ligand?

ATRN (substrate adapter)

ASP ligand

Amino acid exporter

GDU1 (substrate adapter)

FZD

R-spondin ligand

RNF43/ZNRF3 (transmembrane E3 ligase)

(legend on next page)
ligands that are the closest relatives of SMO in the GPCR superfamily (Bjarnadottir et al., 2006) are regulated by transmembrane E3 ligases (RNF43 and ZNRF3) in which the RING-containing domain is directly fused to the membrane-spanning component (Figure 7E). While a ligand for MEGF8 remains unknown, ZNRF3 and RNF43 are regulated by R-Spondin ligands, critical regulators of progenitor cells during development, and stem cells in adult tissues (Hao et al., 2012; Koo et al., 2012). The ubiquitination of receptors by membrane-tethered E3 ligases represents an attractive post-transcriptional mechanism to control the sensitivity of tissues to signaling ligands during development or tissue renewal.

Evolutionary sequence analysis supports a widespread role for MGRN1-based TM E3 ligase complexes in ubiquitin signaling. In animals and their immediate sister lineages, MGRN1 and RNF157 likely function as common components of multiple membrane-tethered E3 ligase complexes featuring members of the MEGF8 family of cell-surface proteins, all of which contain an equivalent of the cytoplasmic MARSPFA motif (Figure S4A) (Gunn et al., 1999; Haqq et al., 2003; Nagle et al., 1999). For example, MGRN1 and a different member of this family, Attractin (ATRN), have been implicated in the regulation of melanocortin receptor levels (Figure 7E) (Cooray et al., 2011; Walker, 2010). A plant ubiquitin ligase, LOG2, which belongs to the MGRN1 family, associates with and ubiquitinates a single TM protein Glutamine-dumper-1 (GDU1), which in turn regulates aa transport (Figure 7E) (Guerra et al., 2013). Strikingly, human MGRN1 can functionally replace LOG2 in plants (Guerra et al., 2013). We propose that the MGRN1 family of RING E3 ligases can associate more generally across eukaryotes with single-pass TM proteins, each of which functions as a substrate adaptor to target the ubiquitination of specific receptors or transporters (Figure 7E).

It will be interesting to unravel how these TM E3 ligases are regulated in cells. Key questions include the potential role of phosphorylation in modulating ligase activity or substrate recognition, the type of molecular linkages used in the ubiquitin chains attached to SMO, and the identity of the deubiquitinase that opposes the function of MGRN1. Most interesting is the mysterious function of the large MEGF8 extracellular domain, which may allow regulation of Hh signaling by an extracellular ligand, extracellular matrix protein, or homotypic interaction (Figure 7E).

Role of Hh Signaling in Left-Right Patterning and Heart Development

Our vismodegib rescue experiments (Figure 1) strongly suggest that preaxial digit duplication phenotypes in mice carrying mutant alleles of Megf8 and Mgrn1 are caused by elevated Hh signaling. However, further work will be required to determine whether the heterotaxy and CHD phenotypes are also caused entirely by increased Hh signaling.

Both decreased and increased Hh signaling has previously been implicated in left-right patterning, a very early event in development that directs the correct asymmetric development of the heart and other visceral organs (Levin et al., 1995; Tsaiaris and McMahon, 2009; Zhang et al., 2001). The genetic deletion of SMO, which reduces Hh signaling strength, disrupts left-right patterning and causes a midline heart tube that fails to loop to the right and an embryo that fails to turn (Zhang et al., 2001). Conversely, ablation of the conserved negative regulator SUFU, which causes increased Hh signaling, also leads to left-right patterning defects (Cooper et al., 2005). Sufu^{−/−} embryos fail to undergo embryonic turning, have a ~30%–40% frequency of reversed heart looping (L-looping), and show either bilateral or absent expression of Pitx2, an established determinant of organ situs. These seemingly discordant results may be explained by the idea that left-right patterning (like digit patterning, see Figure 1F) depends on a just-right “goldilocks” level of Hh signal amplitude or duration.

Hh signaling also influences multiple aspects of heart development: development of the secondary heart field and proper septation of the atria and outflow tract (Dyer and Kirby, 2009; Hoffmann et al., 2009; Washington Smoak et al., 2005). Thus, CHDs seen in our mutant mice may be caused by both early defects in left-right patterning and by later defects in Hh-mediated patterning of the cardiac septa and outflow tract. The common link of both processes to the precisely calibrated level of Hh signaling may explain the tight association between heterotaxy and CHDs that has been long-noted in clinical studies and is recapitulated in our mutant mouse embryos (Pradat et al., 2003).

We acknowledge that MEGF8 and MGRN1/RNF157 may regulate signaling receptors other than SMO, and some of the birth defect phenotypes we observe may be related to the disruption of other signaling pathways. Genetic and pharmacological experiments that attenuate Hh signaling or disrupt...
the MEGF8-MGRN1 complex at earlier time points in development or in specific tissues (such as the lateral plate mesoderm or developing cardiac outflow tract) will be required to uncover the molecular and cellular mechanisms through which these proteins regulate left-right patterning and heart development.

Oligogenic Interactions and Gene Dosage Effects Underlie Birth Defects

While single heterozygous Megf8m/+ and Mgm1m/+ embryos are normal, double heterozygous Megf8m+/Mgm1m/+ embryos display CHDs with heterotaxy. This phenomenon has been called “synthetic haploinsufficiency” and can result in an oligogenic pattern of inheritance, where mutations in one gene affect the phenotypic outcome of mutations in a different gene (Kousi and Katsanis, 2015; Veitia et al., 2013). Synthetic haploinsufficiency is most commonly seen between genes that encode subunits of a protein complex, like MEGF8 and MGRN1 (Veitia, 2010). Pioneering studies of Bardet-Biedl Syndrome (BBS) and other inherited retinopathies have demonstrated the importance of oligogenic interactions for understanding the genetic etiology of human diseases (Badano et al., 2006; Katsanis et al., 2000).

Beyond binary genetic interactions, the penetrance and expressivity of birth defect phenotypes progressively increase as an inverse function of the gene dosage of Megf8, Mgm1, and Rnf157. We propose that this quantitative effect of mutations in this pathway is explained by the central role of the MEGF8-MGRN1 pathway in calibrating the amplitude of Hh signaling in target cells. The inheritance of increasing numbers of Megf8, Mgm1, and Rnf157 mutant alleles will lead to a progressive decrease in the abundance (and hence activity) of the MEGF8-MGRN1/RNF157 complex. Decreasing E3 ligase activity will result in progressive increases in cell-surface and ciliary SMO and, thus, increases in target cell sensitivity to Hh ligands. More generally, our results show that developmental patterning events can be tightly regulated by mechanisms in target cells that function to precisely tune sensitivity to extracellular morphogens.

We finish by noting that our genetic analyses highlight how interactions between a small number of genes can produce a complex inheritance pattern (common to many human diseases). Homozygous mutations in Megf8 result in a uniform phenotypic spectrum, with 100% of embryos displaying TGA, heterotaxy, and preaxial digit duplication. However, the co-inheritance of one mutant allele of Megf8 with one mutant allele of Mgm1 (even in the homozygous genetic background of inbred mice) results in both incomplete penetrance and variable expressivity of phenotypes, manifested by a wider range of CHDs, such as TGA, DORV, and septal defects. Indeed, whole-exome sequencing studies of human CHD cohorts increasingly support a prominent role for such oligogenic inheritance mechanisms in the genetic etiology of CHDs (Gifford et al., 2019; Jin et al., 2017; Liu et al., 2017, 2020; Priest et al., 2016).

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

- **Lead Contact**
- **Materials Availability**
- **Data and Code Availability**

EXPERIMENTAL MODEL AND SUBJECT DETAILS

- NIH/3T3 and HEK293T Cell Culture
- Generation of Primary Mouse Embryonic Fibroblasts
- Patient Recruitment and Nasal Sampling for Patient Derived Fibroblast Cultures
- Hh Signaling Assays in NIH/3T3 Cells and Primary Fibroblasts
- Neural Progenitor Differentiation Assay
- Generation of Knockout Cell Lines
- Generation of Stable Cell Lines Expressing Transgenes
- Established Mouse Lines
- Generation and Validation of Rnf157-/- Mutant Mice

METHOD DETAILS

- **Constructs**
- **Reagents and Antibodies**
- **Protein Sequence Analysis**
- **Immunoprecipitation and Western Blotting**
- **Flow Cytometry of Live Cells**
- **SMO Internalization Assay**
- **Ubiquitination Assay**
- **Immunofluorescence Staining of Cells and Tissue and Image Quantifications**
- **Vismodegib Dosing via Oral Gavage**
- **Mouse Embryo Phenotyping Analysis**
- **Variant Discovery and Validation**

QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.devcel.2020.08.012.

ACKNOWLEDGMENTS

We thank Robert Lipinski for invaluable advice on the in utero treatment of embryos with vismodegib, Derek Silvius and Janet Peters for genotyping, the McLaughlin Research Institute Animal Resource staff for animal care, and Connie Chuy for her mouse and heart diagrams. R.R. was supported by a grant from the National Institutes of Health (GM118082), G.P. by a postdoctoral fellowship from the American Heart Association (14POST2070057), and J.K. by a postdoctoral fellowship from the American Heart Association (19POST34380734) and a K99/R00 award from the NIH (GM13251801). C.W.L., C.B.Y., and S.H. were supported by grants from the NIH (HL142788, HL132024) and the DOD (W81XWH-15-1-0649 and W81XWH-16-1-0613). A.K. and L.A. are supported by the intramural funds of the National Library of Medicine, NIH.

AUTHOR CONTRIBUTIONS

for predicting damaging missense mutations. Nat. Methods
Adzhubei, I.A., Schmidt, S., Peshkin, L., Ramensky, V.E., Gerasimova, A.,
and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of
Ashkinazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., and
Bjarnadóttir, T.K., Gloriam, D.E., Hellstrand, S.H., Kristiansson, H.,
Siegold, C. (2009). Structural insights into hedgehog ligand sequestration by
595–605.
Durkin, M.E., Qian, X., Popescu, N.C., and Lowy, D.R. (2013). Isolation of
secondary heart field progenitors and is required for normal arterial pole for-
Engelhard, C., Sarsfield, S., Merte, J., Wang, Q., Li, P., Beppu, H., Kolodkin,
signaling in trigeminal sensory neurons. eLife 2, e01160.
conservation between mammalian MGRN1 and plant LOG2 ubiquitin ligases.
Gunn, T.M., Miller, K.A., He, L., Hyman, R.W., Davis, R.W., Azarani, A.,
Schlossman, S.F., Duke-Cohan, J.S., and Barsh, G.S. (1999). The mouse ma-
hogany locus encodes a transmembrane form of human attractin. Nature
398, 152–156.
dependent pigment-type switching requires its ubiquitination activity but not
Gunn, T.M., Silvius, D., Lester, A., and Gibbs, B. (2019). Chronic and age-
dependent effects of the spongiform neurodegeneration-associated MGRN1
E3 ubiquitin ligase on mitochondrial homeostasis. Mamm. Genome 30,
151–165.
Hao, H.X., Xie, Y., Zhang, Y., Chariat, O., Oster, A., Avello, M., Lei, H.,
Mickanin, C., Liu, D., Ruffner, H., et al. (2012). ZNRF3 promotes Wnt receptor
Haqq, A.M., René, P., Kishi, T., Khong, K., Lee, C.E., Liu, H., Friedman, J.M.,
er of the melanocortin-4 receptor: attractin-like protein. Biochem. J. 376,
595–605.
Harfe, B.D., Scherz, P.J., Nissim, S., Tian, H., McMahon, A.P., and Tabin, C.J.
(2004). Evidence for an expansion-based temporal Shh gradient in specifying
He, L., Lu, X.Y., Jolly, A.F., Eldridge, A.G., Watson, S.J., Jackson, P.K., Barsh,
Heyne, G.W., Melberg, C.G., Doroodelchi, P., Parins, K.F., Kietzman, H.W.,
Developmental Cell 55, 432–449, November 23, 2020

REFERENCES

Adzhubei, I.A., Schmidt, S., Peshkin, L., Ramensky, V.E., Gerasimova, A.,
Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W.,
and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of
Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., and
Ben-{\lower0.5ex\hbox{a}}

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: June 10, 2020
Revised: July 23, 2020
Accepted: August 27, 2020
Published: September 22, 2020

Van der Auwera, G.A., Carneiro, M.O., Hartl, C., Poplin, R., Del Angel, G., Levy-
Aune, C.N., Chatterjee, B., Zhao, X.Q., Francis, R., Bracero, L., Yu, Q.,

Byrne, E.F.X., Sircar, R., Miller, P.S., Hedger, G., Luchetti, G., Nachtergaele,
S., Tully, M.D., Mydock-McGrane, L., Covey, D.F., Rambo, R.P., et al.
(2016). Structural basis of smoothened regulation by its extracellular domains.
Campeau, E., Ruhl, V.E., Rodier, F., Smith, C.L., Rahmberg, B.L., Fuss, J.O.,
viral system for expression and depletion of proteins in mammalian cells.
Chakrabarti, O., and Hegde, R.S. (2009). Functional depletion of mahogunin by
cytosolically expressed prion protein contributes to neurodegeneration. Cell
137, 1136–1147.
Cooper, A.F., Yu, K.P., Brueckner, M., Braley, L.L., Johnson, L., McGrath,
Mahogunin ubiquinates the melanocortin 2 receptor. Endocrinology 152,
4224–4231.
437, 1018–1021.

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse monoclonal anti-1D4</td>
<td>The University of British Columbia</td>
<td>RRID: AB_325050</td>
</tr>
<tr>
<td>Guinea pig polyclonal anti-ARL13B</td>
<td>Dorn et al., 2012</td>
<td>N/A</td>
</tr>
<tr>
<td>Mouse monoclonal anti-CD16 (clone 3G8)</td>
<td>Santa Cruz Biotechnology</td>
<td>Cat#sc-19620; RRID: AB_626924</td>
</tr>
<tr>
<td>Mouse monoclonal anti-CD16 (clone DJ130c)</td>
<td>Santa Cruz Biotechnology</td>
<td>Cat#sc-20052; RRID: AB_626925</td>
</tr>
<tr>
<td>Mouse monoclonal anti-FLAG (clone M2)</td>
<td>MilliporeSigma</td>
<td>Cat#F1804; RRID: AB_26204</td>
</tr>
<tr>
<td>Mouse monoclonal anti-GLI1 (clone L42B10)</td>
<td>Cell Signaling</td>
<td>Cat#2643; RRID: AB_2294746</td>
</tr>
<tr>
<td>Goat polyclonal anti-GFP</td>
<td>Rockland Immunochemicals</td>
<td>Cat#600-101-215; RRID: AB_218182</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-GFP</td>
<td>Novus Biologicals</td>
<td>Cat#NB600-308; RRID: AB_10003058</td>
</tr>
<tr>
<td>Mouse monoclonal anti-HA-11 (clone 16B12)</td>
<td>Biologend</td>
<td>Cat#901513; RRID: AB_256335</td>
</tr>
<tr>
<td>Mouse monoclonal anti-HA (clone 2-2.2.14)</td>
<td>Thermo Fisher Scientific (Invitrogen)</td>
<td>Cat#26183; RRID: AB_10978021</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-MEGF8</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-p38</td>
<td>Abcam</td>
<td>Cat#ab7952; RRID: AB_306166</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-RNF156 (anti-MGRN1)</td>
<td>Proteintech</td>
<td>Cat#1285-1-AP; RRID: AB_2143351</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-SMO</td>
<td>Rohatgi et al., 2007</td>
<td>N/A</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-SMO-N</td>
<td>Milenkovic et al., 2009</td>
<td>N/A</td>
</tr>
<tr>
<td>Mouse monoclonal anti-α-Tubulin (clone DM1A)</td>
<td>MilliporeSigma</td>
<td>Cat#76199; RRID: AB_477583</td>
</tr>
<tr>
<td>Mouse monoclonal anti-Tubulin, acetylated</td>
<td>MilliporeSigma</td>
<td>Cat#T6793; RRID: AB_477585</td>
</tr>
<tr>
<td>Peroxidase AffiniPure Donkey Anti-Mouse IgG (H+L)</td>
<td>Jackson ImmunoResearch Laboratories</td>
<td>Cat#715-035-150; RRID: AB_2340770</td>
</tr>
<tr>
<td>Peroxidase AffiniPure Donkey Anti-Rabbit IgG (H+L)</td>
<td>Jackson ImmunoResearch Laboratories</td>
<td>Cat#111-035-144; RRID: AB_2307391</td>
</tr>
<tr>
<td>Peroxidase AffiniPure Donkey Anti-Goat IgG (H+L)</td>
<td>Jackson ImmunoResearch Laboratories</td>
<td>Cat#705-035-003; RRID: AB_2340390</td>
</tr>
<tr>
<td>Donkey anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 488</td>
<td>Thermo Fisher Scientific (Invitrogen)</td>
<td>Cat#A-21206; RRID: AB_2535792</td>
</tr>
<tr>
<td>Donkey anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 594</td>
<td>Thermo Fisher Scientific (Invitrogen)</td>
<td>Cat#A-21207; RRID: AB_141637</td>
</tr>
<tr>
<td>Donkey anti-Mouse IgG (H+L) Secondary Antibody, Alexa Fluor 488</td>
<td>Thermo Fisher Scientific (Invitrogen)</td>
<td>Cat#A-21202; RRID: AB_141607</td>
</tr>
<tr>
<td>Donkey anti-Mouse IgG (H+L) Secondary Antibody, Alexa Fluor 647</td>
<td>Thermo Fisher Scientific (Invitrogen)</td>
<td>Cat#A-31571; RRID: AB_162542</td>
</tr>
<tr>
<td>Alexa Fluor 488 AffiniPure Donkey Anti-Guinea Pig IgG (H+L)</td>
<td>Jackson ImmunoResearch Laboratories</td>
<td>Cat#706-545-148; RRID: AB_2340472</td>
</tr>
<tr>
<td>Alexa Fluor 647 AffiniPure Donkey Anti-Guinea Pig IgG (H+L)</td>
<td>Jackson ImmunoResearch Laboratories</td>
<td>Cat#706-605-148; RRID: AB_2340476</td>
</tr>
<tr>
<td>Bacterial and Virus Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosetta2(DE3)pLysS competent cells</td>
<td>MilliporeSigma (Novagen)</td>
<td>Cat#71403</td>
</tr>
<tr>
<td>Biological Samples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient derived fibroblast cultures</td>
<td>Children’s Hospital of Pittsburgh (University of Pittsburgh)</td>
<td>N/A</td>
</tr>
<tr>
<td>Chemicals, Peptides, and Recombinant Proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Mercaptoethanol</td>
<td>Thermo Fisher Scientific (Gibco)</td>
<td>Cat#31350010</td>
</tr>
<tr>
<td>Bafilomycin A1</td>
<td>Cayman Chemical</td>
<td>Cat#11038</td>
</tr>
<tr>
<td>Bortezomib, Free Base</td>
<td>LC Laboratories</td>
<td>Cat#B-1408</td>
</tr>
<tr>
<td>Cas9 2NLS Nuclease</td>
<td>Synthego</td>
<td>N/A</td>
</tr>
<tr>
<td>CHIR 99021</td>
<td>Axon Medchem</td>
<td>Cat#Axon 1386</td>
</tr>
<tr>
<td>Recombinant mouse FGF basic/FGF2/bFGF protein</td>
<td>R&D Systems</td>
<td>Cat#31339-FB</td>
</tr>
<tr>
<td>Hygromycin B (50 mg/ml in solution, Ultra Pure Grade)</td>
<td>VWR Life Science</td>
<td>Cat#97064-454</td>
</tr>
</tbody>
</table>

(Continued on next page)
<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoechst 33342 solution (20uM)</td>
<td>Thermo Fisher Scientific</td>
<td>Cat#62249</td>
</tr>
<tr>
<td>ESGRO recombinant mouse leukemia inhibitory factor (LIF) protein</td>
<td>MilliporeSigma</td>
<td>Cat#ESG1106</td>
</tr>
<tr>
<td>EZ-Link Sulfo-NHS-SS-Biotin</td>
<td>Thermo Fisher Scientific</td>
<td>Cat#21331</td>
</tr>
<tr>
<td>Gateway LR Clonase II enzyme</td>
<td>Thermo Fisher Scientific (Invitrogen)</td>
<td>Cat#11791020</td>
</tr>
<tr>
<td>Gibson Assembly Master Mix</td>
<td>New England Biolabs</td>
<td>Cat#E2611</td>
</tr>
<tr>
<td>GoTaq Green Master Mix</td>
<td>Promega Corporation</td>
<td>Cat#M712</td>
</tr>
<tr>
<td>Methyl cellulose (viscosity: 4000 cP)</td>
<td>MilliporeSigma</td>
<td>Cat#M0512</td>
</tr>
<tr>
<td>N-Ethylmaleimide</td>
<td>MilliporeSigma</td>
<td>Cat#E3876</td>
</tr>
<tr>
<td>PD 98059</td>
<td>Axon Medchem</td>
<td>Cat#Axon 1223</td>
</tr>
<tr>
<td>Penicillin:Streptomycin solution</td>
<td>Gemini Bioproducts</td>
<td>Cat#400-109</td>
</tr>
<tr>
<td>PhosSTOP</td>
<td>MilliporeSigma</td>
<td>Cat#PHOSS-RO</td>
</tr>
<tr>
<td>Polyethyleneimine (PEI), Linear, MW 25000, Transfection Grade</td>
<td>Polysciences</td>
<td>Cat#23966-1</td>
</tr>
<tr>
<td>Retinoic Acid</td>
<td>MilliporeSigma</td>
<td>Cat#R2625</td>
</tr>
<tr>
<td>Polybrene (Hexadimethrine bromide)</td>
<td>MilliporeSigma</td>
<td>Cat#107689</td>
</tr>
<tr>
<td>Puromycin dihydrochloride</td>
<td>MilliporeSigma</td>
<td>Cat#P8833</td>
</tr>
<tr>
<td>SAG (Smootherned agonist)</td>
<td>Enzo Life Sciences</td>
<td>Cat#NC9953751</td>
</tr>
<tr>
<td>SIGMAFAST protease inhibitor tablets</td>
<td>MilliporeSigma</td>
<td>Cat#S8820</td>
</tr>
<tr>
<td>Sonic hedgehog (recombinant)</td>
<td>Bishop et al., 2009</td>
<td>N/A</td>
</tr>
<tr>
<td>Vismodegib, Free Base</td>
<td>LC Laboratories</td>
<td>Cat#V-4050</td>
</tr>
<tr>
<td>X-tremeGENE 9 DNA transfection reagent</td>
<td>Roche Molecular Systems</td>
<td>Cat#XTG9-RO</td>
</tr>
<tr>
<td>B-27 Supplement (50x), minus antioxidants</td>
<td>Thermo Fisher Scientific (Gibco)</td>
<td>Cat#10889038</td>
</tr>
<tr>
<td>Bovine serum albumin solution (30% in DPBS)</td>
<td>MilliporeSigma</td>
<td>Cat#A9576</td>
</tr>
<tr>
<td>Bovine serum albumin</td>
<td>MilliporeSigma</td>
<td>Cat#A3059</td>
</tr>
<tr>
<td>Dulbecco’s Modified Eagles Medium (DMEM) high glucose without L-glutamine and sodium pyruvate</td>
<td>Thermo Fisher Scientific (Gibco)</td>
<td>Cat#SH30081FS</td>
</tr>
<tr>
<td>Dulbecco’s Modified Eagles Medium (DMEM)/F12, no glutamine</td>
<td>Thermo Fisher Scientific (Gibco)</td>
<td>Cat#21331020</td>
</tr>
<tr>
<td>Dynabeads Protein A for immunoprecipitation</td>
<td>Thermo Fisher Scientific (Invitrogen)</td>
<td>Cat#10002D</td>
</tr>
<tr>
<td>Dynabeads M-270 carboxylic acid</td>
<td>Thermo Fisher Scientific (Invitrogen)</td>
<td>Cat#143050D</td>
</tr>
<tr>
<td>EmbryoMax advanced KSOM embryo medium</td>
<td>MilliporeSigma</td>
<td>Cat#MR-101-D</td>
</tr>
<tr>
<td>EmbryoMax nucleosides (100x)</td>
<td>MilliporeSigma</td>
<td>Cat#ES-008-D</td>
</tr>
<tr>
<td>L-glutamine solution</td>
<td>Gemini Bioproducts</td>
<td>Cat#400-106</td>
</tr>
<tr>
<td>MEM Non-essential amino acids solution</td>
<td>Thermo Fisher Scientific (Gibco)</td>
<td>Cat#E1140050</td>
</tr>
<tr>
<td>N-2 Supplement (100x)</td>
<td>Thermo Fisher Scientific (Gibco)</td>
<td>Cat#17502048</td>
</tr>
<tr>
<td>Neurobasal Medium</td>
<td>Thermo Fisher Scientific (Gibco)</td>
<td>Cat#21103049</td>
</tr>
<tr>
<td>NuPAGE-LDS sample buffer (4X)</td>
<td>Thermo Fisher Scientific (Invitrogen)</td>
<td>Cat#NP0007</td>
</tr>
<tr>
<td>Opti-MEM reduced serum medium</td>
<td>Thermo Fisher Scientific (Gibco)</td>
<td>Cat#3985062</td>
</tr>
<tr>
<td>RPMI medium</td>
<td>Thermo Fisher Scientific (Gibco)</td>
<td>Cat#11875135</td>
</tr>
<tr>
<td>Sodium pyruvate</td>
<td>Thermo Fisher Scientific (Gibco)</td>
<td>Cat#11960070</td>
</tr>
<tr>
<td>Streptavidin agarose ultra performance resin</td>
<td>TriLink Biotechnologies</td>
<td>Cat#N-1000</td>
</tr>
<tr>
<td>Tissue-Plus OCT compound</td>
<td>Thermo Fisher Scientific</td>
<td>Cat#23-730-571</td>
</tr>
<tr>
<td>TRIzol reagent</td>
<td>Thermo Fisher Scientific (Invitrogen)</td>
<td>Cat#15596026</td>
</tr>
<tr>
<td>Trypsin-EDTA solution (0.05%), phenol red</td>
<td>Gemini Bioproducts</td>
<td>Cat#400-150</td>
</tr>
<tr>
<td>Trypsin-EDTA solution (0.25%), phenol red</td>
<td>Thermo Fisher Scientific (Gibco)</td>
<td>Cat#25200072</td>
</tr>
</tbody>
</table>

Critical Commercial Assays

SureSelect XT Human All Exon V4 | Agilent | Cat#5190-4635 |
Direct-zol RNA miniprep kit | Zymo Research | Cat#R2050 |

(Continued on next page)
Experimental Models: Organisms/Strains

Mouse:
- Mgrn1^{m/m}: Mgrn1^{md-nc/md-nc} Phillips, 1963 MGI#3704004
- Megf8^{m/m}: Megf8^{C193R/C193R} Zhang et al., 2009 MGI#3722325
- Rnf157^{m/m}: Rnf157^{em1Tmg/em1Tmg} This paper N/A

Oligonucleotides

- mGli1 and mGapdh qRT-PCR Primers, See Table S9 Pusapati et al., 2018 N/A
- hGLI1 and hGAPDH qRT-PCR Primers, See Table S9 This paper N/A
- mRnf157 qRT-PCR Primers, See Table S9 This paper N/A
- mGpi qRT-PCR Primers (mice), See Table S9 Gunn et al., 2013 N/A
- mRnf157 genotyping PCR Primers (3T3 cells, neural progenitor cells, and mice), See Table S9 This paper N/A
- mRnf157 sgRNA target sequence PCR Primer (mice), See Table S9 This paper N/A
- Mgm1^{mmd-nc} genotyping PCR primers, See Table S9 Gunn et al., 2019 N/A
- Megf8^{C193R} genotyping PCR Primers, See Table S9 This paper N/A

Recombinant DNA

- MGC primer cDNA clone for MEGF8 (NM_001410.3) Transomic Technologies, Inc Cat#TCHS1003(BG153880 – glycerol stock)
- pEF5/FRT/V5-DEST-MEGF8-1D4 This paper N/A
- pEF5/FRT/V5-DEST-MEGF8^{ΔCtail-1D4} This paper N/A

(Continued on next page)
<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continued</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mgrn1 (NM_001252437.1) gBlock</td>
<td>Integrated DNA Technologies</td>
<td>N/A</td>
</tr>
<tr>
<td>pEF5/FRT/V5-DEST-Mgrn1-3xFLAG</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>SmoKO gBlock fragment</td>
<td>Twist Bioscience</td>
<td>N/A</td>
</tr>
<tr>
<td>CD16ECD-CD7™-mCherry-Nck-HA</td>
<td>Rivera et al., 2009</td>
<td>N/A</td>
</tr>
<tr>
<td>pCS2-mSmo</td>
<td>Byrne et al., 2016</td>
<td>N/A</td>
</tr>
<tr>
<td>pCS2-mSmo-eGFP</td>
<td>Zhao et al., 2016</td>
<td>N/A</td>
</tr>
<tr>
<td>pEGFPN3-Ststr3</td>
<td>Berbari et al., 2008</td>
<td>Addgene#35623</td>
</tr>
<tr>
<td>pEF5/FRT/V5-DEST gateway vector</td>
<td>Thermo Fisher Scientific</td>
<td>Cat#V602020</td>
</tr>
<tr>
<td>pLenti CMV Puro DEST</td>
<td>Campeau et al., 2009</td>
<td>Addgene#17452</td>
</tr>
<tr>
<td>pLenti CMV Puro DEST-MEGF8-1D4</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>pLenti CMV Puro DEST-MEGF8ΔN_1D4</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>pLenti CMV Puro DEST-MEGF8ΔN_1D4</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>pLenti CMV Puro DEST-MEGF8ΔN_1D4</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>pLenti CMV Puro DEST-CD16ECD-CD7™_MEGF8 Chnl_1D4</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>pLenti CMV Puro DEST-CD16ECD_3xFLAG</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>pLenti CMV Puro DEST-CD16ECD_3xFLAG</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>pLenti CMV Puro DEST-CD16ECD_3xFLAG</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>pMD2.G</td>
<td>Didier Trono Lab (École Polytechnique fédérale de Lausanne)</td>
<td>Addgene#12259</td>
</tr>
<tr>
<td>psPAX2</td>
<td>Didier Trono Lab (École Polytechnique fédérale de Lausanne)</td>
<td>Addgene#12260</td>
</tr>
<tr>
<td>pOG44 Flp-Recombinase expression vector</td>
<td>Thermo Fisher Scientific (Invitrogen)</td>
<td>Cat#V600520</td>
</tr>
<tr>
<td>pRK5-HA-Ubiquitin-WT</td>
<td>Lim et al., 2005</td>
<td>Addgene#17608</td>
</tr>
<tr>
<td>pRK5-HA-Ubiquitin-K0</td>
<td>Lim et al., 2005</td>
<td>Addgene#17603</td>
</tr>
<tr>
<td>pSpCas9(BB)-2A-GFP (PX458)</td>
<td>Ran et al., 2013</td>
<td>Addgene#48138</td>
</tr>
<tr>
<td>pSpCas9(BB)-2A-mCherry</td>
<td>Pusapati et al., 2018</td>
<td>N/A</td>
</tr>
<tr>
<td>pSpCas9(BB)-2A-Puro (PX459)</td>
<td>Ran et al., 2013</td>
<td>Addgene#48139</td>
</tr>
<tr>
<td>pGEX vector (modified with Fesl/Ascl restriction enzyme cleavage sites)</td>
<td>GE Healthcare</td>
<td>N/A</td>
</tr>
<tr>
<td>pGEX-MEGF8-Ctail(2738-2778)</td>
<td>This paper</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Software and Algorithms

- Benchling: Benchling https://www.benchling.com
- ConSurf: Ashkenazy et al., 2016 https://consurf.tau.ac.il
- Fiji: Schindelin et al., 2012 https://fiji.sc

(Continued on next page)
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Rajat Rohatgi (rrohatgi@stanford.edu).

Materials Availability
All unique/stable reagents generated in this study are available from the Lead Contact with a completed Materials Transfer Agreement.

Data and Code Availability
The published article contains all datasets generated and analyzed during this study.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

NIH/3T3 and HEK293T Cell Culture
Flp-In-3T3 (a derivative of NIH/3T3 cells and referred to as “NIH/3T3” cells throughout the text) and HEK293T cell lines were purchased from Thermo Fisher Scientific and ATCC, respectively. Information on the gender of the cell lines is not available. NIH/3T3 and HEK293T cells were cultured in Complete Medium: Dulbecco’s Modified Eagle Medium (DMEM) containing high glucose (Thermo Fisher Scientific, Gibco) and supplemented with 10% fetal bovine serum (FBS) (MilliporeSigma), 2 mM L-Glutamine (Gemini Bioproducts), 1 mM sodium pyruvate (Thermo Fisher Scientific, Gibco), and 1x MEM non-essential amino acids solution (Thermo Fisher Scientific, Gibco), and penicillin (40 U/ml) and streptomycin (40 µg/ml) (Gemini Bioproducts). The NIH/3T3 and HEK293T cells were passaged with 0.05% Trypsin/EDTA (Gibco). All cells were housed at 37 °C in a humidified atmosphere containing 5% CO₂. Cell lines and derivatives were free of mycoplasma contamination as determined by PCR using the Universal Mycoplasma Detection Kit (ATCC).

Generation of Primary Mouse Embryonic Fibroblasts
Primary mouse embryonic fibroblasts (pMEFs) were generated using a modified published protocol (Durkin et al., 2013). Briefly, e12.5-14.5 embryos were harvested and rinsed thoroughly with PBS to remove any excess blood. Using forceps, the head and internal organs (heart and liver) were removed. The embryos were then separated into individual dishes and a sterile razor blade was used to physically mince the tissue in 0.25% Trypsin/EDTA (Thermo Fisher Scientific, Gibco). After pipetting the minced tissue up and down several times to further break up the tissue, the dishes were placed in a 37 °C tissue culture incubator for 10-15 min. If there were still large tissue pieces present, the minced tissue was pipetted further and the dish was placed in the incubator for an additional 5-10 min. The trypsin was then deactivated using Complete Medium (containing 10% FBS). The cells were then centrifuged, resuspended in fresh Complete Medium, and plated. Each clonal cell line represents pMEFs generated from a single embryo. The gender of the embryos were not determined prior to generating the pMEF cultures. Cells were housed at 37 °C in a humidified atmosphere containing 5% CO₂.
Patient Recruitment and Nasal Sampling for Patient Derived Fibroblast Cultures

Patients and parents were recruited from the Children’s Hospital of Pittsburgh with informed consent obtained under a human study protocol approved by the University of Pittsburgh Institutional Review Board. Control, CHD patient, and parents recruited had blood drawn for DNA extraction. CHD diagnosis was confirmed with examination of the patient’s medical records. Nasal tissue was obtained from the patient by curettage of the inferior nasal turbinate using a rhino probe. The nasal epithelial tissue was plated in RPMI medium (Thermo Fisher Scientific, Gibco) with 10% FBS (MilliporeSigma) and the fibroblast outgrowths that emerged were expanded and used for Hh signaling assays (below). Both primary fibroblast cell lines (control and patient 7501) were derived from cells collected from female patients.

Hh Signaling Assays in NIH/3T3 Cells and Primary Fibroblasts

For Hh signaling assays, NIH/3T3 cells, pMEFs, and primary human fibroblasts were first grown to confluence in Complete Medium (containing 10% FBS) and then cultured by changing the cell medium to Low Serum Medium (Complete Medium containing 0.5% FBS) for 24 h. Cells were treated with either no SHH, a low concentration of SHH (1 nM), a high concentration of SHH (25 nM), or SAG (100 nM) for at least 4 h prior to fixation (for NIH/3T3 immunofluorescence assays), 24 h prior to fixation for SHH activity measurement, or 48 h prior to experimentation (for pMEF and primary human fibroblast immunofluorescence, western blot, and qRT-PCR assays).

Hh signaling activity was measured using real-time quantitative reverse transcription PCR (qRT-PCR). RNA was extracted from NIH/3T3 cells and mouse pMEFs using TRIzol reagent (Thermo Fisher Scientific, Invitrogen) as previously described (Rio et al., 2010). Equal amounts of RNA were used as template for cDNA synthesis using the iScript Reverse Transcription Supermix (Biorad Laboratories). qRT-PCR for mGlI1 and mGapdh was performed on a QuantStudio 5 Real-Time PCR System (Thermo Fisher Scientific) with the following custom designed primers: mGlI1 (Fwd 5’-CCACAGCGTGCACTACCAGA-3’ and Rev 5’-AGTTGCGGAACTGTGGAGAT-3’) and mGapdh (Fwd 5’-GATGGGAAGTGAGAGATG-3’ and Rev 5’-GTGGAACCACTGAGAAC-3’). Similarly, RNA was isolated from primary human fibroblasts using the RNeasy Plus Mini Kit (Qiagen). Equal amounts of RNA were used as template for human cDNA synthesis using the High-Capacity RNA-to-cDNA Kit (Thermo Fisher Scientific, Applied Biosystems), qRT-PCR for hGlI1 and hGAPDH was performed on a 7900HT Real-Time PCR System (Life Technologies) with the following primers: hGlI1 (Fwd 5’-CCAGGGAGAAAGCAGACTGA-3’ and Rev 5’-ACTGCTGCAGGATGACTGG-3’) and hGAPDH (Fwd 5’-GTTCTCCTGACTGGCTCAACAGCG-3’ and Rev 5’- ACCACCTGTGGTCTGAGACC-3’). For all qRT-PCR experiments, GlI1 transcript levels were calculated relative to Gapdh and reported as a fold change across conditions using the comparative CT method (∆∆CT method).

Neural Progenitor Differentiation Assay

Maintenance of HM1 mouse embryonic stem cells (mESCs) harboring the GLI-Venus and OLIG2-mKate dual reporter system and their differentiation into neural progenitor cells (NPCs) was performed as described previously (Pusapati et al., 2018). The parental HM1 mESC line was derived from a male mouse. mESCs were grown and maintained on feeder cells in mESC Medium: Dulbecco’s Modified Eagle Medium (MEM) containing high glucose (Thermo Fisher Scientific, Gibco) and supplemented with 15% FBS (MilliporeSigma), 2 mM L-Glutamine (Gemini Bioproducts), 1 mM sodium pyruvate (Thermo Fisher Scientific, Gibco), 1x MEM non-essential amino acids solution (Thermo Fisher Scientific, Gibco), 1% penicillin/streptomycin (Gemini Bioproducts), 1% EmbryoMax nucleosides (MilliporeSigma), 55 μM 2-mercaptoethanol (Thermo Fisher Scientific, Gibco), and 1000 U/ml ESGRO LIF (MilliporeSigma). mESCs were differentiated into neural progenitor cells using a previously described protocol (Sagner et al., 2018), mESCs were panned to clear the feeder cells, then plated on 6-well gelatin-coated CellBIND plates (Corning) at a density of 100,000 cells/well. Differentiation was conducted in N2B27 Medium: MEM/F12 (Thermo Fisher Scientific, Gibco) and Neurobasal medium (Thermo Fisher Scientific, Gibco) (1:1 ratio) supplemented with 1x N-2 supplement (Thermo Fisher Scientific, Gibco), 1x B-27 supplement (Thermo Fisher Scientific, Gibco), 1% penicillin/streptomycin, 2 mM L-Glutamine, 55 μM 2-mercaptoethanol (Thermo Fisher Scientific, Gibco), and 40 μg/ml bovine serum albumin (MilliporeSigma). On Day 0 (the day the cells were plated) and Day 1, the N2B27 medium was supplemented with 10 ng/ml bFGF (R&D Systems). On Day 2, the N2B27 medium was supplemented with 10 ng/ml bFGF (R&D Systems) and 5 μM CHIR 99021 (Axon Medchem). On Day 3, the N2B27 medium was supplemented with 100 nM Retinoic Acid (RA) (MilliporeSigma) and either no SHH, 5 nM (low SHH), or 25 nM (high SHH). The cells were cultured in RA and SHH for a total of 3 days, where the medium was changed every 24 h. On Day 6, the cells were washed with PBS and trypsinized with 0.25% Trypsin/EDTA (Thermo Fisher Scientific, Gibco) for flow cytometry analysis. GLI-Venus and OLIG2-mKate fluorescence was measured on a FACScan Analyzer at the Stanford Shared FACS Facility. To detect GLI-Venus, a 488 nm (blue) laser was used with a 525/50 filter and B525 detector. To detect OLIG2-mKate, a 561 nm (red) laser was used with a 615/25 filter and Y615 detector.

Generation of Knockout Cell Lines

Clonal Mgrn1+/− NIH/3T3 lines were previously generated using a dual single guide (sgRNA) strategy and validated (Pusapati et al., 2018). Clonal double knockout Mgrn1−/−;Rnf157−/− NIH/3T3 lines were generated using the same dual sgRNA strategy to target Rnf157 in Mgrn1−/− NIH/3T3 cells. Briefly, sgRNAs targeting Rnf157 were designed using the Broad Institute Genetic Perturbation Platform sgRNA Designer Tool (https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design). Exon 6, 5’-CCACAGCGTGCACTACCAGA-3’ and Exon 7, 5’-CAAATGGCAGAGAGCAGACG-3’. The sgRNAs were then cloned into pSpCas9(BB)-2A-GFP (Addgene) (Ran et al., 2013) and pSpCas9(BB)-2A-MCherry (Pusapati et al., 2018) and transfection into...
NIH/3T3 cells using X-tremeGENE 9 DNA transfection reagent (Roche Molecular Systems). Five days post transfection, GFP and mCherry double positive single cells were sorted into a 96-well plate using a FACSAria II at the Stanford Shared FACS Facility. To detect the GFP, a 488 nm (blue) laser was used with a 530/30 filter and BS30 detector. To detect the mCherry, a 561 nm (yellow) laser was used with a 616/23 filter and G616 detector. Clonal lines were screened by PCR (Fwd 5'-GAGCAGAGAGGAGGTTAGCG-3' and Rev 5'-CAAGCTAGACCTTCCCGAGG-3') to detect excision of the genomic DNA (317 bp) between the two sgRNA cut sites (Figure S3B).

Clonal Mgrn1-/-;Rnf157-/- MESC lines were generated using a dual sgRNA strategy to target Rnf157 in Mgrn1-/- MESC lines. Briefly, the same sgRNAs used to target Rnf157 in NIH/3T3 cells were used in MESC, but these sgRNAs were cloned into pSpCas9(2A)-2A-Puro (Addgene) (Ran et al., 2013). Prior to any manipulation, the MESC were maintained for three passages under feeder free conditions in 2i Medium: DMEM/F12 (Thermo Fisher Scientific, Gibco) and Neurobasal medium (Thermo Fisher Scientific, Gibco) (1:1 ratio) supplemented with 1x N-2 supplement (Thermo Fisher Scientific, Gibco), 1x B-27 supplement (Thermo Fisher Scientific, Gibco), 1% penicillin/streptomycin (Gemini Bioproducts), 2 mM L-Glutamine (Gemini Bioproducts), 55 µM 2-mercaptoethanol (Thermo Fisher Scientific, Gibco), 40 µg/ml bovine serum albumin (MilliporeSigma), 5 µM CHIR 99021 (Axon Medchem), 1 µM PD 98059 (Axon Medchem), and 1000 U/ml ESGRO LIF (MilliporeSigma). Cells were trypsinized in 0.25% Trypsin/EDTA (Thermo Fisher Scientific, PBS). Plasmids were nucleofected into the MESC using the Lonza Nucleofector kit (VAPH-1001) and program A-023 on the Lonza Nucleofector 2b Device (Lonza Bioscience). After the cells were nucleofected, they were plated in 2i Medium onto a 10 cm gelatin-coated CellBIND plate. 24 h post nucleofection, selection was started and the medium was changed to 2i Medium containing 1.5 µg/ml puromycin (MilliporeSigma) for 48 h (or until all the cells on the non-nucleofected control plate died). Approximately 1 week after nucleofection, individual MESC colonies were manually picked, expanded, and screened by PCR using the same primers to screen the Mgrn1-/-;Rnf157-/- NIH/3T3 cells (Figure S3B).

Generation of Stable Cell Lines Expressing Transgenes

Clonal Megf8-/- and Mgrn1-/- Flip-In-3T3 cell lines were previously generated and validated (Pusapati et al., 2018). Stable addback cell lines expressing tagged MEGF8 and MEGF8ΔCtail (featured in Figures 3D and 3E), were generated using Flp recombinase-mediated DNA recombination (Thermo Fisher Scientific, Invitrogen) as previously described (Pusapati et al., 2014). Briefly, the pOG44 Flp-recombinase expression vector (Thermo Fisher Scientific, Invitrogen) and either pEF5/FRT/V5-DEST-e7 (5'-CAAGCTAGACCTTCCCGAGG-3') to detect excision of the genomic DNA (317 bp) between the two sgRNA cut sites (Figure S3B).

Clonal Mgrn1-/-;Rnf157-/- MESC lines were generated using a dual sgRNA strategy to target Rnf157 in Mgrn1-/- MESC lines. Briefly, the same sgRNAs used to target Rnf157 in NIH/3T3 cells were used in MESC, but these sgRNAs were cloned into pSpCas9(2A)-2A-Puro (Addgene) (Ran et al., 2013). Prior to any manipulation, the MESC were maintained for three passages under feeder free conditions in 2i Medium: DMEM/F12 (Thermo Fisher Scientific, Gibco) and Neurobasal medium (Thermo Fisher Scientific, Gibco) (1:1 ratio) supplemented with 1x N-2 supplement (Thermo Fisher Scientific, Gibco), 1x B-27 supplement (Thermo Fisher Scientific, Gibco), 1% penicillin/streptomycin (Gemini Bioproducts), 2 mM L-Glutamine (Gemini Bioproducts), 55 µM 2-mercaptoethanol (Thermo Fisher Scientific, Gibco), 40 µg/ml bovine serum albumin (MilliporeSigma), 5 µM CHIR 99021 (Axon Medchem), 1 µM PD 98059 (Axon Medchem), and 1000 U/ml ESGRO LIF (MilliporeSigma). Cells were trypsinized in 0.25% Trypsin/EDTA (Thermo Fisher Scientific, PBS). Plasmids were nucleofected into the MESC using the Lonza Nucleofector kit (VAPH-1001) and program A-023 on the Lonza Nucleofector 2b Device (Lonza Bioscience). After the cells were nucleofected, they were plated in 2i Medium onto a 10 cm gelatin-coated CellBIND plate. 24 h post nucleofection, selection was started and the medium was changed to 2i Medium containing 1.5 µg/ml puromycin (MilliporeSigma) for 48 h (or until all the cells on the non-nucleofected control plate died). Approximately 1 week after nucleofection, individual MESC colonies were manually picked, expanded, and screened by PCR using the same primers to screen the Mgrn1-/-;Rnf157-/- NIH/3T3 cells (Figure S3B).

Established Mouse Lines

All mouse studies were conducted using animal study protocols approved by the Institutional Animal Care and Use Committee (IACUC) of Stanford University, the University of Pittsburgh, and the McLaughlin Research Institute for Biomedical Sciences. Mgrn1-/-null mutant mice (referred to in the paper as Mgrn1m/m) (MGI:3704004) and Megf8C193R/C193R mice (referred to in the paper as Megf8m/m) (MGI:3722325) have been described previously (Gunn et al., 2013; He et al., 2003; Zhang et al., 2009).

Generation and Validation of Rnf157-/- Mutant Mice

Rnf157-/- mutant mice (referred to in the paper as Rnf157m/m mice) were generated by CRISPR/Cas9 mediated genome editing. The website Benchling (www.benchling.com) was used to design sgRNAs that target exon 4 of Rnf157: (5’-CTACTACCAGGCCACTG-3’
and 5'-TGAACTGCCAATTGATGAG-3') (Figure S3B). Synthetic sgRNAs and Cas9 2NLS nucleases were purchased from Synthego and electroporated into one cell mouse embryos following the Easy Electroporation of Zygotes (EEzy) protocol (Tröder et al., 2018). Briefly, fertilized eggs/1-cell embryos were collected from superovulated C57BL/6J females mated to C57BL/6J males into M2 or EmbryoMax Advanced KSOM medium (MilliporeSigma). Cas9/sgRNA ribonucleoproteins (RNP s) were assembled by combining 4 µM Cas9 protein with 4 µM of sgRNAs in 20 µl Opti-MEM reduced serum medium (ThermoFisher Scientific, Gibco) and incubating 10 min at room temperature. For each electroporation, up to 60 embryos were washed through one drop of Opti-MEM and added to the 20 µl of Cas9 RNP mix. The entire solution was immediately transferred to a 1 mm cuvette (Bio-Rad Laboratories) and placed in a Bio-Rad Gene Pulser XCell electroporator. Two square wave pulses were applied (30V, 3 ms pulse duration, 100 ms interval). Embryos were retrieved from the cuvette by flushing twice with 100 µl of pre-warmed KSOM, transferred to a droplet of KSOM under oil and maintained in a 37 °C incubator with 15% CO2 for 1-24 h. Embryos were subsequently moved through a droplet of M2 medium and transferred to the oviduct of 0.5 dpc (days post coitum) pseudopregnant ICR females. At weaning, a small piece of tail tissue was taken from each pup and the DNA was isolated and genotyped using the following primers to PCR amplify the region around the sgRNA target sequences: Fwd 5'-AACAAAGTCCCGATCCACTG-3' and Rev1 5'-CAAGCTAGACCTTCCCGAGG-3' or Rev2 5'-CTTTTCAGCATGGCTTTCTC-3'. Sequence data was analyzed using Synthego's ICE tool (https://ice.synthego.com/#/) and animals carrying modified alleles predicted to result in a loss of RNF157 function were mated to C57BL/6J animals.

METHOD DETAILS

Constructs

MEGF8 constructs: Mammalian Gene Collection (MGC) cDNA clone for human MEGF8 (NM_001410.3) was purchased from Transomic Technologies, Inc and used as a template for the generation of all MEGF8 constructs. All MEGF8 constructs were tagged with a C-terminal 1D4 and cloned into pEF5/FRT/V5-DEST (Thermo Fisher Scientific, Invitrogen) or pLenti CMV PURO DEST (Campeau et al., 2009) using Gateway recombinant methods (Thermo Fisher Scientific, Invitrogen). MEGF8ΔN (aa 2573-2778) was generated using restriction enzymes SrfI and SapI (New England Biolabs) to remove the N-terminal region (aa 26 –2572 deleted). MEGF8ΔCtail (aa 1 –2607) and MEGF8ΔMASRFPΔA (aa 2625-2631 deleted) were created using a combination of overlap extension PCR and restriction enzyme cloning methods. MEGF8ΔCtail constructs were tagged with a MEGF8 C-tail lysine-less Smo (aa 2738-2778), CD7TM-MEGF8Ctail (aa 2604-2778), CD16ECD-MEGF8TM+Ctail (aa 2573-2778), and CD16ECD-MEGF8TM+Ctail(DN) (aa 2573-2778 with aa 2625-2631 deleted) were all cloned using restriction enzyme cloning methods (Thermo Fisher Scientific, Invitrogen). RT-PCR was performed using GoTaq Green Master Mix (Promega Corporation) the following RT-PCR primers: Fwd 5’-AGGCAAAGCTAAGGTCCACTAC-3’, Fwd (mutant) 5’-AGGCAAAGC

Megrn1 Constructs

Mouse full-length Megrn1 (NM_001252437.1) with a C-terminal 3xFLAG tag was synthesized as a gBlock (Integrated DNA Technologies) and used as a template for the generation of all Megrn1 constructs. Overlap extension PCR was used to generate MGRN1Mut1 (C279A;C282A) and MGRN1Mut2 (L307A;R308A). All constructs were cloned into pEF5/FRT/V5-DEST (Thermo Fisher Scientific, Invitrogen) or pLenti CMV PURO DEST (Campeau et al., 2009) using Gateway recombinant cloning methods (Thermo Fisher Scientific, Invitrogen).

Smo Constructs

mSmo-EGFP was a gift from Philip Ingham (Zhao et al., 2016). For Figure S6C, pCS2-mSmo (Byrne et al., 2016), and a mSmo gBlock fragment with all 21 intracellular lysines mutated to arginines (Twist Bioscience) were used as templates to generate the following constructs: untagged full-length Smo (WT), intracellular lysine-less Smo (K0), C-tail lysine-less Smo (CtailK0), intracellular loop 2 and 3 lysine-less Smo (ICL2K0), intracellular loop 2 lysine-less Smo (ICL2K0), and intracellular loop 3 lysine-less Smo (ICL3K0). Constructs were generated using PCR amplification followed by Gibson assembly methods (New England Biolabs).

Other Constructs

SSTR3-GFP was a gift from Kirk Mykytyn (Berbari et al., 2008) and pRK5-HA-Ubiquitin-WT and pRK5-HA-Ubiquitin-K0 were purchased from Addgene (Lim et al., 2005).

Reagents and Antibodies

Recombinant SHH was expressed in bacteria and purified in the lab as previously described (Bishop et al., 2005). Briefly, His-tagged SHH-N (C24II followed by human SHH aa 25-193) was expressed in Escherichia coli (BL21 strain; Rosetta2 (DE3)pLysoS). Cells were

55, 432–449.e1–e12, November 23, 2020 e8
The recombinant protein was >98% pure, as assessed from coomassie staining and stored at -80 °C. Gel filtration column (Amersham Biosciences) equilibrated with column buffer (10 mM HEPES pH 7.5, 150 mM NaCl, and 1 mM DTT). Peak fractions were pooled, concentrated using a 5 kDa cut-off VIVASPIN 15R (Life Technologies), and loaded onto a Superdex 75 by wash buffer B (wash buffer A+10 mM Imidazole) and bound proteins eluted with elution buffer (wash buffer A+250 mM Imidazole). For all other immunoblotting data presented in the manuscript, whole cell extracts were prepared in RIPA lysis buffer: 50 mM Tris at pH 8.0, 150 mM NaCl, 1% NP-40, 1 mM DTT, 1x SIGMAFAST phosphatase inhibitor cocktail (MilliporeSigma), and 1x PhosSTOP phosphatase inhibitor cocktail (Roche). Cells were lysed for 1 h on a shaker at 4 °C, supernatants were clarified by centrifugation, and 1D4 tagged MEGF8 was captured by a 1D4 antibody (The University of British Columbia) covalently conjugated to Protein A Dynabeads (Thermo Fisher Scientific, Enzo Life Sciences). The selection antibiotic puromycin was purchased from MilliporeSigma and hygromycin B from VWR Life Science. The transfection reagent XtremeGENE 9 was purchased from Roche Molecular Systems and polybrene from MilliporeSigma. Bafilomycin A1 was purchased from Cayman Chemical. Vismodegib and Bortezomib were purchased from LC labs. The following primary antibodies were purchased from the following vendors: mouse anti-1D4 (The University of British Columbia, 1:5000); mouse anti-CD16 (clone 3G8, Santa Cruz Biotechnology, 1 μg per 1 million cells in 100ul); mouse anti-CD16 (clone DJ130c, Santa Cruz Biotechnology, 1 μg per 1 million cells in 100ul); mouse anti-FLAG (clone M2, MilliporeSigma, 1:2000); goat anti-GFP (Rockland Immunochemicals, 1:1000); rabbit anti-GFP (Novus Biologicals, 1:5000); mouse anti-GLI1 (clone L42B10, Cell Signaling, 1:1000); mouse anti-HA.11 (clone 16B12, BioLegend, 1:2000); mouse anti-HA (clone 2-2.2.14, Thermo Fisher Scientific, 1:2000); rabbit anti-p38 (Abcam, 1:2000); and rabbit anti-RNF156 (anti-MGRN1, Protienech, 1:500); mouse anti-α-Tubulin (Clone DM1A, MilliporeSigma, 1:10000); mouse anti-acetylated-Tubulin (MilliporeSigma, 1:10000). The following primary antibodies were generated in the lab or received as a gift: Guinea pig anti-ARL13B (1:1000) (Dorn et al., 2012); rabbit anti-SMO (designed against an intracellular epitope, 1:2000) (Rohatgi et al., 2007); and rabbit anti-SMO-N (designed against an extracellular epitope, 1:2000) (Milenkovic et al., 2009). The anti-MEGF8 rabbit polyclonal antibody was produced against amino acids 2738-2778 of the mouse MEGF8 protein and affinity purified before use (Cocalico Biologicals, 1:2000). Hoechst 33342 and secondary antibodies conjugated to horseradish peroxidase (HRP) or Alexa Fluor dyes were obtained from Jackson Laboratories and Thermo Fisher Scientific.

Protein Sequence Analysis

Iterative sequence profile searches were performed using the PSI-BLAST program run against the NCBI non-redundant (NR) protein database (Altschul et al., 1997). Multiple sequence alignments were built using the Kalign2 software (Lassmann et al., 2009) and were later manually adjusted based on profile-profile, secondary structure information, and structural alignments. Similarity-based clustering for both classification and discarding of nearly identical sequences was performed using the BLASTClust program (Figure S4A). Maximum-likelihood (ML) tree topology was derived using an edge-linked partition model as implemented in the IQ-TREE software (Nguyen et al., 2015). ModellFinder (Kalyaanamoorthy et al., 2017) was used to automatically identify the best-fit substitution model and estimated “JTT+F+R9” as the suitable model for the given dataset. Branch supports were obtained using the ultrafast bootstrap (UBF) approximation method (1,000 replicates) (Hoang et al., 2018). To further assess the branch supports, Shimodaira-Hasegawa(SH)-LRT branch test was also computed as implemented in the IQ-TREE software (Figure 2B). The sequence logo was generated using the Logo software (Crooks et al., 2004) (Figure 3B). An alignment comprising a collection of all unique members of the MEGF8-Attractin family from the RefSeq database was utilized as input. The UniProt align tool was used to compare two protein sequences with the Clustal Omega program (Figure S3A) (UniProt Consortium, 2019). Sequence analysis of the MGRN1 RING domain was done using ConSurf (Ashkenazy et al., 2016). Briefly, 200 MGRN1 homologs were collected from UniProt using the homolog search algorithm HMMER and a color coded multiple sequence alignment was built using ClustalW (Figure S4B).

Immunoprecipitation and Western Blotting

Whole-cell extracts from HEK293T and NIH/3T3 cells were prepared in Immunoprecipitation (IP) Lysis Buffer: 50 mM Tris at pH 8.0, 150 mM NaCl, 1% NP-40, 1 mM DTT, 1x SIGMAFAST protease inhibitor cocktail (MilliporeSigma), and 1x PhosSTOP phosphatase inhibitor cocktail (Roche). Cells were lysed for 1 h on a shaker at 4 °C, supernatants were clarified by centrifugation, and 1D4 tagged MEGF8 was captured by a 1D4 antibody (The University of British Columbia) covalently conjugated to Protein A Dynabeads (Thermo Fisher Scientific, Invitrogen). Immunoprecipitates were washed once with IP Wash Buffer A (50 mM Tris at pH 8.0, 150 mM NaCl, 1% NP-40, and 1 mM DTT), and final with IP Wash Buffer C (50 mM Tris at pH 8.0, 0.1% NP-40, and 1 mM DTT). Proteins were eluted by resuspending samples in 1xNuPAGE LDS sample buffer (Thermo Fisher Scientific, Invitrogen) supplemented with 100 mM DTT, incubated at 37 °C for 30 min, and subjected to SDS-PAGE (Figures 3C, 3D, and S4C). For all other immunoblotting data presented in the manuscript, whole cell extracts were prepared in RIPA lysis buffer: 50 mM Tris at pH 8.0, 150 mM NaCl, 2% NP-40, 0.25% Deoxycholate, 0.1% SDS, 0.5 mM TCEP, 10% glycerol, 1x SIGMAFAST protease inhibitor cocktail (MilliporeSigma), and 1x PhosSTOP phosphatase inhibitor cocktail (Roche). The resolved proteins were transferred onto a nitrocellulose membrane (Bio-Rad Laboratories) using a wet electroblotting system (Bio-Rad Laboratories) followed by immunoblotting.

Flow Cytometry of Live Cells

As described above, a lentiviral expression system was used to stably express CD16/CD7/MEGF8 chimeras in MEGF8-/- NIH/3T3 cells (diagramed in Figure S6D). A modified live cell immunostaining protocol from Santa Cruz Biotechnology and Cell Signaling.
Technology was used to label and analyze cell surface CD16/CD7/MEGF8 chimeras (Figure S6E). Briefly, four cell lines were analyzed: Megf8\(-/-\), Megf8\(-/-\) with CD16\(\text{CD} 7\)\(\text{TM}\)-Megf8\(\text{CT} 8\) addback, Megf8\(-/-\) with CD16\(\text{CD} 7\)\(\text{TM}\)-Megf8\(\text{CT} 8\) addback, and Megf8\(-/-\) with CD16\(\text{CD} 7\)\(\text{TM}\)-Megf8\(\text{CT} 8\) addback. Prior to staining, the cells were serum starved for 24 h to allow for primary cilia growth. On staining day, the Complete Medium was removed, the cells were rinsed with PBS, and then dissociated in 0.2% EDTA (prepared in PBS) for approximately 5 min at 37 °C. Upon seeing the cells lift from the plate, the cells were pipetted up and down five times to create a single cell suspension, and Complete Medium (containing 10% FBS) was added to neutralize the EDTA. A small sample was taken to determine the total number of cells present. The cells were then resuspended in Flow Cytometry (FCM) Blocking Buffer (0.5% bovine serum albumin prepared in PBS) at a concentration of 10 million cells/ml. The cells were blocked for 10 min on ice, 1 million cells (100 ul of the cell suspension) were then transferred to a fresh tube, and 1 ul of an anti-CD16 antibody (Santa Cruz Biotechnology, clones 3G8 and DJ130c) was added directly to the cells. The cells were incubated with primary antibodies for 30 min on ice. Primary antibodies were rinsed off with 2 washes in FCM Blocking Buffer. The cells were then incubated for 30 min on ice in 1 ul of donkey anti-mouse IgG, Alexa Fluor 488 (Thermo Fisher Scientific, Invitrogen) diluted in FCM Blocking Buffer. The cells were washed 2 times in FCM Blocking Buffer then analyzed on a BD Accuri C6 Flow Cytometer (BD Biosciences).

SMO Internalization Assay

Cell surface internalization assay for SMO was performed as described previously for Figures 4A, S5A, and S5B (Pusapati et al., 2018). Briefly, wild-type, Megf8\(-/-\), and Mgrn1\(-/-\);Rnf157\(-/-\) NIH/3T3 cells were plated on 15 cm plates in Complete Medium (containing 10% FBS). Once the cells were confluent they were switched to Low Serum Medium (Complete Medium containing 0.5% FBS) for 24 h. On biotinylation day, the cells were removed from the 37 °C incubator and placed on an ice-chilled metal rack in a 4 °C cold room. The medium was removed and cells were quickly washed 3 times with ice-cold DPBS+ buffer (Dulbecco’s PBS supplemented with 0.9 mM CaCl2, 0.49 mM MgCl2, 6H2O, 5.6 mM dextrose, and 0.3 mM sodium pyruvate). Biotinylation of cell surface proteins using a non-cell permeable and thiol-cleavable probe was initiated by incubating cells with 0.4 mM EZ-Link Sulfo-NHS-SS-Biotin (Thermo Fisher Scientific) in DPBS+ buffer for 30 min. Unreacted Sulfo-NHS-SS-Biotin was quenched with 50 mM Tris (pH 7.4) for 10 min. Cells were then washed 3 times with a 1x Tris-buffered saline (25 mM Tris at pH 7.4, 137 mM NaCl, and 2.7 mM KCl) and whole cell extracts were prepared in Biotinylation Lysis Buffer A (50 mM Tris at pH 8.0, 150 mM NaCl, 2% NP-40, 0.25% Deoxycholate, 1x SIGMAFAST protease inhibitor cocktail (MilliporeSigma), and 1x PhosSTOP phosphatase inhibitor cocktail (Roche). Biotinylated proteins from clarified supernatants were captured on a streptavidin agarose resin (Trilink Biotechnologies), washed once with Biotinylation Lysis Buffer A, once with Biotinylation Wash Buffer A (Biotinylation Lysis Buffer A + 0.5% SDS), once with Biotinylation Wash Buffer B (Biotinylation Wash Buffer A + 150 mM NaCl), and finally once again with Biotinylation Wash Buffer A. Biotinylated proteins captured on streptavidin agarose resin were eluted in 1x NuPAGE-LDS sample buffer (Thermo Fisher Scientific, Invitrogen) containing 100 mM DTT at 37 °C for 1 h and assayed by immunoblotting for SMO (Figure S6B).

Ubiquitination Assay

8 million HEK293T cells were plated onto a 15 cm plate. 24 h after plating, the cells were transfected using PEI. 6 ug of each construct was transfected into the cells (at a DNA:PEI ratio of 1:3). An empty plasmid construct was used as filler DNA to ensure that each plate was transfected with the same amount of DNA. 36 h post transfection, cells were pre-treated with 10 μM Bortezomib (a proteasome inhibitor) and 100 nM Bafalimycin A1 (a lysosome inhibitor) for 4 h to enrich for ubiquitinated proteins. Cells were washed twice with chilled 1x PBS and lysed in Ubiquitination Lysis Buffer A comprised of: 50 mM Tris (pH 7.4) for 10 min. Cells were then washed 3 times with a 1x Tris-buffered saline (25 mM Tris at pH 7.4, 137 mM NaCl, 2% NP-40, 0.25% sodium deoxycholate, 0.1% SDS, 6M urea, 1 mM DTT, 10 μM Bortezomib, 100 nM Bafalimycin A1, 20 mM N-Ethylmaleimide (NEM, MilliporeSigma), and 1x SigmaFAST protease inhibitor cocktail (MilliporeSigma). Clarified supernatants were diluted ten-fold with Ubiquitination Lysis Buffer B (Ubiquitination Lysis Buffer A prepared without urea) to adjust the urea concentration to 600 mM. For these assays, we assessed ubiquitination on both GFP tagged and untagged SMO. Ubiquitinated GFP tagged SMO (Figures 4B, 4C, S6A, and S6D) was captured using a GFP binding protein (GBP) covalently conjugated to carboxylic acid decorated Dynabeads (Dynabeads M-270 carboxylic acid, Thermo Fisher Scientific). Untagged SMO (Figure S6C) was captured using SMO antibody covalently conjugated to Protein A Dynabeads (Thermo Fisher Scientific, Invitrogen). Immunoprecipitates were washed once with Ubiquitination Wash Buffer A (Ubiquitination Lysis Buffer B + 0.5% SDS), once with Ubiquitination Wash Buffer B (Ubiquitination Wash Buffer A + 1 M NaCl), and finally once again with Ubiquitination Wash Buffer A. Proteins bound to dynabeads were eluted in 2x NuPAGE-LDS sample buffer (Thermo Fisher Scientific, Invitrogen) containing 30 mM DTT at 37 °C for 30 min and assayed by immunoblotting for GFP or SMO antibodies for GFP tagged SMO and endogenous SMO, respectively.

Immunofluorescence Staining of Cells and Tissue and Image Quantifications

Mouse embryos (e12.5) were harvested and fixed in 4% (w/v) paraformaldehyde (PFA) in 1x PBS for 2 h at 4 °C and then rinsed thoroughly in chilled PBS. To cryopreserve the tissue, the embryos were transferred to 30% sucrose in 0.1M phosphate buffer (pH 7.2) and allowed to equilibrate overnight. To allow for better analysis of the tissue, the embryos were further dissected into five pieces: 2 hands (forelimbs), head, upper body, and lower body. All five pieces were then mounted and frozen into Tissue-Plus OCT (optimal cutting temperature) compound (Thermo Fisher Scientific) and 12–14 μm sections were collected. Prior to staining,
the tissue was blocked for 1 h in immunofluorescence (IF) Blocking Buffer: 1% normal donkey serum (NDS) and 0.1% Triton-X diluted in 1x PBS. In a humidified chamber, the sections were incubated with primary antibodies overnight at 4 °C, rinsed 3 times in PBST (1x PBS + 0.1% Triton-X), incubated with secondary antibodies and Hoechst for 1 h at room temperature, rinsed 3 times in PBST, and then mounted in Prolong Gold antifade mountant (Thermo Fisher Scientific, Invitrogen).

NIH/3T3 cells, pMEFs, and primary human fibroblasts were fixed in chilled 4% PFA in 1x PBS for 10 min and then rinsed with chilled PBS. Cells were incubated in IF Blocking Buffer for 30 min, primary antibodies for 1 h, and secondary antibodies for 30 min.

Fluorescence images were acquired on an inverted Leica SP8 confocal microscope equipped with a 63X oil immersion objective (NA 1.4). Z-stacks (∼4 μm sections) were acquired with identical acquisition settings (laser power, gain, offset, frame and image format) within a given experiment. An 4-8X optical zoom was used for imaging cilia to depict representative images. For the quantification of SMO at cilia, images were opened in Fiji (Schindelin et al., 2012) with projections of the maximum fluorescent intensities of z-stacks. Ciliary masks were constructed based on ARL13B images and then applied to corresponding SMO images to measure the fluorescence intensity of SMO at cilia.

Vismodegib Dosing via Oral Gavage

Vismodegib treatment was performed as described previously (Heyne et al., 2015). Briefly, Megf8m/+ x Megf8m/+ and Mgrn1m/m x Mgrn1m/m mouse crosses were set up and monitored daily. E0 was defined as midnight prior to visualization of the copulation plug. Females mice were weighed at ∼e0.25 (the morning the plug was visualized) and ∼e7.25. Only mice that gained 1.75 grams over 7 days were deemed “likely pregnant” and treated with either vehicle or Vismodegib. For Vismodegib treatment, a 3 mg/ml Vismodegib solution was prepared in 0.5% methyl cellulose (MilliporeSigma) with 0.2% Tween. Vismodegib (40 mg/kg) was administered via oral gavage every 12 h (∼7am and 7pm) for a total of three days (e8.25, e8.75, e9.25, e9.75, e10.25, and e10.75). Embryos were harvested at e14.5, fixed in 4% (w/v) PFA in 1x PBS for 2-3 days, and analyzed for limb and patterning defects.

Mouse Embryo Phenotyping Analysis

Mouse embryos (e13.5-14.5) were fixed in 4% (w/v) PFA in 1x PBS for 2-3 days. Necropsy was performed to determine visceral organ situs (i.e. lung and liver lobation, heart and stomach situs, and spleen and pancreas structure). The samples were embedded in paraffin and processed for epicopic confocal microscopy as previously described (Liu et al., 2013). Briefly, this entailed sectioning of the tissue block using a Leica sledge microtome with serial images of the block face captured with a Leica confocal microscope. The serial two-dimensional (2D) image stacks generated were three-dimensionally (3D) reconstructed using the Osirix software (Rosset et al., 2004) and digitally resliced in different orientations to aid in the analysis of intracardiac anatomy and the diagnosis of congenital heart defects (Liu et al., 2013).

Variant Discovery and Validation

Genomic DNA was extracted from blood using the PAXgene Blood DNA kit (Qiagen). Patient genomic DNA was analyzed using whole-exome sequencing performed using the Agilent V5 Exome Capture kit followed by sequencing with the Illumina HiSeq2000 with 150 base paired-end reads with 100X coverage. Reads were aligned to the human reference genome (version hg19) using Burrows-Wheeler Alignment (BWA, version 0.5.9) (Li and Durbin, 2009) with default parameters, and further processed according to the recommendations of the Genome Analysis Toolkit (GATK) Best Practices (Van de Auwera et al., 2013; DePristo et al., 2011). GATK HaplotypeCaller was used for single-nucleotide polymorphism (SNP) and insertion/deletion mutation (INDEL) discovery and variants that passed the GATK Variant Score Quality Recalibration (VQSR) and standard GATK filters with minor allele frequency <5% based on the Genome Aggregation Database (GnomAD). Only variants with Combined Annotation-Dependent Depletion (CADD) PHRED (Kircher et al., 2014) score of at least 10 were considered, and PolyPhen-2 (Adzhubei et al., 2010) and SIFT (Kumar et al., 2009) were used to assess variant pathogenicity. MEGF8/MGRN1/RNF157 variants recovered were validated by Sanger sequencing and heritable transmission was determined by further Sanger sequencing of genomic DNA from the parents.

QUANTIFICATION AND STATISTICAL ANALYSIS

All data analysis and graphs were generated using GraphPad Prism 8. Violin plots were created using the “Violin Plot (truncated)” appearance function. In Prism 8, the frequency distribution curves of the violin plots are calculated using kernel density estimation. By using the “truncated” violin plot function, the frequency distributions shown are confined within the minimum to maximum values of the data set. On each violin plot, the median (central bold line) and quartiles (adjacent thin lines, representing the first and third quartiles) are labeled.

In Prism 8, the statistical significance between two groups was determined using either Mann-Whitney or an unpaired t-test and the significance between three or more groups was determined using either one-way ANOVA or the Kruskal-Wallis test. For each figure, p-values were calculated using Prism 8 and reported in the figure legend. P-values were reported using the following key: not-significant (ns) p-value > 0.05, *p-value ≤ 0.05, **p-value ≤ 0.01, ***p-value ≤ 0.001, and ****p-value ≤ 0.0001. Additional figure details regarding the n-value and statistical test applied were reported in the individual figure legends.
All cell biological and biochemical experiments were performed two to three independent times, with similar results. To validate newly generated Mgrn1⁻/⁻;Rnf157⁻/⁻ NIH/3T3 and neural progenitor cell lines, 3 independent clonal cell lines were analyzed. Analysis of one clonal NIH/3T3 cell line was featured in the main figures (Figures 2A and 2C) and data from the additional cell lines was presented in the supplementary figures (Figures S3C, S3D, and S3E). Similarly, 2–3 primary mouse embryonic fibroblast (pMEF) cell lines were analyzed from both Megf8⁻/⁻ and Mgrn1⁻/⁻ embryos, where each pMEF cell line was generated from a single embryo (Figures 1A, 1B, S1B, and S1C).