Introduction - 1. Aliphatic nucleophilic substitution reactions involving ¹⁸F-fluoride or S_N2 are the most common methods for the incorporation of [¹⁸F]fluoride onto aliphatic molecules. - 2. In contrast to electrophilic reactions, ¹⁸F-S_N2 reactions provide access to ¹⁸F-tracers in moderate to high yields and high specific activity under relatively mild reaction conditions. - 3. ¹⁸F-S_N2 reactions provide access to un-activated aromatics, peptides, proteins and other macromolecules through small aliphatic conjugates. - 4. Radiolabelling reactions will be presented according to - type of leaving group - reaction type - direct one step fluorination or - incorporation via a ¹⁸F-fluoride-prosthetic group - potential pitfalls ### **Mechanism - Aliphatic Nucleophilic Substitution S_N2** - ¹⁸F- is a good nucleophile and X must be good leaving group - Polar solvents are required to moderately solvate ¹⁸F- and the emerging X⁻ leaving group whilst maintaining the nucleophilicity of ¹⁸F - If carbon is chiral, "Walden Inversion" occurs giving product with opposite stereochemistry to that of precursor e.g. ¹⁸F-FDG synthesis - Competing Elimination (E₂) reaction may also occur - ¹⁸F-fluoride can also act as a strong base X = GLG, Sulfonates, Halogens, ¹⁸F ### **Common Leaving Groups** Lee S.J. et al., Nucl. Med. Biol. 2007, 34, 345-351 ### Cyclic precursors - Epoxides, Sulfonates and Sulfamidates De Groot T.J. et al., Appl. Rad. Isot. 1994, 45, 811 b -18F-fluoroalcohols Lim J.L. et al., Nucl. Med. Biol. 1996, 23, 911 b -18F-fluoroalcohols Brady F. et al., Appl. Radiat. Isot. 1989, 40, 325 Yu W. et al., J. Med. Chem. 2010, 53, 876-886 b -18F-fluoroamines ### Two Step ¹⁸F-fluoroalkylation - Synthesis of ¹⁸F-FET #### STEP 1 #### STEP 2 ### Direct one-step method ¹⁸F-S_N2 substitution - Synthesis of ¹⁸F-FET $$R \xrightarrow{18F} CH_3$$ $K \xrightarrow{18F - K_2CO_3}$ Hamacher K. et al., J. Label. Compds Radiopharm. 2001, 44, S855 Bourdier T. et al., Nucl. Med. Biol. 2011, 38, 645 25-35% ## Potential Pitfalls in ¹⁸F-S_N2 reactions $$R$$ $X = 0, N, S$ N,$ ### Potential Pitfalls in ¹⁸F-S_N2 reactions - Synthesis of ¹⁸F-ethyl and propyl methionine X = OTs, Br, CI X = OTs Unstable and could not be isolated X = Cl Radiochemical yield = 22% after 30 minutes at 100°C X = Br Radiochemical yield = 40% after 5 minutes at 100°C X = CI Radiochemical yield = 47% after 30 minutes at 100°C X = Br Radiochemical yield = 76% after 15 minutes at 80°C X = OTs Radiochemical yield = 82% after 15 minutes at 100°C ## Pitfalls in S_N2 Amide ¹⁸F-Fluorinations X = OTs, Br, CI $$\begin{array}{c|c} & & \\$$ Reaction favoured due to formation of fivemembered ring ## Pitfalls in S_N2 Amide ¹⁸F-Fluorinations $$R \longrightarrow \frac{18F, K_{222}}{CH_3CN}$$ $$X = OTs, Br, CI$$ $$R \longrightarrow \frac{10-20\%}{O}$$ $$R \longrightarrow \frac{18F}{O}$$ $$R \longrightarrow \frac{18F}{O}$$ Side reaction predominates due to favoured formation of six membered ring ### Chemical and *in vivo* stability of ¹⁸F-fluoroalkyl based radiopharmaceuticals ¹⁸F-Fluoroalkyl groups are prone to defluorination in vivo. The nature of R and X influences chemical and biological stability Conclusion - 1. Aliphatic Nucleophilic fluorination chemistry is very versatile giving access to a large number of ¹⁸F-radiopharmaceuticals either directly or indirectly. - 2. Competing reactions including E₂ elimination can reduce the yields of such reactions. - 3. Neighbouring group participation can lead to side products. - 4. Solvents, base and temperature greatly influence the nucleophilicity and basicity of 18 F and hence the fate of $S_N 2$ vs E_2 reactions - 5. Stereochemical considerations are critical when a chiral centre is involved ### Considerations and Pitfalls with Aliphatic ¹⁸F-S_N2 Reactions - The most electronegative element, with high charge density renders ¹⁸F-fluoride strongly basic. - Formation of strong hydrogen bonds and stable solvation spheres dramatically decreases its nucleophilicity. - The insolubility of alkali metal-fluorides in organic solvents can lead to low yields of ¹⁸F products necessitating the use of crown ethers, amino poly-ethers or phase transfer catalysts. - As the presence of water reduces nucleophilicity, extensive drying of quaternary ammonium salts render 18F-fluoride a powerful base, promoting elimination reactions. - The use of tertiary alcohols (*tert*-butanol) enhances nucleophilicity by decreasing solvation of ¹⁸F-fluoride and its basicity, thus increasing fluorination reactions and minimising side reactions. - ¹⁸F-Fluorination reactions are also influenced by unsuspecting, competing nucleophiles (impurities e.g. water, trace halogens, amines, from solvent and reagent). The latter compete in reactions forming analogous hydroxyl, halogenated, amino and other side-products. Competition from ¹⁹F-fluoride also leads to low specific activity products. - Depending on molecular environment ¹⁸F-Fluoroalkyl groups are prone to *in vivo* defluorination, or cleavage yielding ¹⁸F-fluoride, ¹⁸F-fluoroacetate and other fragments.