

What do you think?

Constructing Explanations

Good Explanations:

- ☐ Identify a scientific cause
- ☐ Identify the **components** of the system
- ☐ Use connections between the components to **explain**, describe and predict
- ☐ Represent the **components** of the system mathematically
- ☐ Use computational thinking

CC BY-NC-SA 4.0

thewonderofscience.com

What do you wonder?

Asking Questions

Good Questions:

- ☐ Address the **phenomenon** or **problem**
- ☐ Identify the **nature** of the question
 - ☐ Observational What do I notice?
 - ☐ Explanatory How does it work?
 - □ Systems What happens in the system?
 - ☐ Engineering What is the problem?
- ☐ Can be empirically **tested**

CC BY-NC-SA 4.0

thewonderofscience.com

How do you know?

Engaging in Argument From Evidence

Evidence

Reasoning

Claim

Good Arguments:

- □ Obtain, evaluate and organize the evidence
- ☐ Identify **patterns** within and between datasets
- □ Identify a claim
- ☐ Link the evidence and claim with a chain of reasoning.
- Communicate information using the appropriate style and format

CC BY-NC-SA 4.0

thewonderofscience.com

How do you investigate?

Planning and Carrying Out Investigations

Plan

Evidence

Design

Good Investigations:

- ☐ Investigate a **phenomenon** or **design**.
- $\hfill \square$ Identify the $\mbox{\bf evidence}$ that will be collected
- ☐ Have a plan
- □ Collect evidence
- ☐ **Improve** the design of the investigation

CC BY-NC-SA 4.0

thewonderofscience.com

