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Discovering	variables	

• Behavioral	economics	definition
– include natural	limits	of	computation,	willpower	
and	selfishness

• University-structure	definition	
– Borrows	from	neighboring	sciences
• psychophysics	(prospect	theory),	norms	(sociology),	
sociality	(psych,	anthropology),	self	control	(neuro)
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Discovering	variables	
• Search	for	predictive	variables	definition	
– Behavioral	economics	is	open-minded	
– Defaults	
• Reminders
• Social	comparison
• Cognitive	skill
• anxiety
• Habit

– “Nudge”	experiments	explore	this	space
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Here	comes	ML

• ML	allows	exploration	of	many	variables	
– Can	give	upper	bound	to	how	well	theory	could	do--
complete	(Kleinberg	et	al	2017) or	clairvoyant	(economic	value;	
Camerer	et	al	QJE	2004)

– Can	discover	new	variables
• Two	examples:
– Predicting	initial	play	in	3x3	matrix	games	(bound)
– Semi-structured	bargaining	(new)
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Theory	value	as	%	of	
“clairvoyant”	maximum	(Camerer	Ho	Chong	QJE	04)

dicting “clairvoyantly” (i.e., using the actual distribution of strat-
egies chosen by all other subjects), are also reported because
these represent an upper bound on economic value.

The Poisson-CH approach adds value in all data sets, from 20
to 70 percent of the maximum possible economic value. Nash
equilibrium typically adds economic value, although only about
half as much as Poisson-CH, and subtracts value in one data set.
Recall that if players were in equilibrium, the Nash predictions
would have zero economic value, and disequilibrium models like
CH would have negative economic value. The fact that this pat-
tern is not observed is another way of saying players are not in
equilibrium, and economic value measures the “degree” of
disequilibrium.

VI. ECONOMIC IMPLICATIONS OF LIMITED STRATEGIC THINKING

Models of iterated thinking can be applied to several inter-
esting problems in economics, including asset pricing, specula-

forecasting (after all, distillation of data is part of what people pay for when they
buy forecasts). Furthermore, the subjects have “data” (or insight) which the model
does not have—namely, how people like themselves and their fellow subjects
might react to a particular game, and how they may have behaved in dozens of
other experiments they participated in.

TABLE VIII
ECONOMIC VALUE OF VARIOUS THEORIES

Data set
Stahl and

Wilson
Cooper and
Van Huyck

Costa-Gomes
et al. Mixed Entry

Observed payoff 195 586 264 328 118
Clairvoyance payoff 243 664 306 708 176
Economic value
Clairvoyance 48 78 42 380 58
Cognitive hierarchy

(Common !) 13 55 22 132 10
Nash equilibrium 5 30 15 "17 2
% Maximum economic

value achieved
Cognitive hierarchy

(Common !) 26% 71% 52% 35% 17%
Nash equilibrium 10% 39% 35% "4% 3%

The economic value is the total value (in experimental payoffs) of all rounds that a “hypothetical” subject
will earn using the respective model to predict other’s behavior and best responds with the strategy that
yields the highest expected payoff in each round.
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Ex	1:	Initial	play	in	3x3	games	
(Fudenberg,	Liang	2017;	cf.	Hartford,	Wright,	Leyton-Brown	2016)		
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E.1.2 Comprehension Questions
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The following features are based on level-k models:

• Best response to uniform: Indicator for whether a
1

is a best response to uniform:
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where ↵ is the mixed strategy that puts equal weight on all actions in S.

• level-k: Indicator for whether action ai is a level-k action (in the Stahl and Wilson

(1995) sense), where k 2 {1, . . . , 7}.25

The following features are proposed in Leyton-Brown and Wright (2014):
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• Max-max: Indicator for whether the row player would choose a
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25The level-1 action is a best response to uniform, and each subsequent level-k strategy is the best-response
to level-(k � 1) play by the opponent.
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are recursively defined to be the best responses to a perceived distribution

Pk(ai) =
k�1X

h=0

⇡⌧ (h)Pk�1

h=0

⇡⌧ (h)
Ph(ai) 8 i 2 {1, 2, 3} . (1)

over opponent actions, where ⇡⌧ is the Poisson distribution with rate parameter ⌧ .

The (ex-ante) predicted distribution of actions is found by supposing that the true pro-

portion of level k players is given by ⇡⌧ (k), and deriving the implied distribution over actions

(assuming the behavior described above). In the problem of predicting the realized action,

we predict the mode of this distribution, and in the problem of predicting the distribution

over actions, we predict this distribution itself. We take ⌧ to be a free parameter and es-

timate it from the data, allowing di↵erent values for the two prediction tasks and for each

data set.

4.2 Prediction Based on A Large Set of Game Features

We describe various features that we use to classify the games, and explain how we use them

to construct prediction rules.

4.2.1 Game Features

We consider 88 features, which we chose based on the related experimental and theoretical

literature. These features are described in full in Appendix A, but we highlight a few here.

Most of them describe properties that can be held by specific actions. For example,

features based on Nash equilibrium and rationalizability include indicators for whether an

action is part of a Nash equilibrium, whether it is part of a Pareto-dominant Nash equilibrium,

and whether it is (pure strategy) strictly dominated. Other features are directly based on the

level-k models; for example, we include indicator variables for whether an action is level-k

(in the sense of Stahl and Wilson (1995), so that level-k is a best response to level-(k�1)).45

4Recall that action ai 2 A
row

is level-1 if

ai = argmax
a2A

row

u(a,↵),

where ↵ is the mixed strategy that places equal weight on each of the column player’s actions. Actions are
level-k if they are a best response to a level-(k � 1) action of the opponent.

5We consider k = 1, 2, . . . , 7.
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Action a1 is not a best
response to uniform

Action a1 is a best
response to uniform

predict a1

predict a2 predict a3

Action a3 is not a best
response to uniform

Action a3 is a best
response to uniform

Figure 3: Best 2-split decision tree for predicting the realized action

As we allow for additional complexity (by increasing k), the best k-split decision tree

builds on the level-1 model, and achieves reductions in prediction error. For example, the

best 3-split decision tree (shown below) appends the additional criterion of survival of two

rounds of iterated elimination of strictly dominated strategies:

Action a1 is not a best
response to uniform

Action a1 is a best
response to uniform

predict a2 predict a3

Action a3 is not a best
response to uniform

Action a3 is a best
response to uniform

predict a2 predict a1

Action a1 does not survive 
second round of ISD

Action a1 survives 
second round of ISD

Figure 4: Best 3-split decision tree for predicting the realized action

Thus, predictions coincide with those of the level-1 model, except that even if action a

1

is a

best response to uniform, it is not predicted if it does not survive two rounds of iterated

elimination of strictly dominated strategies. This decison tree does not correspond to any

value of ⌧ in the Cognitive Hierarchy model or any level-k in the Stahl and Wilson (1995)

model. It reduces prediction error from 0.3838 to 0.3659.

If we allow for five splits, we can further reduce (cross-validated) prediction error to

0.3556 using the decision tree shown below:

18
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Figure 2: We find the best decision tree with k dependencies, where k varies from 1 to 10,
and report its cross-validated prediction error.

Figure 2 shows that the first split allows for reduction of prediction error from 0.67

(what we would achieve with random guessing) to 0.47, while the second split further reduces

prediction error by an additional 0.1031 over the performance ofthe best 1-split decision tree,

and the third split allows for an improvement of only 0.0165 over the best 2-split decision

tree. The first few dependencies clearly yield large improvements in prediction, and it turns

out that the predictive features used are exactly those identifying level-1 behavior. The most

parsimonious predictive model (the best 2-split decision tree), shown below, reproduces the

level-1 model: the predicted action is the action that best responds to a uniform distribution

over column player actions.15,16

15This statement should be interpreted with respect to the set of sixty-nine features that we have defined
(and which we feel covers much of the current understanding about which features of the payo↵ matrix are
strategically relevant). It may be that there is a new feature, outside of our set of 88 features, that would
allow for an even more predictive 2-split decision tree.

16The selection of features is robust to the choice of prediction task: in the problem of predicting the
realized distribution of play in lab data, the best 2-split decision tree again picks out the level-1 features.
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the ten choices of test set.10

Table 3 presents misclassification rates (left column), and additionally presents a normal-

ized error measure (right column), in which the error attained by the naive prediction rule

is set to 0 and the error attained by the best possible rule is set to 1. This normalization

allows us to interpret the realized prediction errors in terms of the fraction of total possible

improvement upon the naive baseline that is obtained. See Peysakhovich and Naecker (2017)

and Kleinberg, Liang and Mullainathan (2017) for introduction of this fraction as a measure

of “completeness” of the predictive approach. For example, a completeness measure of 82%

below means that the model achieves 82% of the attainable improvement in prediction error

over the naive baseline.

To keep the exposition simple, instead of reporting the errors achieved by the di↵erent

machine learning algorithms, we report only the best prediction error. These errors do not

vary significantly across the di↵erent algorithms—see Appendix B.1 for comparisons.

Error Completeness

Naive Benchmark 0.6667 0
Uniform Nash 0.5507 33.66%

(0.0055)
Poisson Cognitive Hierarchy Model 0.3838 82.02%

(0.0197)
Prediction rule based on game features 0.3360 95.88%

(0.0056)
“Best possible” 0.3218 1

Table 3: Predicting the realized action in play of lab games

We find that predicting a uniform distribution over Nash actions achieves only 34% of the

attainable improvement over the naive baseline. The PCHM improves on this substantially,

achieving 82% of the potential improvement over random guessing. Since in this section

we consider prediction of the realized action, all choices of ⌧ that induce distributions with

the same mode are equivalent for prediction. We find a set of best-fit values of ⌧ , which

is approximately the interval (0, 1.25]. For these values of ⌧ , it turns out that the modal

action in each game in our dataset is the best response to a uniform distribution, so that the

10When there are free parameters to be estimated, standard errors are reported as the standard deviation
of prediction errors across the ten choices of test set (see Hastie, Tibshirani and Friedman (2009)). Otherwise,
standard errors are reported as the standard deviation of prediction errors across 100 boostrapped test sets.

14



Error Completeness

Naive Benchmark 0.6667 0
PCHM 0.3838 82.02%

(0.0197)
PCHM with Risk Aversion 0.3531 90.92%

(0.0133)
Five-Split Decision Tree 0.3556 90.20%

(0.0062)
Unrestricted Decision Tree 0.3360 95.88%

(0.0056)
“Best possible” 0.3218 1

Table 5: Introduction of risk aversion improves the cognitive hierarchy prediction error.

Note that there remains a gap between the predictive accuracy of PCHM with risk

aversion, and the predictive accuracy of the best unrestricted decision tree. This suggests

that there is predictable structure left even after we have accounted for risk aversion. We

leave open the question of whether there is an interpretable model that closes the gap.

6 Predicting the Distribution of Play

We turn now to the task of predicting the full distribution of play. In this problem, predicting

distributions using decision trees and lasso regression improves upon uniform Nash and the

naive baseline, but it does not improve upon PCHM (see Appendix C). This leads us to

explore another way to use game features to improve predicion.

In the task of predicting the realized action, the prediction of the PCHM was not very

sensitive to choice of ⌧ , and correspondingly we found that many di↵erent values of ⌧ min-

imized prediction error. This is no longer the case when we predict the full distribution of

play. Reproducing similar results from Camerer, Ho and Chong (2004), we show in Appendix

D.2 that the best-fit ⌧ for play in individual games varies significantly. For example, the

best fit value of ⌧ in the game below is 0

22
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Ex	2:	Semi-structured	bargaining	with	
private	information	(Camerer,	Nave,	Smith	Mgt Sci in	press)

NBER	AI	&	Econ		14.Sep.2017Figure 1: Bargaining interface. (a) Initial offer screen: in the first two seconds of bargaining,
players set their initial position, oblivious to the initial position of their partner. The pie
size at the top left corner appears only for the informed type. (b) Players communicate their
offers using mouse click on the interface. (c) When demands match, feedback in the form
of a green vertical stripe appears on the screen. If no changes are made in the following 1.5
seconds, a deal is made. (d) Following the game, both players are notified regarding their
payoffs and the pie size.

Thus, in order to make a deal, the latest time in which players’ bids could match was
t = 8.5 seconds.

8. If no deal had been made within 10 seconds of bargaining, both players’ payoffs from
that round were $0.

9. After each game, both players were told their payoffs and the actual pie size, for 5
seconds (see Fig. 1d).

4.2 Methods

We conducted eight experimental sessions, five at the Caltech SSEL and three at the UCLA
CASSEL labs. There were a total of N=110 subjects (mean age: 21.3 SD: 2.4; 47 females, see
Appendix B for detailed session information). In the beginning of each session, subjects were
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predicting	disagreements	ROC

Figure 7: Strike prediction using bargaining process data. (a-c) Receiver Operating Char-
acteristic (ROC) for predicting disagreements, 2 and 7 seconds into the bargaining game.
The dashed lines represent the false and true positive rates of a random classifier. (d) Area
under the curve (AUC) of disagreements clasiffiers using process data, pie size, and the two
combined. Note that the classifier’s input included only trials that were still in progress
(when a deal has not yet been achieved), and excluded trials in which the offers and demand
were equal at the relevant time stamp.
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Figure 8: Bargaining process features selected by the classifier for outcome prediction
(deal=1) and their estimated marginal effects. (Pie sizes are excluded.)
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II:		Human	and	ML	prediction	

• history	
• hypothesis:	
– Some	human	judgment	patterns	can	be	
understood	as	imperfect	ML
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Paul	Meehl 1920-2003
Univ Minnesota
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scope	of	“clinical”

• Psychiatric	diagnosis
• Homicidality
• Juvenile	delinquency
• Recidivism
• Academic	performance
• Graduate	PhD	admissions
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background	on	“bootstrapping”
• Meehl (1954):

“what	I	expected	to	be	a	floor	turned	out	to	be	a	
ceiling”

• Unstructured	interviews	and	clinical	judgment	
can	be	notoriously unreliable	
– “Bootstrap”	(=fit	judgments	to	Xi,	discard	ε)
– ≈	10%	>	clinical	
– But	there	is	some reliable	intuition	(omitted	
variables)	in	bootstrap	residuals	≈	1/3	of	σ2(ε)		
(Camerer	unpub’d thesis	`81;	compare	test-retest	with	bootstrap)	
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Grove		Psych	Assess.	2000
Ægisdóttir		Counseling	Psychologist	06	

Typical	effect	size	-.15	(no subsamples>0)
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History	of	skepticism
• Strong	bias	against statistical	>>	clinical		1954-20??
– almost	no	traction	(except:	bank	credit	scoring)
– Why?	
• Clinicians	thought	to	have	‘intuition’
– Interactions
– “broken	leg	cues”	(rare,	highly	diagnostic)

– “the	question	of	whether	the	actuarial	approach	is	
superior	to	the	clinical	is	tantamount	to	asking	whether	
the	sperm	is	more	important	than	the	ovum”	(Zubin,	1956,	
p627)	

– small	training	sets

NBER	AI	&	Econ		14.Sep.2017



History	of	skepticism	(cont’d)	
– sporadic,	informal		discussions	of	
• selective	labelling (eg Dawes	‘79	PhD	admissions)
• decisionà payoff	

– what	is	clinician’s	objective	function?*

– now:	Large	training	sets	à ML	reproduces	
possible	‘intuition’	well	
• Interactions	
• Broken-leg	cues

*cf.	Einhorn,	JPersAssess 86
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properties	of	human	judgment	

• we	do	not	intuitively	accept	sparsity
– (sex	– fights)/wk and	marital	satisfaction	r=.40-.81	

(Dawes	1979)

– (GRE+quality+GPA)	and	PhD	success	r=.48	
(Dawes	1971)

– (HS)	Ç (steady	job)	Ç (no	baby	unwed)	
=	no	poverty	(Jencks)
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we	do	not	like	sparsity (cont’d)

• Obsession	with	personal	interviews	
(e.g.	ASSA	hotel	meetings)	

• Outside	>>	“inside”	view		(Kahneman,	LovalloMgt Sci 1993)

• Clustering			>>		each	case	unique	
• …outside	view	throws	away	information	
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overconfidence	and	overfitting

• Humans:	prediction	CIs	are	too	narrow	
• ML:		Overfitted prediction	CIs	are	too	narrow

(i.e.,	degraded	fit	in	test/holdout	samples)
• Humans:	more	information	increases	

confidence,	not	predictive	accuracy
– Clinical	accuracy	26-28%		(chance=20%)

confidence	33-53%	(Oskamp 1965)
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conclusion

• ML	can	help	discover	new	“behavioral”	
variables	

• Properties	of	human	prediction	could	be	
understood	as	mistaken	machine	learning
– not	enough	sparsity (regularization)
– do	not	correct	for	overfittingà overconfidence
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pro-ML
• ML	training	sets	will	grow	and	grow	
– Can	self-play	around	the	clock	

• Individual- level	“human	training	sets”	are	
constrained	by:
– Genes
– density	of	life	experience
– scope	of	life	experience
– Ability	to	learn	from	text,	vicarious	experience
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pro-human	
• Human	cultural	accumulation
• Wisdom	of	crowds	and	division	of	labor
– ‘group	IQ’	can	be	>	max	IQi

• Cross-domain	generalization
–ML:	AlphaGo NN	does	not	inform	playing	chess

• Wisdom	accumulates	during	a	lifetime
– meta-cognition,	dimension	reduction	(better	
ideas,	more	quickly)

• Can	ML	do	these	too??
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Can	ML	be	as	creative as	humans?	

• Typical	model	(e.g.	Campbell	1960):

– large	variation	of	ideas,	somehow	select	the	good	
ones	(MAYA)	
• product	design,	writing	sentences,	novel	plots,	music	

NBER	AI	&	Econ		14.Sep.2017



http://www.theverge.com/2013/11/5/5068132/ray
mond-loewy-the-man-who-designed-everything
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