Machine Learning, Market Structure & Competition

Carl Shapiro and Hal Varian

NBER Economics of Artificial Intelligence
Toronto, Canada
14 September 2017
Quick Review of Machine Learning
What is Machine Learning?

➢ Predict Labels as Function of Features
 ▪ Classic Approach: Construct Numerical Features, Construct Rules
 ▪ Deep Learning: Use Raw Data, Learn Directly
 • Images: Pixels
 • Translation: Paired Documents
 • Transcription: Voice and Text
 ▪ Requires Labeled Data (OpenImages), Hardware (GPU, TPU), Software (TensorFlow), Expertise

➢ Optimize Using Reinforcement Learning
 ▪ Multi-Armed Bandits
 ▪ Chess, Go, Atari Games etc.
What Can Machine Learning Do?

➢ Kaggle Predictions
 • Passenger Threats; Home Prices; Traffic to Wikipedia Pages; Personalized Medicine; ImageNet; Taxi Trip Duration; Product Purchases; Clustering Questions; Rental Listing Interest; Lung Cancer Detection; Click Prediction; Inventory Demand

➢ Demand: Match Customer & Product

➢ Supply: Reduce Cost and Waste

➢ Substitute and Complement Humans
 • Reduced Demand: Cashiers, Drivers, Translators
 • Increases Demand: Analytic Skills
What ML Inputs Are Scarce?

- Data Infrastructure: Critical Prerequisite
 - Collection, Manipulation, Storage & Retrieval
 - System Integrators Can Play Big Role
- Software: Open Source & In Cloud
- Hardware: Can Be Purchased in Cloud
- Expertise: Scarce But Growing Rapidly
- Firm-Specific Labeled Data: Key Input
Obtaining Labeled Data

➢ Multiple Ways to Obtain Needed Data
 ▪ As By-Product of Operations
 ▪ By Offering a Service (GOOG411, Flickr)
 ▪ Hiring Humans to Label Data
 ▪ Buying Data from Provider
 ▪ Sharing Data (Perhaps Mandated)
 ▪ Data from Governments and/or Consortia

➢ Data is Non-Rival, Partially Excludable
 ▪ Rights, Permissions, Licensing, Regulation
 ▪ “Ownership” Too Narrow a Concept for Policy
 ▪ Example: Who Control Driverless Car Data?
Big Data, ML and Public Policy

➢ Does Access to Data Give Incumbents a Major Competitive Advantage?
 ▪ Entrants Must Build or Acquire Necessary Data
 ▪ But: Entrants May Have Data From Adjacent Markets

➢ Incumbents Also Learn How to Improve Algorithms and Business Processes
 ▪ Shape of the “Machine Learning Learning Curve”
 ▪ Domain Knowledge Can Be Important

➢ Apply Essential Facility Doctrine to Data?
 ▪ Scope of “Essential” Data that Must be Shared?
 ▪ How to Regulate Terms & Conditions of Data Access?
Decreasing Returns to Scale

![Graph showing decreasing returns to scale with Mean Accuracy on the y-axis and Number of Training Images/class on the x-axis.

Higgs learning curves Accuracy graph with different models represented by different lines (Bayes, Lightning, Non-linear SVM, Tree, Random Forest, Gradient Tree Boosting).]
Machine Learning Meets Good Old Industrial Organization
Adoption of ML Technology

- Which Firms and Industries Will Successfully Adopt Machine Learning?
 - Large Heterogeneity in Timing of Adoption & Ability to Use ML Effectively
- Can Later Adopters Imitate Early Adopters?
 - Patents & Trade Secrets; Firm-Specific Routines
- Role of Geography in Adoption Patterns
- Very Large Competitive Advantage for Early, Successful Adopters
 - Large Firms? New Firms? Disruptive Aspects
Evidence on AI Adoption

- McKinsey Global Institute Survey
 - 3000 “AI Aware C-Level Executives” in 10 Countries
 - 20% Are “Serious Adopters”
 - 40% are Experimenting or are “Partial Adopters”
 - 28% Feel Their Firms Lack the Technical Capabilities to Implement AI

- Key Enablers of AI Adoption
 - Leadership, Technical Ability, Data Access
AI Adoption by Industry (McKinsey)

<table>
<thead>
<tr>
<th>Industry</th>
<th>3 and more at scale</th>
<th>2 at scale</th>
<th>1 at scale</th>
<th>0 at scale</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telecommunications</td>
<td>31</td>
<td>4</td>
<td>6</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>High tech</td>
<td>24</td>
<td>7</td>
<td>10</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Energy and resources</td>
<td>21</td>
<td>5</td>
<td>11</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Automotive and assembly</td>
<td>20</td>
<td>6</td>
<td>9</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Media and entertainment</td>
<td>17</td>
<td>8</td>
<td>11</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Financial services</td>
<td>14</td>
<td>6</td>
<td>12</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>Healthcare systems and services</td>
<td>8</td>
<td>7</td>
<td>14</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Retail</td>
<td>20</td>
<td>2</td>
<td>6</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>14</td>
<td>2</td>
<td>10</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>Consumer packaged goods</td>
<td>16</td>
<td>4</td>
<td>5</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Transport and logistics</td>
<td>11</td>
<td>5</td>
<td>9</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Professional services</td>
<td>12</td>
<td>4</td>
<td>8</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td>8</td>
<td>3</td>
<td>10</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Travel and tourism</td>
<td>6</td>
<td>3</td>
<td>10</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>86</td>
<td></td>
</tr>
</tbody>
</table>
Key Research Question: Machine Learning & Vertical Integration

- How Will Machine Learning Tools and Data Be Combined to Create Value?
 - Within or Across Corporate Boundaries?
- Will ML Users Develop Their Own ML Capabilities or Purchase ML Solutions from ML Vendors?
 - Classic Make vs. Question, Key for Industry Analysis
- One-Stop Shopping in the Cloud is Happening
 - Data Labeling, Software, Algorithms, Consulting
 - Special-Purpose Hardware: Tensor-Processing Units (TPUs) Create Cost Advantage
Machine Learning and Vertical Integration: Some Public Policy Questions

- Privacy Regulations May Limit Ability of ML Vendors to Combine Data from Multiple Sources
 - Limits on Transfer of Data Across Corporate Boundaries and/or Sale of Data
 - Privacy Concerns vs. Growth of Markets for Data Used for Machine Learning

- Mandated Data Sharing May Promote Vertical Disintegration

- Treatment of Vertical Mergers Between ML Vendors and ML Users
Machine Learning Vendors
Structure of the ML Industry

- ML Vendors Offer Several Services
 - Data Centers, Containers, Dockers
 - Labeling Services, System Integration, Consulting
- ML Vendor Could Specialize in ML and Purchase Data Processing/Storage in Cloud
- Industry Structure is Oligopolistic
 - Leaders: Amazon, Google, Microsoft, Salesforce
 - Other Suppliers: IBM? Who Will Be Next?
- Will Industry Become More Fragmented?
 - Specialists by Industry?
Diminishing Returns to Scale

Source: Stanford Dogs dataset
ImageNet Progress: 2010-2015

Data Size Held Constant
Improvement Due to Hardware and Software
Source: Stanford ImageNet
Pricing of ML Services

- Large Fixed Costs, Low Marginal Cost
 - Undifferentiated Services & Bertrand Trap?
 - Size of Customer Switching Costs
 - Containers & Dockers
- Learning by Doing for ML Vendors
- Multi-Product Offerings and Bundling
Pricing of ML Services: Google

<table>
<thead>
<tr>
<th>Feature</th>
<th>First 1000 units/month</th>
<th>Units 1001 - 5,000,000 / month</th>
<th>Units 5,000,001 - 20,000,000 / month</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label Detection</td>
<td>Free</td>
<td>$1.50</td>
<td>$1.00</td>
</tr>
<tr>
<td>Text Detection</td>
<td>Free</td>
<td>$1.50</td>
<td>$0.60</td>
</tr>
<tr>
<td>Safe Search (explicit content) Detection</td>
<td>Free</td>
<td>Now free with Label Detection</td>
<td>Now free with Label Detection</td>
</tr>
<tr>
<td>Facial Detection</td>
<td>Free</td>
<td>$1.50</td>
<td>$0.60</td>
</tr>
<tr>
<td>Landmark Detection</td>
<td>Free</td>
<td>$1.50</td>
<td>$0.60</td>
</tr>
<tr>
<td>Logo Detection</td>
<td>Free</td>
<td>$1.50</td>
<td>$0.60</td>
</tr>
<tr>
<td>Image Properties</td>
<td>Free</td>
<td>$1.50</td>
<td>$0.60</td>
</tr>
</tbody>
</table>
Pricing of ML Services: Amazon

Amazon Rekognition API Pricing

<table>
<thead>
<tr>
<th>Region</th>
<th>US-East (N. Virginia)</th>
<th>US-West (Oregon)</th>
<th>EU (Ireland)</th>
<th>AWS GovCloud (US)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image Analysis Tiers</td>
<td>Price per 1,000 Images Processed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First 1 million images processed* per month</td>
<td>$1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Next 9 million images processed* per month</td>
<td>$0.80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Next 90 million images processed* per month</td>
<td>$0.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over 100 million images processed* per month</td>
<td>$0.40</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Impact of Machine Learning on Downstream Markets
Impact of ML on Minimum Efficient Scale?

- Will ML Generally Increase Minimum Efficient Scale by Transforming Variable Costs into Fixed Costs?
 - Fixed Cost of Developing a ML Solution
 - Substitutes for Variable Labor Costs

- Not if the Fixed Costs of ML are Small
 - Off-the-Shelf Generic ML Capabilities vs. Need to Develop a Specialized Solution
 - See: Pricing Structure for ML Solutions

- ML Could Lower Minimum Efficient Scale
 - Reduce or Eliminate Certain Fixed Costs
How to Start Up a Startup

- Fund Your Project on Kickstarter
- Hire Employees Using LinkedIn
- Purchase Cloud Computing Services from Amazon
- Use Open Source Software: Linux, Python, Tensorflow
- Set up a Kaggle Competition for Machine Learning
- Communicate Using Skype, Gmail, Google Docs
- Use Nolo for Legal Documents
- Market Your Product or Service Using AdWords
- User Support Provided by ZenDesk
Use of ML for Downstream Pricing

- Far Greater Price Discrimination?
 - Yield Management Goes Bananas
 - Auctions and Other Mechanisms
 - But: Customers Can Use ML Counterstrategies

- Group Discrimination – Many Groups!
 - More Data on Which to Condition Prices
 - Blurs Line Between Individual and Group Pricing

- Self-Selection & Product Differentiation
 - Customized Products
 - But: Competition + Low Consumer Search Costs
Algorithmic Collusion: Economist Catnip

- Classic Issue of Dynamic Oligopoly Pricing
- Rapid Response Equilibria
 - In Markets with Transparent Prices
 - Firms Move Far Faster Than Consumers
- Evolution of Machine Cooperation
 - Can Machines Find a Better Way to Coordinate?
 - Taking MFNs & MCCs to the Next Level?
- Instructive Examples
 - NASDAQ; ATPCO; Spectrum Auctions
 - Machines Learning Cryptographic Code
- Antitrust Implications: Who Goes to Jail?