Al and behavioral economics

- Discovering variables
- Human judgment overfits

Colin Camerer, Caltech

Robert Kirby Prof of Behavioral Economics
Director, T&C Chen Center for Social and
Decision Neuroscience

Discovering variables

- Behavioral economics definition
 - include natural limits of computation, willpower and selfishness
- University-structure definition
 - Borrows from neighboring sciences
 - psychophysics (prospect theory), norms (sociology), sociality (psych, anthropology), self control (neuro)

Discovering variables

- Search for predictive variables definition
 - Behavioral economics is open-minded
 - Defaults
 - Reminders
 - Social comparison
 - Cognitive skill
 - anxiety
 - Habit
 - "Nudge" experiments explore this space

Here comes ML

- ML allows exploration of many variables
 - Can give upper bound to how well theory could do-complete (Kleinberg et al 2017) or clairvoyant (economic value; Camerer et al QJE 2004)
 - Can discover new variables
- Two examples:
 - Predicting initial play in 3x3 matrix games (bound)
 - Semi-structured bargaining (new)

Theory value as % of "clairvoyant" maximum (Camerer Ho Chong QJE 04)

TABLE VIII
ECONOMIC VALUE OF VARIOUS THEORIES

Data set	Stahl and Wilson	Cooper and Van Huyck	Costa-Gomes et al.	Mixed	Entry
Observed payoff	195	586	264	328	118
Clairvoyance payoff	243	664	306	708	176
Economic value					
Clairvoyance	48	78	42	380	58
Cognitive hierarchy					
$(Common \ \tau)$	13	55	22	132	10
Nash equilibrium	5	30	15	-17	2
% Maximum economic					
value achieved					
Cognitive hierarchy					
(Common τ)	26%	71%	52%	35%	17%
Nash equilibrium	10%	39%	35%	-4%	3%

Ex 1: Initial play in 3x3 games

(Fudenberg, Liang 2017; cf. Hartford, Wright, Leyton-Brown 2016)

Poisson CH (Camerer+ QJE 2004)

$$P_k(a_i) = \sum_{h=0}^{k-1} \frac{\pi_{\tau}(h)}{\sum_{h=0}^{k-1} \pi_{\tau}(h)} P_h(a_i)$$

• Maximizing total payoffs: Indicator for whether there exists an action $a_2 \in A_{col}$ such that

$$u_1(a_1, a_2) + u_2(a_1, a_2) = \max_{a \in A} (u_1(a) + u_2(a)).$$

ML (88 features)

• Max-max: Indicator for whether the row player would choose a_1 if he could also choose the column player's action; that is, whether there exists some action $a_2 \in A_{\text{col}}$ such that

$$(a_1, a_2) \in \operatorname*{argmax}_{a \in A} u_1(a).$$

• Max-min: Indicator for whether action a_1 maximizes the lowest possible payoff the row player might obtain; that is, whether

$$a_1 \in \underset{a_1' \in A_{\text{row}}}{\operatorname{argmax}} \min_{a_2 \in A_{\text{col}}} u_1(a_1', a_2).$$

	Error	Completeness
Naive Benchmark	0.6667	0
Uniform Nash	0.5507	33.66%
	(0.0055)	
Poisson Cognitive Hierarchy Model	0.3838	82.02%
	(0.0197)	
Prediction rule based on game features	0.3360	95.88%
	(0.0056)	
"Best possible"	0.3218	1

Table 3: Predicting the realized action in play of lab games

	Error	Completeness
Naive Benchmark	0.6667	0
PCHM	0.3838	82.02%
	(0.0197)	
PCHM with Risk Aversion	0.3531	90.92%
	(0.0133)	
Five-Split Decision Tree	0.3556	90.20%
	(0.0062)	
Unrestricted Decision Tree	0.3360	95.88%
	(0.0056)	
"Best possible"	0.3218	1

Table 5: Introduction of risk aversion improves the cognitive hierarchy prediction error.

Ex 2: Semi-structured bargaining with private information (Camerer, Nave, Smith Mgt Sci in press)

Figure 2: Deal rates and mean payoffs across pie sizes

predicting disagreements ROC

Figure 8: Bargaining process features selected by the classifier for outcome prediction (deal=1) and their estimated marginal effects. (Pie sizes are excluded.)

Feature (z-scored)	t = 1s	t = 2s	t = 3s	t = 4s	t = 5s	t = 6s	t = 7s	t = 8s
Initial offer								
Initial offer x initial demand								
Current offer								
Current offer x current demand								
Current difference								
Initial x current offer								
Initial x current demand								
Initial x current difference								
Informed first change t								
T since informed last change								
Uninformed first change time								
# informed changes								
Informed moved first?								
Informed weighted avg								
Uninformed weighted avg								
Current informed is focal?								
Current uninformed is focal?								
Current both are focal?								
25% 20% 159	% 10%	5% 1%	0%	1%	5% 10)% 15%	20% 25	%
Strike								Dea

II: Human and ML prediction

- history
- hypothesis:
 - Some human judgment patterns can be understood as imperfect ML

Paul Meehl 1920-2003 Univ Minnesota

scope of "clinical"

- Psychiatric diagnosis
- Homicidality
- Juvenile delinquency
- Recidivism
- Academic performance
- Graduate PhD admissions

background on "bootstrapping"

Meehl (1954):

"what I expected to be a floor turned out to be a ceiling"

- Unstructured interviews and clinical judgment can be notoriously unreliable
 - "Bootstrap" (=fit judgments to X_i , discard ε)
 - $\approx 10\% > clinical$
 - But there is *some* reliable intuition (omitted variables) in bootstrap residuals $\approx 1/3$ of $\sigma^2(\epsilon)$ (Camerer unpub'd thesis `81; compare test-retest with bootstrap)

Clinical vs. Statistical Prediction

Results of 3 Meta-Analyses

Typical effect size -.15 (*no* subsamples>0)

Grove Psych Assess. 2000

Ægisdóttir Counseling Psychologist 06

NBER AI & Econ 14.Sep.2017

History of skepticism

- Strong bias against statistical >> clinical 1954-20??
 - almost no traction (except: bank credit scoring)
 - Why?
 - Clinicians thought to have 'intuition'
 - Interactions
 - "broken leg cues" (rare, highly diagnostic)
 - "the question of whether the actuarial approach is superior to the clinical is tantamount to asking whether the sperm is more important than the ovum" (Zubin, 1956, p627)
 - small training sets

History of skepticism (cont'd)

- sporadic, informal discussions of
 - selective labelling (eg Dawes '79 PhD admissions)
 - decision → payoff
 - what is clinician's objective function?*
- now: Large training sets → ML reproduces possible 'intuition' well
 - Interactions
 - Broken-leg cues

^{*}cf. Einhorn, JPersAssess 86

properties of human judgment

- we do not intuitively accept sparsity
 - (sex fights)/wk and marital satisfaction r=.40-.81(Dawes 1979)
 - (GRE+quality+GPA) and PhD success r=.48(Dawes 1971)
 - (HS) ∩ (steady job) ∩ (no baby unwed)= no poverty (Jencks)

we do not like sparsity (cont'd)

- Obsession with personal interviews (e.g. ASSA hotel meetings)
- Outside >> "inside" view (Kahneman, Lovallo Mgt Sci 1993)
- Clustering >> each case unique
- …outside view throws away information

overconfidence and overfitting

- Humans: prediction Cls are too narrow
- ML: Overfitted prediction CIs are too narrow (i.e., degraded fit in test/holdout samples)
- Humans: more information increases confidence, not predictive accuracy
 - Clinical accuracy 26-28% (chance=20%)
 confidence 33-53% (Oskamp 1965)

conclusion

- ML can help discover new "behavioral" variables
- Properties of human prediction could be understood as mistaken machine learning
 - not enough sparsity (regularization)
 - do not correct for overfitting → overconfidence

pro-ML

- ML training sets will grow and grow
 - Can self-play around the clock
- Individual- level "human training sets" are constrained by:
 - Genes
 - density of life experience
 - scope of life experience
 - Ability to learn from text, vicarious experience

pro-human

- Human cultural accumulation
- Wisdom of crowds and division of labor
 - 'group IQ' can be > max IQ_i
- Cross-domain generalization
 - ML: AlphaGo NN does not inform playing chess
- Wisdom accumulates during a lifetime
 - meta-cognition, dimension reduction (better ideas, more quickly)
- Can ML do these too??

Can ML be as creative as humans?

- Typical model (e.g. Campbell 1960):
 - large variation of ideas, somehow select the good ones (MAYA)
 - product design, writing sentences, novel plots, music

NBER AI & Econ 14.Sep.2017