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Abstract

In this work, we present a specific case study where we aim to design effective treatment
allocation strategies and validate these using a mouse model of skin cancer. Collecting data
for modelling treatments effectiveness on animal models is an expensive and time consuming
process. Moreover, acquiring this information during the full range of disease stages is hard
to achieve with a conventional random treatment allocation procedure, as poor treatments
cause deterioration of subject health. We therefore aim to design an adaptive allocation
strategy to improve the efficiency of data collection by allocating more samples for explor-
ing promising treatments. We cast this application as a contextual bandit problem and
introduce a simple and practical algorithm for exploration-exploitation in this framework.
The work builds on a recent class of approaches for non-contextual bandits that relies on
subsampling to compare treatment options using an equivalent amount of information. On
the technical side, we extend the subsampling strategy to the case of bandits with context,
by applying subsampling within Gaussian Process regression. On the experimental side,
preliminary results using 10 mice with skin tumours suggest that the proposed approach
extends by more than 50% the subjects life duration compared with baseline strategies: no
treatment, random treatment allocation, and constant chemotherapeutic agent. By slow-
ing the tumour growth rate, the adaptive procedure gathers information about treatment
effectiveness on a broader range of tumour volumes, which is crucial for eventually deriving
sequential pharmacological treatment strategies for cancer.

1. Introduction

Several recent works have investigated the use of Reinforcement Learning (RL) to auto-
matically discover and optimize sequential treatment strategies that adapt in real-time to
the evolution of the disease and the patient’s response to previous treatments (Ernst et al.,
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2006; Zhao et al., 2009; Panuccio et al., 2013; Bothe et al., 2013; Escandell-Montero et al.,
2014). These preliminary results indicate that the adaptive treatment strategies obtained
by RL may provide better outcomes than traditional non-adaptive strategies. Yet many
challenges remain before this approach is widely transferred to clinical practice, one being
the lack of access to appropriate data which can be used to optimize such strategies at a
pre-clinical level. For example, the typical randomized treatment allocation procedure may
fail to collect data on the full range of possible growth patterns volumes due to fast tumour
growth given poor treatments. We thus aim to design an adaptive treatment allocation
strategy that would improve the efficiency of data collection by allocating more samples for
exploring promising treatments, gathering relevant information for learning policies over
the full range of cases (i.e. tumour volumes).

The problem of optimizing a treatment allocation strategy can be formally cast as a
contextual bandit episodic game. On each round, we receive a context (e.g. information
about the individual, disease symptoms, past treatments), we select the action to perform
(e.g. treatment to give) given the context, and we observe a noisy feedback (e.g. treatment
effect) related to the action reward. The goal is to estimate the reward functions well
enough in order to select actions that maximize the cumulative reward. In this paper, we
present a specific case study, where data is obtained from a mouse model of chemically-
induced carcinogenesis (Balmain et al., 1984). We present a formal model to analyze the
data from an initial exploration phase, including design of the state space representation,
policy class, reward function, and try to elucidate what is the best optimized policy that
can be recommended from the available data.

Following the work of (Srinivas et al., 2010) and (Krause and Ong, 2011), we adopt
a nonparametric approach based on Gaussian Process (GP) regression (Rasmussen and
Williams, 2006) to model the reward function. We consider the setting with disjoint ac-
tions, which occurs when there is no similarity measure between actions (e.g. independent
medical treatments). We develop a new method, called GP BESA, which is an extension
of the Best Empirical Sampled Average (BESA) (Baransi et al., 2014) bandit algorithm to
the non-linear contextual bandit setting. We present empirical results on three different
simulation settings built from data acquired in a previous phase. These early promising re-
sults motivated the implementation with real animals in a wet-lab experiment. Preliminary
results obtained from 10 mice are encouraging and show that the adaptive policy extends
the life spans of animals compared with no treatment, random treatment allocation, and
constant chemotherapeutic agent, allowing to gather data with a better coverage of the
tumour volume state space.

2. Problem Description

In this work, we address the need for efficient data collection during animal experiments
investigating the effectiveness of cancer therapy regimens (Loizides et al., 2015). More
specifically, we aim at designing a treatment allocation policy that is personalized and
specific to the stage of the disease, hereby represented by the tumour volume x. The effec-
tiveness of a treatment given the tumour volume can be learned by analyzing its impact on
the tumour evolution. Here, the evolution of a tumour is represented by triplets (xi, ai, x

′
i),

where xi denotes the i-th measurement of the tumour volume, ai is the assigned treatment
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on the day of measurement xi, and x′i is the measured tumour volume following the treat-
ment administration. The goal is to learn, for each a, the transition function between xi
and x′i using triplets where ai = a.

The typical approach for collecting those triplets is to run a standard Randomized
Clinical Trial (RCT), in which each treatment is randomly assigned to tumours of different
volumes. However, ineffective treatments may lead to exponential tumour growths, In turn,
this causes a rapid deterioration of subject, limiting the amount of data that can be collected,
and also restricts the space of states (tumour volumes) visited. This could be problematic
in the subsequent use of data to establish a sequential treatment strategy. This motivates
the design of an Adaptive Clinical Trial (ACT) phase, in which accumulated data on prior
treatment responses is used to help allocate better treatments, thus reducing exposure to less
effective treatments. This gives rise to the famous trade-off between exploration (searching
for optimal treatments) and exploitation (treating patients as efficiently as possible), making
it an application framework of choice for bandits algorithms. The ACT bears similarities
with response adaptive trials (Zhou et al., 2008; Saville and Berry, 2016; Wen et al., 2017),
where patients are clustered into groups and the goal is to provide patients with the optimal
treatment given their group and prior observed responses. Here, the goal is rather to choose
a sequence of actions (treatments) in order to obtain a given result, typically reduce or
prevent tumour growth. This can be formulated as a sequential decision making problem.

This is often tackled using Reinforcement Learning (RL) approaches, under the Markov
Decision Process (MDP) setting (Villar et al., 2015) – also known as the Bayesian Bernoulli
multi-armed bandit problem. RL techniques make it possible to manage not only the im-
mediate response to a treatment, but also the impact of the treatment sequence on the
final result, that is the treatment of the patient. However, solving an MDP based on Bell-
man (1952) equations or the Gittins (1974) indexes requires a good coverage of the state
space by previously acquired data, which is not the case in the currently limited amount
of available data. Moreover, for logistical reasons, the ACT in the study considered here is
implemented on groups of animals and the history of prior contexts, treatments, and ob-
servations used by the allocation algorithm is only updated after the completion of a given
group. We are therefore facing a problem of delayed feedbacks, where current deterministic
ACT algorithms based on MDPs are inefficient (Williamson et al., 2017). Indeed, random-
ized algorithms are known to be more robust at obtaining delayed feedbacks (Chapelle and
Li, 2011). For these reasons, we tackle this problem under the contextual bandits setting,
where we propose a randomized treatment allocation technique.

3. Contextual Bandits

A contextual bandit problem is described by a set of contexts X and a set of actions A.
Here the space of contexts corresponds to the space of tumour volumes and the actions
set corresponds to the considered treatment options. Each episode t is described by the
measurement of a tumour volume xt and the assignment of treatment at. We describe the
outcome of a treatment as the tumour volume following the treatment, x′t. The goal of a
bandits algorithm is to select treatment at in order to minimize the next tumour volume
or, inversely, to maximize yt = −x′t. This should make it possible to collect samples in the
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longer term by stretching the lifetime of animal subjects, while visiting more diverse states
by delaying uncontrolled tumour growth.

In the standard, non-delayed feedback, setting, a bandit algorithm has access to the
complete history of prior contexts, actions, and observations, (xs, as, ys)

t−1
s=1, in order to

make a decision at time t. Here we rather consider an ACT where the history available to
the algorithm is only updated after the completion of a group of subjects. This is known as
delayed feedback and is addressed more effectively by randomized, rather than determin-
istic, approaches (Chapelle and Li, 2011). Alg. 1 shows the resulting adaptive treatment
allocation routine.

Algorithm 1 ACT procedure per groups of animals.

Parameters: contextual bandits algorithm ϕ

1: Initialize time t← 1
2: for all group g do
3: Initialize the history Dg of the group
4: for all mouse in group g do
5: repeat
6: Observe tumour volume xt
7: Select (using ϕ) and apply treatment at
8: Observe the treatment effect x′t
9: Add the tuple (xt, at, yt) to the history Dg

10: Update time t← t+ 1
11: until end of animal protocol
12: end for
13: Dg becomes accessible to ϕ
14: end for

Such problems are typically addressed through different assumptions on similarity be-
tween actions and contexts. Formally, it is supposed that there exists, for each action a ∈ A,
a function fa : X 7→ R describing the expected observation when selecting action a given
the context. Therefore the observation yt = fat(xt) + ξt is a noisy observation of this func-
tion for action at at the current context xt. It is common to assume a zero-mean Gaussian
noise ξt. Many previous works (Auer et al., 2002; Li et al., 2010; Chu et al., 2011; Agrawal
and Goyal, 2013) assume linear functions fa on X Others tackle the situation where there
exists a similarity measure over A. Hence they consider a function f : X ×A 7→ R such that
fa(x) = f(x, a). Among those, some assume that f is a Lipschitz function (Slivkins, 2014),
while others assume that f is sampled from a Gaussian Process (GP) distribution (Krause
and Ong, 2011; Valko et al., 2013). One can see the GP distribution as a generalization of
a Gaussian probability distribution: it is a distribution over functions. The specific case of
disjoint actions describes the situation where there is no similarity between actions, which
is also known as bandits with covariates (Rigollet and Zeevi, 2010; Perchet and Rigollet,
2013).
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Figure 1: GP posterior (mean and standard deviation) on a function f for different numbers
(N) of observations.

4. Proposed Approach

Here we address the ACT problem under the contextual bandit setting with disjoint actions,
such that each function fa is assumed to be sampled from a different GP distribution. This
covers the case where functions fa have different regularities, which is realistic given that the
effects of different treatments may vary more or less abruptly according to the stage of the
disease. It is thus natural to rely on GP regression for maintaining a posterior distribution
on each fa (Srinivas et al., 2010; Krause and Ong, 2011; Valko et al., 2013).

4.1. Gaussian Process Regression

GP (Rasmussen and Williams, 2006) regression is a non-parametric regression technique
that uses a kernel to project data into a new space, where linear regression can be performed
to recover the target function. For two points x, x′ ∈ X , let us define a kernel function
k(x, x′) : X×X 7→ R encoding the amount of information shared between points, along with
priors over the regularity of the target function. Consider the N×1 vector yN = (y1, . . . , yN )
of N previous observations obtained using action a in contexts x1, . . . , xN . Given the N×N
kernel matrix and N × 1 vector,

KN =
[
k(xs, xs′)

]
s,s′6N and kN (x) =

(
k(x, xs)

)
s6N ,

and assuming Gaussian noise ξt ∼ N (0, σ2), the posterior distribution on the underlying
target function f given prior observations is a multivariate Gaussian distribution,

P[f |x1, . . . , xN , y1, . . . , yN ] ∼ N
((
fN (x)

)
x∈X ,

[
kN (x, x′)

]
x,x′∈X

)
,

where

fN (x) = kN (x)>(KN + σ2IN )−1yN and (1)

kN (x, x′) = k(x, x′)− kN (x)>(KN + σ2IN )−1kN (x′). (2)

Fig. 1 shows examples of posterior distributions that could be obtained with GP regression
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Figure 2: Examples of posterior mean obtained by GP regression for 10 different subsamples
of observations of size N from the 100 displayed observations.

for different number of observations from a synthetic function. We observe that the more ob-
servations available, the closer is the posterior mean to the true underlying function. In prac-
tice, computing the posterior mean requires the inversion of the N×N matrix (KN+σ2IN ),
typically performed using a Cholesky decomposition of complexity O(N3) (Krishnamoorthy
and Menon, 2013), making this approach primarily suitable for small size samples.

4.2. Action Selection Strategy

We now introduce a new contextual bandits strategy to select the next action based on GP
regression. To this aim, we rely on the BESA (Baransi et al., 2014) principle, that is on a
fair comparison between empirical estimators. A comparison between the estimators of two
actions is said to be fair if both actions had the same opportunities of showing their poten-
tial. Concretely, this can be achieved by computing the estimators using the same amount
of observations for both actions. This results in estimators with comparable confidence
intervals. Here, each function fa is estimated by GP regression. The proposed approach,
GP BESA, considers subsets of observations such that posterior models are computed using
the same amount of observations for each action. Fig. 2 shows various posterior means
obtained by GP regression over 10 subsamples of observations obtained from a synthetic
function, of different sizes. We observe that the posterior mean is more dependent upon to
the sampled subset for contexts where less data is available. Relying on the posterior mean
on subsamples (rather than on all observations) for selecting the next treatment therefore
allows some exploration.

Let Na,t denote the amount of observations obtained by playing action a up to episode
t (inclusively). Let f̃a,N denote the posterior mean on fa obtained by GP regression condi-
tioned on a random subsample (without replacement) of N 6 Na,t−1 previous observations
acquired with action a (Eq. 1). Alg. 2 shows the resulting GP BESA action selection al-
gorithm for two actions. It defines a contextual bandits algorithm (ϕ) that can be used to
select the next action on line 7 of Alg.1. For more than two actions, a tournament can be
set up (Baransi et al., 2014). By aiming for treatment at maximizing f̃at,N in context xt,
GP BESA aims for the treatment with the lowest expected next tumour volume.
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Algorithm 2 GP BESA for selecting among two actions.

Parameters: current episode t, context xt, actions a and b

1: N = min(Na,t−1, Nb,t−1)
2: at = argmaxi∈{a,b} f̃i,N (xt), where f̃i,N () is defined as per Eq. 1 on N subsampled

observations of action i
3: return at

5. Experimental Setting

In our study, we considered mice with induced cancer tumours (Balmain et al., 1984), treated
using combinations of 5-FU, a chemotherapeutic agent, and imiquimod, a synthetic com-
pound modifying the immune response. We considered the following, fixed-dose, options:
no treatment, 5-FU (100mg/kg), imiquimod (8mg/kg), and simultaneous combination of
imiquimod and 5-FU. More precisely, we aimed to learn treatment policies that adapt to
the stage of the disease.

Currently, the only information about cancer progression that is collected during the
trial is through tumour measurements. We therefore characterized the disease progression
using the approximation (Tomayko and Reynolds, 1989) of the tumour volume given by

x = π
6 (`w)

3
2 , assuming an ellipsoid shape for the tumour, where ` and w respectively denote

the ellipsoid tumour length and width measured using calipers (for detailed measurement
procedures see Loizides et al. (2015)).

5.1. Animal Model

Skin tumours were induced in mice using the DMBA/TPA (Tumor Promoting Agent) model
of chemical carcinogenesis. A mouse was treated with TPA for the whole duration of the ex-
periment, which is the standard practice in this type of skin carcinogenesis model (Balmain
et al., 1984). Specifically, data was gathered following this experimental procedure:

• Data collection commenced for a mouse when its largest tumour reached 3mm.
• A mouse was sacrificed when its largest tumour reached 10mm or if its general health

was extensively deteriorating, according to animal handling guidelines (Simonson
et al., 2005).
• Twice weekly, all tumours were measured and a treatment was assigned.
• Each administered treatment was recorded, including the tumour volume preceding

and following the treatment.

5.2. Initial Data Collection

During an initial RCT phase, the goal was to randomly assign one of the four treatment
(none, 5-FU, imiquimod, or 5-FU combined with imiquimod) twice weekly to six mice with
three tumours each (at least one of 3mm diameter), which would result in 18 tumours. Note
that this randomization was independent of tumour size. Due to unpredictable biological
events, a small portion of the data was removed from further analysis. Specifically, data
from one mouse in which tumours took too long to grow, two tumours that disappeared
because they were exposed to treatment in an early stage, and a tumour that merged with a
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Table 1: Number of samples per treatement in the RCT dataset.

None 5-FU Imiquimod 5-FU + Imiquimod Total

N 42 66 24 31 163
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Figure 3: Evolution of tumours during the RCT phase. Each line corresponds to a different
tumour. Time scale is set to facilitate comparison with further results (Fig. 5(a)).

new one were removed from the dataset. The resulting dataset contained 12 tumours from
five mice, which corresponds to a total of 163 (xi, at, x

′
i) triplets. Table 1 shows how samples

are distributed across treatment options. Fig. 3 shows the observed tumour growths.

6. Simulations

Before moving to the adaptive data collection on animal subjects, the performance of GP
BESA was asserted using a simulated study. Simulation models were built using the initial
RCT data (Section 5.2). The context arrival (simulated encounter of tumour volumes) was
modeled using the probability density function (PDF) of an exponential distribution:

f(x|γ, λ) =

{
λe−λ(x−γ) for x > γ

0 otherwise,
(3)

of location γ = 3.42 mm3 and scale1 λ = 66.88 mm3 fitted to the volumes encountered
during the RCT (Fig. 6(a)). As for the treatment effects, four different models were built
for each treatment using linear, cubic, and quartic regression on the RCT data (Table 1).

GP BESA was compared with CGP-UCB (Krause and Ong, 2011), a state-of-the-art
contextual bandits algorithm based on GP regression. Let fa,N (x) and ka,N (x, x) respec-
tively denote the predictive mean and variance on fa at point x obtained by GP regression
on the last N observations acquired by trying action a (Eq. 1 and 2). CGP-UCB selects
the action

at = argmax
a∈A

[
fa,Na,t−1(xt) + βt(δ)ka,Na,t−1(xt, xt)

]
,

where βt(δ) =
√

2 ln 4t2π2

6δ and δ = 0.1. GP BESA and CPG-UCB used the same GP

hyperparameters, which were obtained by maximizing the likelihood in the initial RCT
data (Rasmussen and Williams, 2006) and kept fixed afterwards.

1. The scale of an exponential distribution also corresponds to its mean and standard deviation.
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Figure 4: Average cumulative regret and standard deviation for each simulation model
(lower is better).

Contextual bandit algorithms are typically compared based on their ability to minimize
the cumulative regret :

R(T )
def
=

T∑
t=1

[(
max
a∈A

fa(xt)
)
− fat(xt)

]
. (4)

This quantity measures the expected loss incurred by taking the actions recommended by
the algorithm rather than taking the action with the highest expected outcome given the
context. In other words, it compares an algorithm with an oracle that would have access
to the (unknown) treatment effect functions. An algorithm selecting actions uniformely at
random would obtain a linear regret given episodes. Hence, an algorithm that is actually
learning should accumulate regret sublinearly. Of course, using the regret as performance
measure requires that we have access to the true underlying functions, which is possible
only in simulations. For a fair comparison of algorithms, it is required that the sequence of
contexts (xt)t>1 is the same for both algorithms. This is also possible in simulation studies.
Therefore, both algorithms were executed 100 times during 1000 episodes, that means on
100 sequences of 1000 contexts, where the contexts observed during the i-th sequence were
the same for both algorithms.

Fig. 4 compares the cumulative regret averaged over the 100 repetitions for both algo-
rithms. We observe that both achieve sublinear regret, and that GP BESA cumulates less
regret and shows less variance than CGP-UCB. This is interesting, given that GP BESA
does not consider the posterior variance provided by the GP but relies only on the poste-
rior mean. Paired t-tests on the regret accumulated after 1000 episodes rejected the null
hypothesis with p < 10−5 for all settings. Note that the goal of this experiment is not to
claim that GP BESA is better overall than CGP-UCB, but rather to evaluate its potential
for the current application before deploying the algorithm on real living animals. In this
domain at least, GP BESA competes well against the state-of-art, making it a valid and
promising candidate for an ACT.
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7. Adaptive Data Collection

An ACT was subsequently set up in a laboratory experiment on the same animal model
as the previous RCT (Section 5.1), but using GP BESA to assign treatments based on the
main (largest) tumour volume. Groups of mice were processed simultaneously (until the
death of all members of the group). After group termination, data for all mice in the group
were added to the GP BESA history, such that they could be subsampled and used to fit
GPs for mice in subsequent groups. A total of ten mice were treated and grouped as follows
as they were born:

Group A mice 1 and 2;
Group B mice 3, 4, and 5;
Group C mice 6 and 7;
Group D mice 8, 9, and 10.

The effectiveness of the strategy obtained with GP BESA was compared with the following
basic treatment strategies:

None (3 mice) tumour evolution without any treatment;
Random (5 mice) random allocation strategy (RCT);
5-FU (4 mice) fixed dosage of 5-FU.

The last strategy is a standard chemotherapy procedure (Longley et al., 2003). It also
corresponds to always selecting 5-FU in the treatment options given to GP BESA.

Comparing different treatment allocation strategies is not trivial since the contexts that
are observed (tumour volumes) vary from one experiment to another, and no ground truth
regarding the optimal tumour growth is known. However, the lifespan of the animals might
be seen as an indicator of how fast tumours grow. By comparing the evolution of tumours
observed during the RCT (Fig. 3) and all the animal groups of the ACT (Fig. 5(a)), we
observe that tumour volumes exhibit delayed exponential growth over time resulting in
longer animal lifetimes. This is highlighed in Fig. 5(b), which shows the distribution of
mice lifetime for each basic treatment allocation strategy and GP BESA. We observe on
the one hand that GP BESA makes it possible to increase the lifetime of the mice compared
to the basic treatment allocation strategies. This is explained in Fig. 5(c), which shows the
distribution of mice lifetime for each GP BESA group. We observe that GP BESA improves
after each update, that is, after integrating the data collected from the previous group of
mice. More specifically, we notice an increase of more than 50% longevity between the best
basic strategy (5-FU) and the last group of GP BESA. Note that the significant difference
in lifetime for the mice belonging to the different update groups explains the range of GP
BESA results in the previous figure. We also note that groups of mice present much less
variability in their longevity as the updates are made. This may be due to the use of
less variable treatment strategies with the convergence of GP BESA. This effect should,
however, be validated in a larger cohort.

Table 2 shows how collected samples are distributed across treatment options, for each
group and over the whole ACT dataset. Fig. 6 compares the distribution of tumour volumes
observed during the RCT and ACT phases. We observe that the adaptive treatment allo-
cation strategy results in a better state space coverage. More specifically, the last five mice
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Figure 5: a) Comparative evolution of tumours during the ACT (longer duration in days
is better). Dotted lines indicate max duration in previous groups. b), c) Median
(line) and mean (dotted line) lifetime of animals (higher is better). Boxes cover
1st to 3rd quartiles and handles show the spread of data.

Table 2: Number of samples per treatement in the ACT dataset.

None 5-FU Imiquimod 5-FU + Imiquimod Total

Group A 3 3 10 24 40
Group B 6 6 24 50 86
Group C 2 3 19 26 50
Group D 1 5 39 40 85

N 12 17 92 140 261

using the ACT strategy allowed to gather 59 data points for volumes larger than 70 mm3

compared with 42 data points for the five mice from the RCT. This corresponds to an
increase of 40%. This additional data is of major importance for exploring better strategies
during later stages of the disease.

Fig. 7 shows the treatment allocation policy that was used in each group. We observe
that, as updates go on, that the system learns to avoid the “No treatment” (None) op-
tion. More specifically, the resulting strategy seems to tend toward alternating between
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Figure 6: Distribution of tumour volumes during both phases.
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Imiquimod and 5-FU + Imiquimod. This could suggest a behaviour trying to avoid the
development of drug resistance (Housman et al., 2014).

8. Conclusion

Both simulation and animal experiments results show that GP BESA constitutes a promis-
ing randomized alternative to current deterministic contextual bandit strategies. This is
interesting, given that GP BESA conducts exploration through subsampling of observations
rather than relying on the posterior variance provided by GP regression. These results also
support the applicability of GP BESA for contextual learning in a limited data regime,
which remains a challenge.

Results on animal experiments suggest that GP regression is able to capture the highly
variable features of cancer progression. It can therefore be a useful tool in attempting to
model the dynamics of tumour growth, which is a current challenge (Loizides et al., 2015).
A better understanding of the evolution of cancerous tumours could help in the discovery
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of treatments and promote the implementation of strategies adapted to the disease. Future
work will confirm the potential for using the data collected for off-line learning of treatment
policies.

These results also support the deployment of ACT strategies in real-world application
contexts. Although the bandit setting (Thompson, 1933; Robbins, 1952) takes roots in ACT
application, the use of these algorithms in the field still remains limited (Villar et al., 2015).
More efforts to provide theoretical guarantees under practically feasible assumptions could
help facilitate the adoption of these strategies. In particular, experiments incorporating
more variables to better characterize the disease an the subjects should be carried out.
Earlier work (Djolonga et al., 2013; Wang et al., 2016; Li et al., 2016) addressed the problem
of GP regression on a high dimensional space. Others (Snoek et al., 2015; Springenberg
et al., 2016) have considered the use of deep neural networks to approximate posterior
distribution. Extensions of BESA to these type of approaches could make it possible to
provide randomized contextual bandit to high-dimensional context spaces. This could open
the door to ACT for personalized strategies, adapting treatments to patients characteristics.
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