3-Dimensional Lesson Screening Tool

1. The lesson contains a phenomenon (science) or a problem (engineering).

2. The lesson is student-centered and requires students to figure something out.

3. The phenomenon or problem builds to an understanding of a Disciplinary Core Idea (DCI) in one of the assessed Performance Expectations.

4. Students engage in one or more of the Science and Engineering Practices (SEP) to aid in making sense of the phenomenon or problem. (check all that apply)
 - Analyzing & Interpreting Data
 - Asking Questions
 - Constructing Explanations
 - Defining Problems
 - Designing Solutions
 - Developing & Using Models
 - Engaging in Argument from Evidence
 - Mathematics & Computational Thinking
 - Obtain, Evaluate, Communicate Information
 - Planning & Carrying Out Investigations

5. Students use one or more of the Crosscutting Concepts (CCC) to aid in making sense of the phenomenon or problem. (check all that apply)
 - Cause & Effect
 - Energy & Matter
 - Patterns
 - Scale, Proportion, & Quantity
 - Stability & Change
 - Structure & Function
 - Systems & System Models

No ☐ Partially ☐ Yes ☑
6. The lesson provides explicit instruction on how to use the SEP and CCC appropriately. (e.g., scaffolds, protocols, etc.)

7. The lesson provides opportunities for student discourse as they express ideas, make their thinking visible, and respond to peer and teacher feedback.

8. The lesson includes embedded formative assessments so that students and the teacher can determine what future learning needs to occur.

9. The lesson uses scientifically authentic information and models to support students in making sense of the phenomenon or problem. (i.e., real science)

10. The learning is relevant and age appropriate based on the grade-level learning progressions.

11. The learning contributes to a better understanding of the anchoring phenomenon or problem in the unit.

12. Instruction is differentiated and includes supports for all students.