Overall Goal: Deliver a report to the State of Oregon that provides: (1) a baseline estimate of carbon in Oregon’s forests; (2) a quantitative description of carbon flows among forest pools; (3) projections of how these quantities and flows may be affected by anticipated climate change; and (4) a quantitative description of carbon flows into and out of the forest from natural and human interventions.

Purpose: Finalize a baseline estimate of the carbon storage in Oregon’s forests that we can deliver to the Oregon State Legislature within the next three months, together with a progress report on findings for subsequent steps as available and a work plan for completing both static and dynamic portraits of forest carbon accounting.

1. Review FIA data tables; which tables can we agree to use as our reference for prevailing carbon (CO2e) content in Oregon forests? “PNW-FIA-CarbonEstimates_20160920.xlsx”

2. Review OGWC Report description of work plan (pp. 35-36) together with Mark’s (very similar) layout sent to us Jan 5. Can we agree on a work plan? Do we have the support and tools needed? Timeline?

3. Review of Bev Law’s fire data: “BevLawSlides Forest C100616.pptx”, “Fire emissions estimates by year x ecoregion_summary_Final1_LawHudiberg.docx”

This first step of establishing a baseline became possible in 2016 with the availability of USFS Forest Inventory and Analysis (FIA)-collected carbon content data for Oregon forestlands. Using these data as a starting point, technical members of the Task Force advise us that it should be possible to proceed through the following steps:

1. Measure and/or model existing aboveground living matter carbon stores in Oregon forests. This will include living woody and non-woody plants, and include both their aboveground and root fiber. It captures carbon flux from growth and mortality, including transfers from this pool to other pools (see below) including to harvested fiber for all purposes.

2. Measure and/or model existing aboveground dead carbon stores. Dead carbon stores include woody and non-woody matter that has died from all causes but remains standing or down in the forest, and continues to store carbon. There are different causes for carbon to flow into and out of this pool, including decomposition, combustion and harvest, that will need to be accounted for.

3. Measure and/or model dead belowground carbon. This is likely a small pool of dead woody roots that can be sampled, modeled and calculated.

4. Measure and/or model soil carbon. This is a very large pool that must be included because a very large amount of carbon flows into and out of the pool. We are advised that measuring and modeling these flows will be difficult and require informed assumptions that can be modified as data and tools improve in the future.
With the publication herein of the USFS/FIA data on carbon pools in Oregon forests we can check off the basic inventory task (summary tables follow this section of the report). These data should then allow us to take the essential next steps: to measure and/or model the fluctuations within each pool and the flows among the pools. When this is accomplished we will have a dynamic description of forest carbon amounts within forest boundaries that will enable the critical next steps – critical because they begin to involve policy choices for forest ecosystem sustainability, carbon sequestration and acquisition, harvest (and choice of harvest practices) for commercial use, and the role of commercial forest products in reducing or increasing forest carbon releases into the atmosphere.