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Abstract

Survival prediction for cancer patients can increase the prognostic accuracy and might
ultimately lead to better informed decision making. To this end, many studies apply ma-
chine learning to cancer data of the Surveillance, Epidemiology, and End Results (SEER)
program. The first part of this report contains a literature review to obtain a systematic
overview of these studies. We identify 34 publications and extract information about ex-
perimental setups and e↵orts to ensure reproducibility. The review shows that only one
of the identified studies mentions reproducibility and no study contains straightforward
reproducible results. This motivates the second part of this work. We demonstrate the
feasibility of reproducible cohort selection and survival prediction with SEER cancer data.
Experiments are performed for 1- and 5-year survival of breast and lung cancer with cases
diagnosed between 2004 and 2009. We compare minimal data preprocessing with 1-n en-
coding of categorical inputs and apply logistic regression and multilayer perceptron (MLP)
models. Encoding with 1-n vectors proves beneficial throughout all experiments. For lung
cancer, MLP models show a slightly superior performance. Moreover, importance of input
attributes is analyzed with logistic regression weights and ablation analysis for MLPs.

1. Introduction

Cancer is the second leading cause of death in the United States. Most common types are
breast and lung cancer with 268,670 and 234,030 expected new cases in 2018 (Siegel et al.
(2018)). Applying machine learning for survival prediction, i.e. predicting whether a patient
will survive a given period of time after diagnosis, can increase the prognostic accuracy and
might ultimately lead to better informed decision making. The Surveillance, Epidemiology,
and End Results (SEER) program of the National Cancer Institute collects cancer incidence
and survival information covering over 30% of the population in the U.S. (Howlader et al.
(2017)). Due to its broad coverage and comprehensive data collection, SEER data serves
as basis for many survival prediction experiments with machine learning.
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Reproducible Survival Prediction with SEER Cancer Data

Reproducibility is a key requirement to obtain comparable results allowing a critical
evaluation of new approaches in machine learning. In many disciplines, such as computer
vision it is ensured through publicly available datasets and open code. Fully reproducible
biomedical research is scarce (Collins and Tabak (2014)). A recent study examining re-
producibility of mortality prediction in critical care based on the publicly accessible and
well documented MIMIC-III dataset reports several problems in reproducing study cohorts
based on textual descriptions. The authors suggest public dissemination of source code
along with public datasets for an iterative improvement in the field (Johnson et al. (2017)).

Reproducibility for survival prediction experiments with SEER data can be separated
into reproducible cohort selection and reproducible results. During cohort selection an ex-
periment specific subset of all original cases is extracted. For instance, to perform survival
prediction cases with benign tumors and certain unknown or missing attributes are com-
monly excluded. However, in contrast to datasets in most machine learning disciplines this
experiment specific selections cannot be published due to privacy restrictions. Hence, co-
hort selections must be reproducible so that experiments can be conducted on the same
data. Reproducible results require same cohorts but also allow to verify the experimental
outcomes. For instance, by publishing the source code of the experiments.

Clinical Relevance Machine learning might improve prognostic models. However, sur-
vival prediction is a sensitive domain, so technology-based approaches should be repro-
ducible for transparency and to establish trust. The first part of this report contains a
literature review to identify e↵orts to ensure reproducibility in past studies. In the second
part, we demonstrate fully reproducible survival prediction experiments with SEER data.

Technical Significance We do not present a new method for survival prediction, instead
we use a simple setup with techniques from recent studies and focus on reproducibility. First,
we will introduce our cohort selection, data extraction, and feature choice. We consider 1-
and 5-year survival for breast and lung cancer based on cases diagnosed between 2004
and 2009. We compare minimal data preprocessing with 1-n encoding. Second, survival
prediction is performed with logistic regression and multilayer perceptron (MLP) models.
Lastly, we analyze the input attribute importance with logistic regression weights and ab-
lation analysis for MLPs. By providing SEER*Stat session files and source code along with
instructions, we ensure both reproducible cohort selection and reproducible results.

2. Literature Review

There are many studies applying machine learning for survival prediction with SEER can-
cer data. To obtain a systematic overview over existing publications and to assess their
reproducibility, we perform a literature review. We extract information of the experimental
setups and try to identify e↵orts to ensure reproducible experiments.

2.1. Study Selection

Figure 3 in the Appendix shows a flow diagram of inclusion and exclusion criteria for
the literature review. Search was performed with PubMed and Google Scholar. Di↵erent
queries are used, since the PubMed query yields more than 3,500 results in Google Scholar
exceeding the scope of this review. Using a more specific query for Google Scholar lead
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to 719 results that we cleaned from patents and citations (N = 47). Furthermore, titles
without association with SEER, machine learning, or an application to survival prediction
were excluded (N = 538). In general, uncertain candidates were kept for later and more in-
depth analysis. We merged the resulting 134 candidate publications with the eleven results
from PubMed and removed duplicates (N = 5) resulting in a total of 140 publications for
content review. During this review, we further excluded studies inaccessible through our
university access, bachelor/master/dissertation theses, and work with duplicate content or
di↵erent spelling of the title or authors (N = 44). We screened the remaining 96 studies
for clear indications of applying machine learning for survival prediction with SEER data
and excluded studies based on abstract (N = 35) and full text review (N = 27) leaving us
with 34 studies. In the last step, we also removed studies with ambiguous descriptions of
the target variable and experiments that combined the SEER dataset with other data.

2.2. Information Extraction

We extracted information about the general experimental setups and try to identify e↵orts
made for reproducibility in the 34 identified studies. To ensure correct data, two individuals
performed information extraction separately. In case they extracted di↵erent information,
the publication was consulted together to reach an agreement.

Information of the experimental setup includes cancer type, time range of SEER data,
survival period, applied machine learning models, number of cases and attributes used as
input, and the best reported result (see columns of Table 1). A dash indicates missing,
a question mark uncertain information. We assigned models into common categories to
simplify the notation. Abbreviations of those categories are given in the Appendix. Models
that do not fit into a category or custom modifications are marked with an asterisk. Brack-
eting and plus symbols indicate model combinations. A single result is reported for each
publication and cancer type. For this, we prefer the best model and 5-year and 1-year sur-
vival periods, because they are most common. The model and survival period for a reported
result are indicated by mentioning them first in their respective columns. For instance, the
result reported for Dimitoglou et al. (2012) (ACC=0.944) is for 5-year survival and a de-
cision tree model. Number of attributes refers to the number of original SEER attributes
that were used. We report results as Area Under the Receiver Operating Characteristic
Curve (AUC), F1 score (F1), and accuracy (ACC) in this order. Two experiments carry
out regression for which we report root mean squared error (RMSE).

To identify e↵orts made for reproducibility in the selected studies, we used text com-
prehension gained during the extraction of experimental setups. In addition to that, we
searched for the terms code and program to find hints for published code and the terms
repro and repeat to find statements about reproducibility. We scanned figures, tables, foot-
notes, and appendices for hints of reproducible experiments. The last column in Table 1
indicates whether a study published the source code of their experiments.

2.3. Experiments

Table 1 summarizes the information extracted from the 34 identified studies. Six of these
papers were published in 2017 illustrating the topic’s relevance. Most of the studies (N
= 23) are concerned with breast cancer, which is the most common type of cancer in the
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Table 1: Experimental setups from 34 studies identified in the literature review. A single
result is reported for each publication and cancer type. Survival period and model
for reported results are indicated by mentioning them at the first position.

Publication Cancer Time rangeSurv. years Models Cases Attr.Result Code

Afshar et al. (2015) Breast 1999-2004 5 SVM, BN, DT 22,763 18 ACC=0.967
Al-Allak et al. (2010) Breast 1990-1997 10 DT 50,895 3 ACC=0.693
Bellaachia and Guven
(2006)

Breast 1988-2002 5 DT, MLP, NB 151,886 16 ACC=0.867

Burke et al. (1997) Breast 1977-1982 10 MLP 6,787 3 AUC=0.730
Delen et al. (2005) Breast 1973-2000 5 DT, MLP, LogR 202,932 16 ACC=0.936
Dooling et al. (2016) Breast 1973-2012 5/0.5/1 RF, MLP 329,949 66 AUC=0.844 X
Edeki and Pandya
(2012)

Breast 1990-1997 10 (RF, MLP, LogR, DT, SVM) +
BOO, BAG

15,194 20 ? ACC=0.75

Endo et al. (2008) Breast 1992-1997 5 LogR, MLP, NB, BN, DT 37,256 10 ACC=0.858
Jahanbazi and Nadimi
(2016)

Breast 1973-2012 5 SMOTE + InfoGain + DT* 12,000 13 ACC=0.871

Kate and Nadig (2017) Breast 2004-2008 5 LogR, DT, NB 174,518 16 AUC=0.850
Khan et al. (2008) Breast 1973-2003 5 DT 40,600 16 AUC=0.77
Kibis et al. (2017) Breast 1973-2013 10 LogR, MLP, BN, DT 52,825 28 AUC=0.808
Kim and Shin (2013) Breast 1973-2003 5 SSL Co-train*, SVM, SSL*,

MLP
50,000 16 AUC=0.81

Miri Rostami and Ah-
madzadeh (2017)

Breast 2004-2007 5 ((SMOTE, DSO*) + PSO*
+CFS*) + DT, BN, LR

23,512 10 AUC=0.939

Nam and Shin (2013) Breast - 5 SSL Co-train*, SVM, SSL*,
DT, MLP

50,000 16 AUC=0.81

Park et al. (2013) Breast 1973-2003 5 SVM, SSL*, MLP 162,500 16 AUC=0.80
Shin and Nam (2014) Breast 1973-2003 5 SSL Co-train*, SVM, SSL*,

DT, MLP
50,000 16 AUC=0.81

Shukla et al. (2018) Breast 1973-2012 5/3/7 Clustering + MLP 85,189 25 ACC=0.692
Solti and Zhai (2013) Breast 1973-2009 10 DT, LogR, NB 657,711 12 AUC=0.852
Street (1998) Breast 1977-1982 10 MLP >38,000 5 -
Wang et al. (2012) Breast 1973-2002 5 LogR, DT 215,375 6 AUC=0.829
Wang et al. (2013) Breast 1988-2002 5 (sampling, attr. selection*) +

LogR, DT
215,221 9 AUC=0.829

Wang et al. (2014) Breast 1973-2007 5 (SMOTE + PSO*) + DT,
LogR, 1-NN

215,221 20 ACC=0.943

Al-Bahrani et al. (2017) Colon 1988-2005 5/1/2 MLP 147,644 14 AUC=0.87
Dooling et al. (2016) Colon 1973-2012 5/0.5/1 MLP, RF 113,072 102 AUC=0.841 X
Gao et al. (2012) Colon 1998-2000 5 ANFIS, MLP*, SVM, LogR,

BN, DT, NB
10,000 14 AUC=0.821

Noohi et al. (2013) Colon 1969-2010 (<1,1-5,>5) MLP, BN, DT 5,276 8 ? ACC=0.716
Silva et al. (2016) Colon 2004-2012 ? 5/1/2/3/4 (DT, k-NN, RF, NB) + EV,

ST, BOO, BAG
38,592 18/6 AUC=0.994

Stojadinovic et al.
(2013)

Colon 2000-2006 5/1/2/3 BN 77,402 13 ? AUC=0.85

Agrawal et al. (2012) Lung 1998-2001 5/0.5/0.75/1/2(DT, BOO, RF, MLP, SVM)
+ EV

57,254 63 AUC=0.940

Dimitoglou et al. (2012) Lung 1988-2003 5/7/10 DT, NB 174,491 14 ACC=0.944
Dooling et al. (2016) Lung 1973-2012 5/0.5/1 MLP, RF 177,089 114 AUC=0.875 X
Fradkin et al. (2006) Lung 1988-2001 0.66 SVM, LogR 217,558 15 sens./spec.
Lynch et al. (2017a) Lung 2004-2009 6 (regression) (GBM, LinR, RF, DT, SVM)

+ EV
10,442 18 RMSE=15.30

Lynch et al. (2017b) Lung 2004-2009 6 (regression) (SOM, HC, MBC, k-means,
NNMF, PCA) + LinR

10,442 8 RMSE=15.59

Delen (2009) Prostate1988-2001 5 SVM, MLP, DT, LogR >120,00077 ACC=0.929
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U.S. One paper analyzes more than one cancer type (Dooling et al. (2016)). Stated start
and end years vary between 1969 and 2013. Later start dates are chosen to include only
recent data or to make use of attributes introduced at a later stage. The end date is usually
determined by the SEER data available at experiment time with an additional o↵set to
include all necessary follow-ups. A survival period of five years is used in many experiments
(N = 25), followed by one (N = 8) and ten years (N = 7). There are two experiments
which perform regression to predict survival months (Lynch et al. (2017a), Lynch et al.
(2017b)). Plenty of di↵erent models are applied, sometimes in combination with sampling
techniques or methods for input size reduction. Common models are decision trees (DT,
N = 24) and multilayer perceptrons (MLP, N = 20), followed by logistic regression (LogR,
N = 12) and support vector machines (SVM, N = 10). Cohort selection and, hence, the
resulting number of cases varies a lot between experiments. Some studies simply use all
cases available, others exclude cases based on empty attributes or specific filter criteria.
Data preprocessing includes normalization methods, data imputation for missing values,
and semantic mappings of attributes. In some experiments, especially where case numbers
are round, cases were excluded to account for a target label imbalance or due to performance
reasons. Input attributes used for prediction also di↵er a lot. Many experiments justify their
selection with clinical relevance or a separate data analysis. AUC is given as performance
measure in 18 studies. Whenever AUC is not given, F1 is also missing, so we report ACC.

2.4. Reproducibility

We identified several e↵orts to ensure reproducibility. Nearly all studies provide information
about their experimental setups and textual descriptions of cohort selection (see Table
1). Several studies provide an overview of input attributes used for prediction. Some
papers include overviews of the selected model parameters, names of SEER input files, or
pseudocode for critical parts of their programs such as target label generation. Experiments
with decision trees often include textual description of generated decision rules.

Only a single study (Dooling et al. (2016)) explicitly mentions reproducibility and pro-
vides Github repositories1 containing source code for experiments and a web application
based on the prediction algorithm. However, both repositories provide no meaningful in-
structions. Our attempts to understand the provided code failed due to missing explanatory
comments and several complex data mappings. Executing the program and reproducing
results was impossible due to undocumented external dependencies.

We cannot conclude with absolute certainty that none of the identified studies contains
reproducible cohorts or results. To verify this statement, a manual review of every experi-
ment would be necessary, which laid outside the scope of our review. However, we observed
that 33 out of 34 studies only come with textual descriptions of their experiments that al-
ready proved insu�cient to reproduce cohorts (Johnson et al. (2017)) and contain no clear
hints for reproducibility. Only a single paper mentions reproducibility and provides source
code. However, this approach also proved insu�cient due to missing instructions and bad
code quality. Hence, we can conclude that none of the identified studies is straightforward
reproducible. Straightforward in the sense that a publication contains clear and simple in-
structions to reproduce it. Moreover, the literature review revealed that no study conducted

1. https://github.com/doolingdavid/{PAPERDATA,colon-cancer-nn-errors}
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by di↵erent researchers or institutions is based on the same input data. This supports our
assumption that it is di�cult to reproduce cohorts of existing experiments. This motivates
the following work introducing fully reproducible cohort selection and reproducible results
for survival prediction with SEER data.

3. Cohort

SEER collects cancer incidence data from population-based cancer registries covering over
30% of the population in the U.S. The data contains detailed information on patient de-
mographics, primary tumor site, tumor morphology, stage at diagnosis, and first course of
treatment. In addition to that, SEER registries follow up with patients for vital status
to provide survival information (Howlader et al. (2017)). SEER releases data submissions
annually, containing new incidences and updated information for existing cases. Our study
is based on the November 2016 submission with data from 1974 to 2014 (SEER (2017)).

3.1. Cohort Selection

Cohort selection for our experiments is performed with SEER*Stat, a dedicated software
for the analysis of SEER data. It allows authorized users to investigate the collected cancer
cases and to produce statistics based on them. In addition to that, it o↵ers (1) the specifica-
tion of a SEER database, (2) predefined exclusion criteria, (3) a custom query builder with
a sophisticated selection mechanism allowing to combine several attribute conditions, and
(4) an export functionality for selected cases. Most importantly, the complete SEER*Stat
configuration can be stored into a session file and re-used by others to fully reproduce the se-
lected cohort. It is possible to publish session files since they include no patient information
but only the necessary selection parameters.

We perform predictions for 1- and 5-year survival of breast and lung cancer, which are the
most common tasks in past experiments. Only cases diagnosed since 2004 are considered,
because at that time many new attributes were included and to use only recent data. We
chose 2009 as end date to ensure a 5-year follow-up period for all incidences. Selecting a
cohort for survival prediction with SEER data is an ambiguous task. There is no consent
about inclusion and exclusion criteria in existing studies. We use a SEER*Stat exercise
session provided by the SEER program2 as basis of our selection. The exercise description
claims to ”represent the standard selections most commonly used for a survival analysis”,
which was confirmed by the SEER sta↵. It includes cases with malignant tumors and known
age and excludes entries with unknown or missing cause of death, deaths only confirmed by
autopsy or death certificate, and cases that are marked as alive with no survival time. It
also excludes cases based on an expected survival table for U.S. citizens. We adjust these
predefined cohort selection only regarding cancer type and year of diagnosis. The resulting
SEER*Stat queries are given in Figure 1. The cohorts consist of 275,167 cases for breast
and 229,011 cases for lung cancer. SEER*Stat session files for our cohort selections are
contained in this paper’s repository3. We refer to these files for further details regarding
the cohort. By loading them into SEER*Stat, the selection can be reproduced.

2. https://seer.cancer.gov/seerstat/tutorials/survival3
3. https://github.com/stefanhgm/MLHC2018-reproducible-survival-seer/tree/master/cohort
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SEER*Stat Survival Exercise 3:
Cause-Specific Survival

Adjust selection to breast/lung cancer and diagnosis from 2004 to 2009.

SEER*Stat Case Selection

{Race, Sex, Year Dx, Registry,

County.Year of diagnosis} =

’2004’,’2005’,’2006’,’2007’,’2008’,’2009’ AND

{Site and Morphology.Site recode ICD-O-

3/WHO 2008} = ’Breast’

275,167 cases

Breast

SEER*Stat Case Selection

{Race, Sex, Year Dx, Registry,

County.Year of diagnosis} =

’2004’,’2005’,’2006’,’2007’,’2008’,’2009’ AND

{Site and Morphology.Site recode ICD-O-

3/WHO 2008} = ’Lung and Bronchus’

229,011 cases

Lung

(275,167; 133) cases and attributes (229,011; 133) cases and attributes

Merged SEER ASCII text data files for breast/lung cancer cases.

Export unique Patient ID and Record

Number to filter same cases from ASCII files.

1973 2014.seer9/BREAST.TXT
yr1992 2014.sj la rg ak/BREAST.TXT
yr2000 2014.ca ky .../BREAST.TXT
yr2005.lo 2nd half/BREAST.TXT

1,548,199 cases

1973 2014.seer9/RESPIR.TXT
yr1992 2014.sj la rg ak/RESPIR.TXT
yr2000 2014.ca ky .../RESPIR.TXT
yr2005.lo 2nd half/RESPIR.TXT

1,256,246 cases

Default 1-N-ENC
(275,167; 108) (275,167; 1,479)

Default 1-N-ENC
(229,011; 108) (229,011; 1,378)

Remove irrelevant, combined, post-diagnosis, and treatment attributes.
1-N-ENC: Encode categorical attributes and empty/special values of continuous.

Default 1-N-ENC
12: (270,107; 107) (270,107; 1,478)

60: (248,751; 107) (248,751; 1,478)

Default 1-N-ENC
12: (215,630; 107) (215,630; 1,377)

60: (205,554; 107) (205,554; 1,377)

Create target label indicating cancer survival for 12/60 months (Algorithm 1).

Default 1-N-ENC
12: (270,107; 57) (270,107; 1,423)

60: (248,751; 57) (248,751; 1,419)

Default 1-N-ENC
12: (215,630; 48) (215,630; 1,315)

60: (205,554; 48) (205,554; 1,315)

Remove inputs with constant values.

Figure 1: Flow chart for cohort selection, data extraction, and feature choice. The last
boxes indicate the final number of cases and features for our experiments with
breast and lung cancer, di↵erent input representations (Default and 1-N-ENC)
and two survival periods (12 and 60 months).
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3.2. Data Extraction

It is possible to export cases from SEER*Stat for further analysis. For our experiments,
however, we use the SEER ASCII files since they contain numerical encodings of all at-
tributes. The ASCII data for the 2016 submission (SEER (2017)) are available from SEER
on request. Merging all incidences for breast and lung cancer results in 1,548,199 and
1,256,246 cases (see Figure 1). We export unique identifiers (patient ID and case number)
from SEER*Stat and use them in our software to filter the ASCII data for our cohort.
This yields the same cases in the ASCII format consisting of 133 attributes for each case.4

Irrelevant fields such as patient ID and compound fields that combine several information
are removed in our software. Moreover, in consultation with SEER sta↵ we removed treat-
ment information commonly excluded from survival analyses and attributes added after the
initial diagnosis leaking future information. This decreased the number of attributes to 108.

3.3. Feature Choices and Target Label Generation

We perform experiments with two di↵erent input representations. The first representation
treats all inputs as continuous that are normalized with respect to mean and variance.
Hence, the number of resulting inputs remains 108 (see Default in Figure 1). However, many
SEER attributes encode categorical (e.g. sex) or non-interval values (e.g. stage). Moreover,
some attributes contain codes for special or unknown values. For instance, a tumor size
in the interval 1 to 988 encodes size in millimeters whereas 999 indicates unknown and
991 less than 1 cm. In addition to that, a custom value of -1 was introduced to represent
missing data. Treating this variable as continuous can prove insu�cient. This motivates an
alternative input representation where we divide attributes into categorical and continuous.
Categorical attributes are encoded as 1-n vectors where each entry in the vector represents
a value of the original attribute. For continuous attributes, values are mean and variance
normalized as for the first representation except for values representing an unknown or
special code. In this case, the value is set to zero and an additional 1-n vector for special
codes is used instead. Figure 2 illustrates both input representations without mean and
variance normalization. Three rows represent three exemplary cases with attributes size
(continuous) and stage (categorical). The values 999 for size represent unknown and -1 for
stage missing. Model a) uses the first representation with attributes as single inputs. Model
b) and c) use the second input representation. Size is used as single input except for the
special code 999 which is 1-n encoded. Stage, a categorical variable, is completely encoded
as 1-n vector. The 1-n encoding for the second input representation increases the inputs to
1,479 and 1,378 (see 1-N ENC in Figure 1).

We create a target label indicating whether a person died within one or five years due to
cancer or survived for this period of time. Algorithm 1 contains the according pseudocode.
For each case, the target label Survived cancer for n months is set to zero if Survival months
is less than 12 or 60 and SEER cause of death classification is equals to one indicating that
a person died of their cancer.5 If a person survived at least 12 or 60 months Survived cancer
for n months is set to one. Remaining cases are removed. These are either right-censored
or died within 12 or 60 months but due to another cause. For 60-months more cases are

4. https://seer.cancer.gov/manuals/read.seer.research.nov2016.sas
5. https://seer.cancer.gov/data-software/documentation/seerstat/nov2016/TextData.FileDescription.pdf
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Algorithm 1 Create binary target label indicating survival of cancer for n months.
Input: Dataset data and number of survival months n
Output: Dataset data with new binary column Survived cancer for n months

Create new attribute column Survived cancer for n months
foreach case 2 data do

if Survival months < n and SEER cause of death classification = 1 then
set column Survived cancer for n months to 0 (died within n months of cancer)

else if Survival months � n then
set column Survived cancer for n months to 1 (survived n months)

else
remove case from data (died within n months of other cause or right-censored)

end
end
return data

a↵ected and removed. We exclude them from the experiments since our modeling approach
cannot handle them. To generate the target label two attributes are merged into Survived
cancer for n months decrementing the number of attributes by one (see Figure 1).

In a last step, constant attributes useless for discrimination are removed resulting in the
final case and attribute counts given in Figure 1. Tables 4, 5, 6, and 7 in the Appendix
summarize the resulting SEER attributes for 1- and 5-year breast and lung cancer survival
predictions. They contain 57 and 48 inputs resulting from data preprocessing without 1-n
encoding. Attribute names correspond to the ASCII documentation file. A minimum value
of -1 indicates empty values, which are only present for three attributes. The column empty
shows the exact number of empty values that are of significant size for Insurance Recode
(2007+) and Recode ICD-O-2 to 10. These two attributes are either collected since 2007
or contain only empty and unknown values. A maximum value consisting only of nines,
usually a special value for unknown, appears for many attributes. Attributes with the
highest number of di↵erent values are State-county recode, FIPS code for state and county,
CS Tumor size, tumor size in millimeters, and Histologic Type ICD-0-3, histologic coding
of tumors. The last row contains information about the binary target label.

4. Methods

We perform survival prediction with logistic regression and MLP models. They are the
second and third most common models used in past studies (see Section 2.3). Logistic
regression serves as a simple model to provide a baseline for prediction results. MLPs
are applied frequently in machine learning since the rising popularity of artificial neural
networks and have been successfully applied to complex tasks. In particular, we want to
investigate whether MLPs prove beneficial for many input attributes and whether they can
deal with sparse inputs resulting from 1-n encoding. MLP models for the first and second
input representations are illustrated as models a) and b) in Figure 2. In addition to that,
we use a slightly modified MLP with the second input representation that performs an
embedding of 1-n encoded attributes in its first hidden layer (MLPEmb). This approach is
inspired from word representations in natural language processing (Mikolov et al. (2013)).
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Size Stage Size Size Stage Stage Stage

(Value) (Unk) (1) (4) (-1)
Size Size Stage Stage Stage

(Value) (Unk) (1) (4) (-1)

(53)

(11)

(999)
...

(4)

(-1)

(1)
...

(53)

(11)

(0)
...

(0)

(0)

(1)
...

(0)

(0)

(1)
...

(1)

(0)

(0)
...

(0)

(1)

(0)
...

(53)

(11)

(0)
...

(0)

(0)

(1)
...

(0)

(0)

(1)
...

(1)

(0)

(0)
...

(0)

(1)

(0)
...

..

. ..
.

..

.

Yes/No Yes/No

Yes/No

a) MLP b) MLP + 1-N ENC c) MLPEmb + 1-N ENC

Figure 2: Illustration of MLP models used for experiments. Inputs for b) and c) are 1-n
encoded (1-N ENC) and c) contains an embedding in the first layer (MLPEmb).

The underlying intention is to learn a representation of each input attribute in the first
layer before combining them into a fully connected layer (see model c) in Figure 2).

The data resulting from cohort selection and data preprocessing is randomly split up
into training, validation, and testing sets with the ratios 80%, 10%, and 10%. Evaluation
is performed with Area Under the Receiver Operating Characteristic Curve (AUC) and F1
score (F1). We choose the best model based on the maximum sum of AUC and F1. We
report accuracy (ACC) only for comparison with past studies. Hyperparameters are tuned
on the validation set. A single run for each model and optimal parameter configuration is
performed on the test set, which is the final score we are reporting. For logistic regression,
regularization parameter C is tuned with 1 · 10x for x in �2,�1, ..., 10. For MLP models,
the number of hidden layers (1, 2, 3, 4), nodes per hidden layer (20, 50, 100, 200), dropout
(0.0, 0.1, ..., 0.5), and training epochs (20, 50, 100) are tuned. MLPEmb has an additional
hyperparameter, the number of nodes used for attribute embedding in the first hidden layer
(a single one for model c) in Figure 2). This value is tuned with (3, 5, 10). As a result,
there are 13, 288, and 864 parameter configurations for the logistic regression, MLP, and
MLPEmb models. Tuning is performed on the HPC cluster of the University of Münster.

In addition to the survival prediction performance, we analyze the input importance of
SEER attributes for the best performing logistic regression, MLP, and MLPEmb models.
For logistic regression absolute values of the inputs weights are used. In case of 1-n-encoding,
absolute weights for all inputs belonging to a specific attribute are summed. For MLP and
MLPEmb ablation analysis is performed. For this, all inputs of a SEER attribute are set
to zero and the absolute di↵erence of the output serves as importance measurement.
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Table 2: Survival prediction performance for breast cancer using a dummy classifier (BASE
RATE), logistic regression (LOG REG), and MLP models (see Figure 2).

1-year survival 5-year survival

Model AUC F1 ACC AUC F1 ACC

BASE RATE 0.5 0.9849 0.9703 0.5 0.9318 0.8724
LOG REG 0.9381 0.9869 0.9744 0.8808 0.9481 0.9066
LOG REG + 1-N ENC 0.9440 0.9873 0.9752 0.9023 0.9518 0.9136
MLP 0.9384 0.9871 0.9748 0.9002 0.9516 0.9131
MLP + 1-N ENC 0.9393 0.9872 0.9749 0.9039 0.9517 0.9130
MLPEmb + 1-N ENC 0.9397 0.9872 0.9749 0.9062 0.9517 0.9134

Table 3: Survival prediction performance for lung cancer using a dummy classifier (BASE
RATE), logistic regression (LOG REG), and MLP models (see Figure 2).

1-year survival 5-year survival

Model AUC F1 ACC AUC F1 ACC

BASE RATE 0.5 0.0 0.5609 0.5 0.0 0.8404
LOG REG 0.8209 0.6942 0.7552 0.8932 0.6180 0.8933
LOG REG + 1-N ENC 0.8419 0.7162 0.7696 0.9100 0.6394 0.9001
MLP 0.8347 0.7207 0.7639 0.9026 0.6381 0.8948
MLP + 1-N ENC 0.8446 0.7265 0.7681 0.9076 0.6492 0.8996
MLPEmb + 1-N ENC 0.8476 0.7351 0.7736 0.9078 0.6539 0.8961

5. Results

SEER*Stat session files and the code to reproduce our experiments along with an example
are contained in a public Github repository6. Experimental results for 1- and 5-year survival
prediction are contained in Table 2 for breast and Table 3 for lung cancer. Base rates of a
dummy classifier predicting the most frequent label are given for comparison.

For breast cancer, the prior probability for surviving is already high as indicated by
the base rates for F1 and ACC. Applying logistic regression or MLPs can only slightly
improve these values in case of 1-year survival. Improvements are larger for 5-year survival.
With regard to the optimization criteria AUC and F1, logistic regression with 1-n encoding
almost always gives the best performance. Only AUC for 5-year survival is higher with
the MLPEmb model. However, it is worth mentioning that prediction results for logistic
regression with 1-n encoding and MLP models only show marginal di↵erences making it
di�cult to determine a clearly superior approach. Input representation with 1-n encoding
always improves AUC and F1 values. Best performing MLP models for breast cancer
experiments contain only one or two hidden layers with 20 to 100 nodes per layer.

6. https://github.com/stefanhgm/MLHC2018-reproducible-survival-seer
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In case of lung cancer, base rates are lower and model di↵erences are larger. The
base rate for F1 is zero since the negative label prevails. The MLPEmb model yields the
best performance regarding AUC and F1. Only exception is the AUC value for 5-year
survival, which is higher for logistic regression with 1-n encoding. The MLP with 1-n
encoding outperforms logistic regression on the same scores as the MLPEmb model, only
by a smaller margin. This suggests that embedding 1-n encoded attributes in MLPEmb
is advantageous. Top F1 scores are much lower compared to lung cancer. Additional
experiments on a local machine show a low recall of 0.6936 and 0.6495 for 1- and 5-year
survival with MLPEmb. Just as for breast cancer, using 1-n encoding always gives an
improved performance. However, best MLP models for lung cancer experiments are larger
with two to four hidden layers and up to 200 nodes per layer. This suggests that lung cancer
data contains more complex relationships useful for survival prediction.

Figures 4, 5, 6, and 7 in the Appendix illustrate the relative attribute importance for 1-
and 5-year breast and lung cancer survival prediction. The diagrams are limited to the top
ten attributes according to their summed importance across all models. For both cancer
types State-county recode receives a very high importance for logistic regression with 1-n
encoding (note the y-axis break). One possible explanation might be that State-county
recode contains the highest number of di↵erent values leading to many logistic regression
weights responsible for the 1-n encoded attribute. In addition to that, AJCC codes, staging,
and breast cancer specific attributes are most important for breast cancer survival predic-
tion. For lung cancer, the most important attributes include information about the tumor
extension, histology, staging, and metastases. Moreover, attribute importance for 1- and
5-year predictions are very similar sharing eight and nine attributes out of the top ten for
breast and lung cancer.

6. Discussion

A literature review for survival prediction with SEER cancer data was performed and we
identified 34 relevant studies. Six of them were published in 2017. These publications aim to
increase prognostic accuracy with methods from machine learning. Application of machine
learning is justified with the success in other disciplines and the objective to incorporate
more information and more complex relationships than common statistical approaches.
However, only one out of 34 studies mentions reproducibility and publishes source code.
Due to missing explanations and bad code quality, this approach also proved insu�cient.
Hence, we conclude that none of the identified studies is straightforward reproducible.

Moreover, there are no studies from di↵erent researchers based on the same cohort.
E↵orts to compare experimental outcomes exist. For instance, Al-Bahrani et al. (2017)
refers to Stojadinovic et al. (2013) and Wang et al. (2012) try to compare results with the
much-cited work of Delen et al. (2005). However, since predictions are not based on the
same input data, comparability of those studies is limited. In our experiments, we have
experienced that slight changes of the study cohort can lead to significant changes of the
results. The current situation prevents transparent benchmarking and reliable statements
about machine learning approaches for survival prediction with SEER data. Instead of
performing experiments with di↵erent cohorts, data preprocessing methods, and machine
learning models, future research should instead put a greater emphasize on reproducibility.
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In addition to that, we reckon that existing studies present their results too positively.
Only few publications report target prior probabilities or base rates of prediction scores.
This results in misleading impressions of prediction performances. For instance, our results
for 1-year breast cancer survival seem very accurate, but the improvements over base rates
are only marginal. Results in the reviewed experiments are often described as good or usable
and some studies demand a clinical application. From our point of view, these assessments
are wrong in many cases. Overly optimistic reports might raise unrealistic expectations
leading to a loss of confidence into the field of machine learning in health care.

Our experiments show that 1- and 5-year survival prediction for breast cancer with
logistic regression and MLP models only yield small improvements over base rates. The
situation is di↵erent for lung cancer. MLP models slightly outperform logistic regression
and base rates. However, top F1 scores are still relatively low. We think these results do not
suggest the application in a clinical use-case and several obstacles concerning integration,
usability, and interpretability must be overcome to realize a clinical decision support system
based on SEER data. We consider our experiments as proof-of-concept that (1) demon-
strates the feasibility of reproducible survival prediction by providing SEER*Stat session
files and open code and (2) gives a baseline for survival prediction performances of modern
machine learning methods.

This work has limitations. We tried to identify reproducibility e↵orts in the reviewed
studies solely based on hints in the text, figures, tables, footnotes, and appendices. Some
publication might not contain such indications but still allow reproduction of cohorts and
results. To identify these studies, a manual review of every experiment would be necessary.
Second, our cohort selection is based on a common survival analysis selection provided by
SEER, which we consider suitable for survival prediction. However, there might be reasons
to choose another cohort, for instance to remove cases with missing attributes. Moreover,
we excluded cases from the original cohort that died within one or five years due to other
reasons than cancer, since no target label could be assigned to them. This could bias
the experimental outcomes. Third, we excluded irrelevant and combined attributes and in
consultation with SEER sta↵ also attributes that could leak prognosis information. Relevant
attributes might have been excluded or leaking attributes overseen in this attribute selection
process. Fourth, we performed survival prediction only with logistic regression and MLP
models and two simple input representations. Our methods did not account for the class
imbalance occurring in the experimental data. We are aware that this imbalance results in
high performance metrics. However, by providing base rates of a dummy classifier and prior
probabilities of our target label, we aim to set these values into perspective. This paper does
not focus on the methods for survival prediction but the reproducibility of experiments with
approaches of recent studies. Moreover, more extensive parameter tuning was performed
for MLPs, which might be the reason for their superior performance. Lastly, attribute
importance based on logistic regression weights and ablation analysis can only give hints of
attribute importance and should not be confused with full model interpretabilty.

Our work opens up possibilities for future work. First of all, we hope that future
research builds upon our results and some of the existing methods for survival prediction
will be evaluated on our cohort. Even if another cohort is used, reproducible analysis of
SEER data is feasible and therefore should be standard practice. Future work can consider
incorporation of censored data that we removed for our experiments. Dooling et al. (2016)
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tackle this problem by predicting a survival function that uses survival months as additional
input variable; Alaa and van der Schaar (2017) by using a competing risk model with a
designated event for censoring. Moreover, SEER data might be used in combination with
other data sources such as the SEER-Medicare Linked Database. Another possibility would
be a combination with clinical data elements that proved superior to SEER data alone
for predicting short-term mortality (Elfiky et al. (2017)). Future work could investigate
whether SEER data can actually lead to a clinical outcome. To this end, clinical decision
support systems utilizing SEER data should be compared with established methods for
assessing survival of cancer patients.

7. Conclusion

We identified 34 studies that apply machine learning for survival prediction with SEER
cancer data in a literature review. We extracted information of their experimental setups
and scanned them for e↵orts to ensure reproducibility. This review showed that past ex-
periments were performed with many di↵erent setups but contain no straightforward repro-
ducible cohorts and results. Moreover, there are no studies from di↵erent institutions that
are based on the exact same input data preventing transparent benchmarking. We show
that reproducible analysis with SEER data is feasible and present fully reproducible sur-
vival prediction experiments for breast and lung cancer with logistic regression and MLPs.
We encourage future studies to build upon our results and follow an open data approach to
foster reproducible research.
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Appendix A. - Study Flow Diagram

PubMed:
”SEER” AND

”machine learning”
N = 11

Google Scholar:
”Surveillance, Epidemiology,

and End Results” AND
”machine learning”

N = 719

N = 672

Exclude patents and
citations
N = 47

N = 134

Exclude headlines that have
no association with SEER,
ML, or survival prediction

N = 538

N = 145

N = 140

Exclude duplicates
N = 5

N = 96

Exclude inaccessible, theses,
and duplicate content

N = 44

N = 61

Exclude abstracts that have
no association with SEER,
ML, or survival prediction

N = 35

N = 34

Exclude texts that have
no association with SEER,
ML, or survival prediction

N = 27

Figure 3: Inclusion and exclusion criteria for literature review to identify studies applying
machine learning for survival prediction with SEER cancer data.
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Appendix B. - Model Categories for Literature Review

1-NN - 1-nearest neighbor
ANFIS - Adaptive neuro fuzzy inference system
BAG - Bagging
BN - Bayesian (belief) network
BOO - Boosting
CFS - Correlation-based feature selection
Co-train - Co-training
DSO - Density-based synthetic oversampling
DT - Decision tree (including variants)
EV - (Ensemble) voting
GBM - Gradient boosting machine
HC - Hierarchical clustering
InfoGain - Information gain
k-means - k-means clustering
k-NN - k-nearest neighbor
MBC - Model-based clustering
MLP - Multilayer perceptron
NB - Naives Bayes
NNMF - Non-negative matrix factorization
LinR - Linear regression
LogR - Logistic regression
PCA - Principal component analysis
PSO - Particle swarm optimization
RF - Random forest SMOTE - Synthetic minority oversampling technique
SSL - Semi-supervised learning
SOM - Self-ordering maps
ST - Stacking
SVM - Support vector machine
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Appendix C. - Input Attributes Overview

Table 4: Input attributes for breast cancer 1-year survival prediction (270,107 cases).

Column Minimum Maximum Mean Std Values Empty Status

Age at diagnosis 10 99 60.07 13.97 88 0 continuous
Age recode <1 year olds 3 18 12.6 2.77 16 0 continuous
CS Tumor size 0 999 96.84 258.39 241 0 continuous
EOD 10 - number of lymph nodes examined 0 99 9.29 16.35 79 0 continuous
EOD 10 - positive lymph nodes examined 0 99 13.97 32.68 66 0 continuous
Year of birth 1904 1998 1945.98 14.06 92 0 continuous
Year of diagnosis 2004 2009 2006.56 1.71 6 0 continuous
Adjusted AJCC 6th M (1988+) 0 99 3.36 16.67 4 0 categorical
Adjusted AJCC 6th N (1988+) 0 99 11.15 24.34 6 0 categorical
Adjusted AJCC 6th Stage (1988+) 0 99 30.37 24 11 0 categorical
Adjusted AJCC 6th T (1988+) 0 99 25.37 20.66 15 0 categorical
AYA site recode/WHO 2008 13 56 36.19 1.99 11 0 categorical
Behavior Code ICD-O-2 0 3 3 0.02 3 0 categorical
Broad Histology recode 0 39 8.73 1.61 26 0 categorical
CS Extension 50 999 153.04 179.35 40 0 categorical
CS Lymph Nodes 0 999 153.29 255.75 39 0 categorical
CS Mets at DX 0 99 4.9 18.53 9 0 categorical
CS Site-Specific Factor 1 10 999 84.01 256.29 7 0 categorical
CS Site-Specific Factor 2 10 999 94.06 270.1 7 0 categorical
CS Site-Specific Factor 3 0 99 15.78 34.57 68 0 categorical
CS Site-Specific Factor 4 0 987 372.2 478.1 5 0 categorical
CS Site-Specific Factor 5 0 987 371.99 478.26 4 0 categorical
CS Site-Specific Factor 6 0 987 64.66 209.21 8 0 categorical
CS Version Input Current 20510 20550 20514.53 9.83 5 0 categorical
CS Version Input Original 937 20550 10455.66 1307.25 17 0 categorical
Derived AJCC M 0 99 3.39 16.67 4 0 categorical
Derived AJCC N 0 99 9.53 19.67 20 0 categorical
Derived AJCC Stage Group 0 99 30.42 24.06 11 0 categorical
Derived AJCC T 0 99 23.44 18.56 16 0 categorical
Derived SS1977 1 9 2.13 1.79 6 0 categorical
Derived SS2000 1 9 2.12 1.78 6 0 categorical
ER Status Recode Breast Cancer (1990+) 1 4 1.42 0.83 4 0 categorical
Grade 1 9 2.75 2.03 5 0 categorical
Histologic Type ICD-O-2 8000 9580 8483.67 98.94 116 0 categorical
Histologic Type ICD-O-3 8000 9580 8486.61 94.57 132 0 categorical
Historic SSG 2000 Stage 1 9 1.77 1.64 4 0 categorical
ICCC site rec extended ICD-O-3/ WHO 2008 21 999 104.75 49.06 20 0 categorical
ICCC site recode ICD-O-3/WHO 2008 33 999 118.68 48.29 12 0 categorical
IHS link -1 1 0 0.06 3 287 categorical
Insurance Recode (2007+) -1 5 1.1 2.09 6 130628 categorical
Laterality 1 9 1.55 0.76 5 0 categorical
Marital status at diagnosis 1 9 2.83 1.81 7 0 categorical
Month of diagnosis 1 12 6.47 3.43 12 0 categorical
NHIA Derived Hisp Origin 0 8 0.45 1.55 9 0 categorical
Origin Recode NHIA 0 1 0.1 0.3 2 0 categorical
PR Status Recode Breast Cancer (1990+) 1 4 1.56 0.87 4 0 categorical
Race recode A 1 9 1.31 0.82 4 0 categorical
Race recode Y 1 9 1.38 0.99 5 0 categorical
Race/ethnicity 1 99 2.92 11.58 30 0 categorical
Recode ICD-O-2 to 10 -1 9999 -0.67 57.72 2 270098 categorical
Recode ICD-O-2 to 9 175 9999 1738.41 116.37 19 0 categorical
SEER historic stage A 1 9 1.64 1.25 4 0 categorical
SEER registry 1501 1547 1532.56 13.45 18 0 categorical
Sex 1 2 1.99 0.08 2 0 categorical
State-county recode 2900 53073 17874.25 14081.77 614 0 categorical
Type of reporting source 1 8 1.12 0.78 6 0 categorical

Survived cancer for 12 months 0 1 0.97 0.17 2 0 target
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Table 5: Input attributes for breast cancer 5-year survival prediction (248,751 cases).

Column Minimum Maximum Mean Std Values Empty Status

Age at diagnosis 10 99 59.35 13.54 88 0 continuous
Age recode <1 year olds 3 18 12.46 2.7 16 0 continuous
CS Tumor size 0 999 96.49 257.97 237 0 continuous
EOD 10 - number of lymph nodes examined 0 99 9.34 16.32 79 0 continuous
EOD 10 - positive lymph nodes examined 0 99 13.15 31.76 66 0 continuous
Year of birth 1904 1998 1946.68 13.61 92 0 continuous
Year of diagnosis 2004 2009 2006.53 1.7 6 0 continuous
Adjusted AJCC 6th M (1988+) 0 99 3.24 16.26 4 0 categorical
Adjusted AJCC 6th N (1988+) 0 99 11 24 6 0 categorical
Adjusted AJCC 6th Stage (1988+) 0 99 30.24 23.82 11 0 categorical
Adjusted AJCC 6th T (1988+) 0 99 25.21 20.39 15 0 categorical
AYA site recode/WHO 2008 13 56 36.19 1.99 11 0 categorical
Behavior Code ICD-O-2 0 3 3 0.02 3 0 categorical
Broad Histology recode 0 39 8.73 1.61 26 0 categorical
CS Extension 50 999 152.45 178.48 40 0 categorical
CS Lymph Nodes 0 999 153.29 254.51 39 0 categorical
CS Mets at DX 0 99 4.85 18.27 9 0 categorical
CS Site-Specific Factor 1 10 999 82.56 253.86 7 0 categorical
CS Site-Specific Factor 2 10 999 92.82 268.17 7 0 categorical
CS Site-Specific Factor 3 0 99 14.96 33.74 68 0 categorical
CS Site-Specific Factor 4 0 987 374.43 478.66 5 0 categorical
CS Site-Specific Factor 5 0 987 374.22 478.82 4 0 categorical
CS Site-Specific Factor 6 0 987 64.73 209.07 8 0 categorical
CS Version Input Current 20510 20550 20514.42 9.69 5 0 categorical
CS Version Input Original 937 20550 10445.79 1276.85 17 0 categorical
Derived AJCC M 0 99 3.27 16.27 4 0 categorical
Derived AJCC N 0 99 9.46 19.41 20 0 categorical
Derived AJCC Stage Group 0 99 30.28 23.88 11 0 categorical
Derived AJCC T 0 99 23.35 18.42 16 0 categorical
Derived SS1977 1 9 2.13 1.79 6 0 categorical
Derived SS2000 1 9 2.13 1.78 6 0 categorical
ER Status Recode Breast Cancer (1990+) 1 4 1.42 0.82 4 0 categorical
Grade 1 9 2.74 2.03 5 0 categorical
Histologic Type ICD-O-2 8000 9580 8483.79 98.71 114 0 categorical
Histologic Type ICD-O-3 8000 9580 8486.66 94.45 130 0 categorical
Historic SSG 2000 Stage 1 9 1.78 1.64 4 0 categorical
ICCC site rec extended ICD-O-3/ WHO 2008 21 999 104.72 48.77 20 0 categorical
ICCC site recode ICD-O-3/WHO 2008 33 999 118.65 48 12 0 categorical
IHS link -1 1 0 0.06 3 266 categorical
Insurance Recode (2007+) -1 5 1.07 2.09 6 122081 categorical
Laterality 1 9 1.55 0.77 5 0 categorical
Marital status at diagnosis 1 9 2.79 1.78 7 0 categorical
Month of diagnosis 1 12 6.45 3.43 12 0 categorical
NHIA Derived Hisp Origin 0 8 0.45 1.55 9 0 categorical
Origin Recode NHIA 0 1 0.1 0.3 2 0 categorical
PR Status Recode Breast Cancer (1990+) 1 4 1.56 0.86 4 0 categorical
Race recode A 1 9 1.31 0.81 4 0 categorical
Race recode Y 1 9 1.38 0.99 5 0 categorical
Race/ethnicity 1 99 2.92 11.57 30 0 categorical
Recode ICD-O-2 to 10 -1 9999 -0.64 60.15 2 248742 categorical
Recode ICD-O-2 to 9 175 9999 1738.82 114.57 19 0 categorical
SEER historic stage A 1 9 1.64 1.23 4 0 categorical
SEER registry 1501 1547 1532.49 13.46 18 0 categorical
Sex 1 2 1.99 0.08 2 0 categorical
State-county recode 2900 53073 17840.35 14106.57 614 0 categorical
Type of reporting source 1 8 1.12 0.77 6 0 categorical

Survived cancer for 60 months 0 1 0.87 0.33 2 0 target
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Table 6: Input attributes for lung cancer 1-year survival prediction (215,630 cases).

Column Minimum Maximum Mean Std Values Empty Status

Age at diagnosis 0 99 68.24 11.57 98 0 continuous
Age recode <1 year olds 0 18 14.23 2.29 19 0 continuous
CS Tumor size 0 999 327.69 437.19 283 0 continuous
EOD 10 - number of lymph nodes examined 0 99 11.15 28.92 86 0 continuous
EOD 10 - positive lymph nodes examined 0 99 76.83 40.09 36 0 continuous
Year of birth 1904 2007 1937.75 11.68 101 0 continuous
Year of diagnosis 2004 2009 2006.5 1.71 6 0 continuous
AYA site recode/WHO 2008 13 56 36.15 4.85 17 0 categorical
Behavior Code ICD-O-2 0 3 3 0.02 3 0 categorical
Broad Histology recode 0 39 2.76 2.31 31 0 categorical
CS Extension 100 999 518.96 313.5 48 0 categorical
CS Lymph Nodes 0 999 276.64 331.83 7 0 categorical
CS Mets at DX 0 99 25.62 29.12 28 0 categorical
CS Site-Specific Factor 1 0 999 964.6 154.43 7 0 categorical
CS Version Input Current 20510 20550 20512.62 6.05 5 0 categorical
CS Version Input Original 937 20550 10551.98 1619.7 17 0 categorical
Derived AJCC M 0 99 13.74 27.55 4 0 categorical
Derived AJCC N 0 99 25 31.55 6 0 categorical
Derived AJCC Stage Group 12 99 58.43 24.34 10 0 categorical
Derived AJCC T 0 99 39.93 29.05 7 0 categorical
Derived SS1977 1 9 5.28 2.59 6 0 categorical
Derived SS2000 1 9 5.31 2.56 6 0 categorical
First malignant primary indicator 0 1 1 0 2 0 categorical
Grade 1 9 6.11 3.21 5 0 categorical
Histologic Type ICD-O-2 8000 9581 8090.01 103.02 127 0 categorical
Histologic Type ICD-O-3 8000 9581 8096.95 100.61 148 0 categorical
Historic SSG 2000 Stage 1 9 5.09 2.76 4 0 categorical
ICCC site rec extended ICD-O-3/ WHO 2008 21 999 100.73 4.88 34 0 categorical
ICCC site recode ICD-O-3/WHO 2008 33 999 116.31 3.73 17 0 categorical
IHS link -1 1 0 0.06 3 299 categorical
Insurance Recode (2007+) -1 5 1.05 2.12 6 107475 categorical
Laterality 0 9 1.88 1.82 6 0 categorical
Marital status at diagnosis 1 9 2.97 1.77 6 0 categorical
Month of diagnosis 1 12 6.38 3.43 12 0 categorical
NHIA Derived Hisp Origin 0 8 0.24 1.15 9 0 categorical
Origin Recode NHIA 0 1 0.05 0.23 2 0 categorical
Primary by International Rules 0 1 1 0 2 0 categorical
Race recode A 1 9 1.24 0.64 4 0 categorical
Race recode Y 1 9 1.3 0.81 5 0 categorical
Race/ethnicity 1 99 1.94 7.15 29 0 categorical
Recode ICD-O-2 to 10 -1 9999 -0.4 77.64 2 215617 categorical
Recode ICD-O-2 to 9 193 9999 1625.12 67.67 15 0 categorical
SEER historic stage A 1 9 3.32 1.83 4 0 categorical
SEER registry 1501 1547 1533.49 13.31 18 0 categorical
Sex 1 2 1.47 0.5 2 0 categorical
State-county recode 2900 53073 18313.01 13210.1 614 0 categorical
Type of reporting source 1 8 1.15 0.76 6 0 categorical

Survived cancer for 12 months 0 1 0.44 0.5 2 0 target
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Table 7: Input attributes for lung cancer 5-year survival prediction (205,554 cases).

Column Minimum Maximum Mean Std Values Empty Status

Age at diagnosis 0 99 68.11 11.58 98 0 continuous
Age recode <1 year olds 0 18 14.2 2.29 19 0 continuous
CS Tumor size 0 999 334.17 439.59 281 0 continuous
EOD 10 - number of lymph nodes examined 0 99 11.12 28.98 85 0 continuous
EOD 10 - positive lymph nodes examined 0 99 77.57 39.56 35 0 continuous
Year of birth 1904 2007 1937.87 11.69 101 0 continuous
Year of diagnosis 2004 2009 2006.5 1.71 6 0 continuous
AYA site recode/WHO 2008 13 56 36.15 4.84 17 0 categorical
Behavior Code ICD-O-2 0 3 3 0.02 3 0 categorical
Broad Histology recode 0 39 2.75 2.31 31 0 categorical
CS Extension 100 999 526.12 312.05 48 0 categorical
CS Lymph Nodes 0 999 282.23 332.69 7 0 categorical
CS Mets at DX 0 99 26.28 29.07 28 0 categorical
CS Site-Specific Factor 1 0 999 965.08 152.95 7 0 categorical
CS Version Input Current 20510 20550 20512.61 6.04 5 0 categorical
CS Version Input Original 937 20550 10549.43 1613.83 17 0 categorical
Derived AJCC M 0 99 13.92 27.55 4 0 categorical
Derived AJCC N 0 99 25.42 31.6 6 0 categorical
Derived AJCC Stage Group 12 99 59.21 23.81 10 0 categorical
Derived AJCC T 0 99 40.35 29.02 7 0 categorical
Derived SS1977 1 9 5.37 2.55 6 0 categorical
Derived SS2000 1 9 5.4 2.51 6 0 categorical
First malignant primary indicator 0 1 1 0 2 0 categorical
Grade 1 9 6.14 3.2 5 0 categorical
Histologic Type ICD-O-2 8000 9581 8089.43 102.64 127 0 categorical
Histologic Type ICD-O-3 8000 9581 8096.4 100.2 148 0 categorical
Historic SSG 2000 Stage 1 9 5.18 2.72 4 0 categorical
ICCC site rec extended ICD-O-3/ WHO 2008 21 999 100.73 4.94 34 0 categorical
ICCC site recode ICD-O-3/WHO 2008 33 999 116.31 3.8 17 0 categorical
IHS link -1 1 0 0.06 3 288 categorical
Insurance Recode (2007+) -1 5 1.04 2.12 6 102909 categorical
Laterality 0 9 1.89 1.84 6 0 categorical
Marital status at diagnosis 1 9 2.96 1.77 6 0 categorical
Month of diagnosis 1 12 6.38 3.43 12 0 categorical
NHIA Derived Hisp Origin 0 8 0.24 1.15 9 0 categorical
Origin Recode NHIA 0 1 0.05 0.23 2 0 categorical
Primary by International Rules 0 1 1 0 2 0 categorical
Race recode A 1 9 1.25 0.64 4 0 categorical
Race recode Y 1 9 1.3 0.81 5 0 categorical
Race/ethnicity 1 99 1.94 7.15 29 0 categorical
Recode ICD-O-2 to 10 -1 9999 -0.37 79.52 2 205541 categorical
Recode ICD-O-2 to 9 193 9999 1625.17 69.3 15 0 categorical
SEER historic stage A 1 9 3.37 1.81 4 0 categorical
SEER registry 1501 1547 1533.48 13.31 18 0 categorical
Sex 1 2 1.47 0.5 2 0 categorical
State-county recode 2900 53073 18293.32 13211.73 614 0 categorical
Type of reporting source 1 8 1.16 0.76 6 0 categorical

Survived cancer for 60 months 0 1 0.16 0.37 2 0 target
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Appendix D. - Attribute Importance

Figure 4: Relative attribute importance for 1-year survival prediction of breast cancer.

Figure 5: Relative attribute importance for 5-year survival prediction of breast cancer.
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Figure 6: Relative attribute importance for 1-year survival prediction of lung cancer.

Figure 7: Relative attribute importance for 5-year survival prediction of lung cancer.
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Appendix E. - Github Readme File

MLHC 2018 - Reproducible Survival Prediction with SEER Cancer Data
(https://github.com/stefanhgm/MLHC2018-reproducible-survival-seer)

This repository contains the code that was used for experiments reported in Reproducible Survival Prediction with

SEER Cancer Data submitted to the Machine Learning for Healthcare 2018 conference.

Repository overview:

• /bin/cluster: Slurm submission scripts for all parameter tuning experiments on the HPC cluster.

• /cohort: SEER*Stat session files to reproduce cohort selections.

• /example: Randomly generated SEER example to test the software without sensitive data.

• /example/CASES.csv: Example case export. To reproduce experiments, this should be generated for each
cohort by loading the provided session files into SEER*Stat, executing the case listing, and exporting it via
Matrix!Export!Results as Text File... with ”CSV Defaults”.

• /example/INCIDENCES.txt: Example SEER incidences. To reproduce experiments, this should contain
all incidences provided by SEER 1973-2014 data (November 2016 submission) in ASCII format (e.g. by merging
them into a single file). The according ASCII data files are available from SEER on request.

• /lib: Python classes and functions used for the experiments.

• main.py: Main routine to perform the experiments.

• requirements.txt: Python dependencies (can be installed with pip, e.g. in a virtual environment).

To execute main.py and reproduce our experiments Python3 (we used version 3.5.2) is necessary and all dependencies
in requirements.txt must be satisfied. The easiest way would be to setup an according virtual environment and to
install requirements with pip (https://docs.python.org/3/tutorial/venv.html).

The option -h gives an overview of all command line arguments. Note that this code provides some additional
functionality such as SVM models and survival regression that were not used for the paper’s experiments.

$ python main.py -h

An experiment with the randomly generated examples and an MLP model can be performed as shown below. This
will produce a folder in the current directory containing results and a plot for the AUC score.

$ python main.py --incidences example/INCIDENCES.txt --specifications example/read.seer.
research.nov2016.sas --cases example/CASES.csv --task survival60 --oneHotEncoding --
model MLP --mlpLayers 2 --mlpWidth 20 --mlpEpochs 1 --mlpDropout 0.1 --importance --
plotData --plotResults

[...]
Raw data: (10000; 133) cases and attributes
Filtered SEER*Stat cases from ASCII: (5000; 133) cases and attributes
Remove irrelevant, combined, post-diagnosis, and treatment attributes: (5000; 960) cases

and attributes
Create target label indicating cancer survival for survival60: (2831; 959) cases and

attributes
Remove inputs with constant values: (2831; 925) cases and attributes
Data: (2831, 925) -> x:(2831, 924), y:(2831,)
Train: x:(2264, 924), y:(2264,)
Valid: x:(283, 924), y:(283,)
Test: x:(284, 924), y:(284,)

Train on 2264 samples, validate on 283 samples
Epoch 1/1
- 1s - loss: 0.4241 - acc: 0.8913 - val_loss: 0.2623 - val_acc: 0.9293
Validation results: auc = 0.48878326996197724, f1 = 0.9633699633699635, acc =

0.9293286219081273
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