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Abstract

The high rate of intensive care unit false arrhythmia alarms can lead to disruption of
care and slow response time due to desensitization of clinical staff. We study the use of
machine learning models to detect false ventricular tachycardia (v-tach) alarms using ECG
waveform recordings. We propose using a Supervised Denoising Autoencoder (SDAE) to
detect false alarms using a low-dimensional representation of ECG dynamics learned by
minimizing a combined reconstruction and classification loss. We evaluate our algorithms
on the PhysioNet Challenge 2015 dataset, containing over 500 records (over 300 training and
200 testing) with v-tach alarms. Our results indicate that using the SDAE on Fast Fourier
Transformed (FFT) ECG at a beat-by-beat level outperforms several competitive baselines
on the task of v-tach false alarm classification. We show that it is important to exploit
the underlying known physiological structure using beat-by-beat frequency distribution
from multiple cardiac cycles of the ECG waveforms to obtain competitive results and
improvement over previous entries from the 2015 PhysioNet Challenge.

1. Introduction

Intensive care units (ICU) false arrhythmia alarm rates have been reported to be as high
as 88.8%, and can lead to disruption of care and slow response time (Drew et al., 2014).
Detecting and suppressing false arrhythmia alarms could potentially have high impact on
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the quality of patient care, reducing the chance of a life-threatening true alarm missed due
to staff desensitization. Here, we investigate representation learning approaches to finding
discriminative features of ECG dynamics for false alarm reduction. We focus on the problem
of detecting false alarms for one of the life-threatening arrhythmias, ventricular tachycardia
(v-tach), defined as five or more ventricular beats with a heart rate higher than 100 bpm
(Clifford et al., 2015). Among all the life-threatening arrhythmia alarm types, false v-tach
alarms have proven to be the hardest to detect (Clifford et al., 2015), and remain an open
challenge.

This work investigates the utility of both linear and non-linear embeddings of ECG for
detecting v-tach false alarms. We present a joint supervised generative technique, Supervised
Denoising Autoencoders (SDAE), to classify ventricular tachycardia alarms using non-linear
embeddings of ECG dynamics. The model is learned using a combination of a discriminative
and generative loss. As a comparison, we investigate linear-embedding techniques that use
Principal Component Analysis (PCA) in combination with a non-linear classifier multi-layer
Perceptrons (MLP).

Furthermore, we explore feature transformations that utilize the underlying known phys-
iological structure within the ECG to enable learning under the constraints of limited labeled
data. To this end, we propose an approach that utilizes FFT-transformed ECG at a (heart)
beat-by-beat basis, and compare with several baseline approaches, using a wide range of
time and frequency domain ECG features.

Technical Significance Application of machine learning techniques in arrhythmia anal-
ysis has had limited success, partly due to sparse availability of labeled data (Clifford et al.,
2016, 2017). The best performing approaches for false v-tach alarm detection in the 2015
PhysioNet Challenge rely on a combination of expert-defined rule-based reasoning and sim-
ple machine-learning models (Kalidas and Tamil, 2016; Plesinger et al., 2016; Clifford et al.,
2016).

In the current study, we explore a supervised generative model, SDAE, and feature
transformation approaches to enable false v-tach alarm classification in a low labeled data
setting. Our approach combines non-linear embeddings from SDAE, with ECG feature
transformation from FFT at a beat-by-beat level. Tests on a real-world ICU dataset from
2015 PhysioNet Challenge containing over 500 records indicate that the proposed approach
leads to improved performance over several baselines, including previous entries from the
2015 PhysioNet Challenge, and enables scalable learning that performs well even when
labels are scarce.

Clinical Relevance In modern ICUs, where critically-ill patients are closely monitored,
as many as 187 audible alarms have been reported per ICU bed per day (Drew et al.,
2014), corresponding to an alarm every 7 to 8 minutes for each patient. Arrhythmia alarms
contribute to approximately 45% of the overall ICU alarms, and have a high false alarm
rate of 88%, which can lead to lower patient care quality (Drew et al., 2014; Clifford et al.,
2015). In this work, we focus on detecting false arrhythmia alarms for v-tach. Detecting
and minimizing false v-tach alarms could potentially reduce the chance of a life-threatening
true alarm missed due to staff desensitization.
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2. Methods

2.1. Approach Overview

Figure 1 illustrates our overall approach for the ECG data processing pipeline to derive
FFT-transformed ECG features on a beat-by-beat basis as input to the SDAE for false
alarm classification.

ECG beat annotations

Fast Fourier Transform (FFT)

Average Pooling

FFT of ECG Beats

FFT of ECG Beats

Classification loss

Outcome 
(true/false alarm)

Encoder

Decoder

(Reconstructed)
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Figure 1: Approach Overview: ECG data processing pipeline and a SDAE model with FFT-
transformed ECG beats from a single-lead ECG as input for v-tach false alarm classification.

• We use the MIT-BIH database, with annotated beat labels, to build a ventricular beat
(v-beat) classifier that classifies whether the FFT transform of a beat is a ventricular
beat or a non-ventricular beats.

• We first apply a peak-detection algorithm to multi-channel ECG signals in the Phys-
ioNet 2015 Challenge dataset. For each beat in the PhysioNet Challenge dataset, we
apply the FFT transform to derive the frequency content on a per-beat basis.

• On the FFT transformed data in the PhysioNet Challenge (last 25 seconds before
alarm onset), we apply the v-beat classifier to estimate the probability of a ventricular
beat. We aim to obtain a small region in the ECG recordings to focus on when
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predicting alarm outcomes. This is done by identifying a 3-second target interval
with the highest v-beat probability (averaged over consecutive beats) among beats
where the heart rate exceeds 100bpm.

• From the targeted region, we extract the following features: (i) FFT of beats: obtained
by performing an FFT transform on each ECG beat from all ECG beats in the three-
second target interval prior to the alarm onset. Each beat is represented as a 41-
dimensional FFT-transformed feature vector, and (ii) FFT transform on the entire
3-second targeted ECG segment. Figure 1 illustrates the data processing and FFT-
transformation pipeline.

• Finally, we use the data from the previous step to classify the probability of a true
or false alarm. In Figure 1, SDAE is used to learn a low-dimensional representation
of the FFT-transformed features extracted from the target intervals of all training
records.

2.2. Datasets

2.2.1. MIT-BIH Arrhythmia Dataset

We used the MIT-BIH Arrhythmia Database (Moody and Mark, 2001; Goldberger et al.,
2000) to train a ventricular beat identification model. The MIT-BIH dataset contains 48
half-hour excerpts of two-channel ambulatory ECG recordings (360 Hz), obtained from 47
subjects studied by the BIH Arrhythmia Laboratory between 1975 and 1979. All data are
re-sampled to 250 Hz to match the sampling frequency of the PhysioNet Challenge dataset.
We extracted a total of 107,129 annotated beats from the MIT-BIH database (lead II),
among which 7,104 were ventricular beats, and the remaining 100,025 were non-ventricular
beats.

2.2.2. PhysioNet Challenge 2015 Dataset

The 2015 PhysioNet Challenge event (Clifford et al., 2015, 2016) focused on five types of
life-threatening arrhythmias, including ventricular tachycardia (v-tach), asystole, extreme
bradycardia, extreme tachycardia, and ventricular fibrillation/flutter. The goal of the chal-
lenge was to reduce the number of false alarms, while avoiding suppression of true alarms.

The PhysioNet 2015 Challenge data (Clifford et al., 2015; Goldberger et al., 2000) con-
tains a total of 1250 records (750 train, 500 hidden test), each containing one of the five
life-threatening arrhythmia alarms. Each record contains 3 to 4 channels, including two
channels of ECG and one or two of the following channels: arterial blood pressure (ABP),
respiration, or photoplethysmography (PPG). Each record contains 5-minute recordings of
multi-channel physiological waveforms (250 Hz) immediately prior to the alarm onset. A
subset of the records also contain 10-second recordings of the waveforms after the alarm
onset. The Challenge consists of two events: (1) real-time classification using only data up
to the alarm onset; (2) retrospective analysis in which the contestants are allowed to use
the 10-second data after the alarm onset for classification. Here, we focus strictly on the
real-time setting where only data prior to the alarm onset time is used. Figure 2 shows an
example of true and false v-tach alarm each from the PhysioNet Challenge training dataset.
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Among the 1250 records, 562 records contain v-tach alarms, and overall more than 75%
of these v-tach alarms are false. The training and test sets of our study are extracted from
the 562 records (train N=341, test N=221) corresponding to the v-tach alarms from the
PhysioNet Challenge 2015 dataset. Among the 341 v-tach alarms in the training records,
73.3% are false (91 true alarms, and 250 false alarms). Among the 221 v-tach alarms in
the hidden test set 79.6% are false (45 true alarm, 176 false alarms). For training, we used
337 records from the training set containing either lead II (N=331) or V (N=312) ECGs.
The hidden test set contains all 221 records with v-tach alarms. We extracted the last
25-seconds ECG segments from each record prior to the alarm onset for analysis.
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Figure 2: Example true vs. false v-tach alarms (from PhysioNet Challenge 2015). Each
plot shows data in the 25-second interval immediately prior to the v-tach alarm onset (at
the end of the interval).

2.3. Data Preprocessing

2.3.1. Selection of Targeted Segments for Feature Extraction

Ventricular Beat Identification Model

We used the a peak detection algorithm developed by Johnson et al. (2015) and the Pan
Tompkins algorithm (Pan and Tompkin, 1985) to identify each ECG beat. A model for
ventricular beat identification was trained using the MIT-BIH database. We then applied
the v-beat classifier learned from the MIT-BIH v-beat classification model to identify a
potential v-tach episode as a 3-second ECG segment from each record in the 2015 Phys-
ioNet Challenge. We detail the algorithm used to identify the 3-second targeted interval in
Appendix A.

2.3.2. Data Transformation: from Time-Domain to Frequency-Domain

Due to heart rate variability, durations of RR-intervals (i.e. intervals between R-peaks)
are different. It is a common approach to nondimentionalize time so that all the beats are
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aligned. Here, we adopt a different approach using frequency distribution of the ECG beat
to avoid rescaling the time axis. FFT is applied to every beat within the selected 3-second
range in order to obtain the frequency spectrum between 0.1Hz and 40Hz. The beat-level
FFT of all beats from a 3-second targeted window of each record are then averaged. Since
we are interested in the frequency distribution, the averaged FFT transform is scaled to be
between 0 and 1 to form the final feature vector for each record.

2.4. Model

Multi-layer Perceptron (MLP)

As baselines, we predict the probability of a true alarm using (a) the Fast Fourier Transform
(FFT) of the ECG waveforms and (b) the projection of the FFT data onto its principal
components. In both cases the features are passed into a three-layer MLP with Rectified
Linear Units as non-linearities between intermediate layers. The model parameters were
selected using a grid search performed over the layer size (16, 32, 64, 128, 256), and dropout
(0.2, 0.4, 0.5).

PCA/MLP

The structure of the neural network used for the PCA output is identical to the previously
mentioned MLP architecture. A grid search over neural network parameters was performed,
but there was no statistically significant difference between architectures. However, the
dimensionality of the PCA showed significant impact on performance; thus a grid search
PCA dimensionality was performed (5, 10, 15, 25), and the optimal size was selected. PCA
can be viewed as a linear equivalent of the autoencoder. Specifically, when using a linear
activation function with a single layer, the two can be considered identical (Bourlard and
Kamp, 1988).

Supervised Denoising Autoencoder (SDAE)

To study how generative approaches affect this domain, we use a supervised denoising au-
toencoder on FFT transformed ECG waveforms. Denoising autoencoders (Vincent et al.,
2010, 2008; Lovedeep and Gondara, 2016; Bengio et al., 2013) are a class of autoencoders
where the goal of the model is to reconstruct a noisy (typically lower dimensional) trans-
formation of the input. Here, we also use the denoising autoencoder to predict the label of
whether or not the beats represented in the input corresponds to a true alarm. The model’s
input is comprised of 2 different ECG channels. Figure 3 shows the SDAE architecture.
The parameters and architecture of the model are discussed in more detail in Appendix C.

The SDAE is trained using the ADAM optimizer (Kingma and Ba, 2014) with two loss
functions: (1) a reconstruction loss (in our case the mean-squared error) that encourages the
model to reconstruct the input and (2) a prediction loss that encourages the intermediate
hidden state of the autoencoder to predict the likelihood of a true alarm.

The model parameters were selected using a grid search performed over the layer size
(16, 32, 64, 128, 256), dropout (0.2, 0.4, 0.5), and variance of the noise added to the hidden
state (0, 0.001, 0.01). For each one, a ten-fold-cross-validation was used to compute the
validation accuracy, which in turn was used to determine the best model parameters.
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Figure 3: SDAE model diagram for v-tach false alarm detection using two leads of ECG.
Each of these input ECG channels is run through two perception layers and then combined
to form a 32-dimension compressed hidden-layer representation. The data from individ-
ual leads are then reconstructed through separate decoding layers, while an outcome and
classification loss are gathered using the combined layer.

2.5. Experimental Setting

Representation Learning from ECG waveforms: we explore the following types of ECG
features i) default 10-second raw ECG waveform intervals (extracted from 10-seconds prior
to the alarm onset) ii) targeted 3-second raw ECG waveform segments identified using
the MIT-BIH ventricular beat model and iii) their respective spectral content, and iv) the
beat-level spectral representation from the targeted region.

For each feature, we explore the following models for representation learning and pre-
diction modeling: i) Logistic Regression (LR), ii) Feed-forward neural network on original
feature space (without representation learning), iii) PCA-embedding with feedforward neu-
ral network, and iv) joint model of Autoencoder and feedforward neural network.

2.6. Evaluation

The training data was split 10 different times, each resulting in 70% used for training and
30% used for validation. We report the sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV) and Area under the Curve (AUC) from the
receiver operating characteristic (ROC) curve. Confidence intervals (CI) for area under
the receiver operating curves (AUCs) were based on the method described in DeLong et al.
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(1988). For our final model, our primary performance metric when comparing with previous
approaches is the PhysioNet Challenge 2015 scores, defined as (TP + TN)/(TP + TN +
FP + 5 ∗ FN), a function of the following variables: true positives (TP), false positives
(FP), false negatives (FN), and true negatives (TN).

3. Evaluation

3.1. PhysioNet Challenge Dataset Statistics/Characteristics
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(c) Top: FFT of 3-sec targeted interval
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beats from the 3-sec interval from (a).
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Figure 4: Example ECG segments which triggered true (a) and false (b) v-tach alarms.
Two vertical blue dashed lines demarcate the targeted 3-second segment identified by our
algorithm. (c) and (d) show FFT from an entire 3-sec targeted segment (top) vs. average
FFT from individual beats in the 3-second targeted interval (bottom).

Figure 4 shows example plots of ECG waveform segments and their respective beat-level
FFT-transformed features (averaged over 3-seconds) from a true and false v-tach alarm
records from the PhysioNet Challenge 2015 training set.

Figure 5 compares the spectral content of ECG beats extracted from the targeted region
of the true versus false alarm records from the PhysioNet Challenge training dataset (lead II)
at the population-level. Population median in each frequency bin is plotted as a solid line,
with the interquartile range (IQR) as dashed lines. Note that the power spectral density
(PSD) of the true alarms peaks at the 4 Hz location. It is known that peaks in the PSD at 1,
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Figure 5: FFT of beats (lead II) - population median and IQR.

4, 7 and 10 Hz, in a normal ECG (with QRS width 80-100 msec), correspond approximately
to the heart rate (at 60 bpm), T wave, P wave, and the QRS complex respectively (Clifford,
2006). The differences in the PSD content of the true and false alarm may be due to the
ventricular beat’s wider QRS complexes.

3.2. Classification Using Single-Lead ECG Waveform

Table 1 compares the performance of various representation learning techniques and classi-
fiers when using different feature representations of single-lead ECG. In particular, our goal
is to characterize and compare the performance of classifiers built on linear (PCA) vs. non-
linear (autoencoder-based) representations of various time and frequency domain features
of ECG signals. We experiment with (i) the raw ECG waveform from targeted 3-second
segments, (ii) frequency content from targeted 3-second ECG segments, and (iii) averaged
beat-level frequency content from targeted ECG segments. Additionally, we also evaluated
the performance of classifiers that predict false alarms using the 10-second waveform (imme-
diately prior to the alarm onset); the performance (AUC) of all classifiers (in Table 1) were
in the 0.50’s to 0.60’s range, significantly worse than using the 3-second targeted waveform.

We find that FFT-transforming the ECG signal prior to predicting false alarms per-
forms significantly better than using the raw ECG waveforms directly. Furthermore, we
find that learning a non-linear representation of the ECG frequency content using SDAE
achieves even better performance, with an AUC of 0.87 (0.80, 0.94) and 0.86 (0.77, 0.93)
using lead II and V ECG channels respectively, than other baselines that include LR, MLP
and PCA/MLP. Using FFT-transformed beat-level representations from single lead ECG,
we note that MLP and PCA-MLP performed better than when FFT features from entire
waveform segments were used (Table 1). Table 1 demonstrates that exploiting beat-level
information in ECG dynamics generally leads to a boost in performance results.

3.3. Classification with Two-Channels of ECG Waveforms

Table 2 compares the performance of different classifiers using two-lead ECGs. We list the
best known results from the 2015 PhysioNet Challenge as a comparison. The first-place
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Table 1: Single lead ECG. Lead II (N=214), V (N=203). AUC (95% CI) shown.

LR MLP PCA+MLP SDAE

1 3-sec waveform II 0.54 (0.44, 0.64) 0.77 (0.67, 0.86) 0.83 (0.75, 0.92) 0.77 (0.68, 0.86)

2 3-sec waveform V 0.57 (0.47, 0.67) 0.74 (0.65, 0.84) 0.78 (0.69, 0.87) 0.76 (0.67, 0.85)

3 FFT 3-sec interval II 0.70 (0.60, 0.80) 0.84 (0.76, 0.92) 0.85 (0.77, 0.93) 0.87 (0.80, 0.94)

4 FFT 3-sec interval V 0.73 (0.63, 0.82) 0.81 (0.73, 0.90) 0.85 (0.77, 0.93) 0.86 (0.77, 0.93)

5 FFT of beats II 0.76 (0.67, 0.86) 0.89 (0.86, 0.98) 0.88 (0.84, 0.97) 0.87 (0.80, 0.94)

6 FFT of beats V 0.69 (0.60, 0.79) 0.87 (0.79, 0.94) 0.87 (0.79, 0.94) 0.88 (0.80, 0.94)

entry by Kalidas and Tamil (2016) achieved a Challenge score of 75.10 in the real-time
event and 76.70 when considering both real-time and retrospective events. The second-place
entry in v-tach alarm by Plesinger et al. (2016) used ECG, ABP, and PPG waveforms, and
achieved a Challenge score of 72.73 in real-time event, and 75.07 when considering both
real-time and retrospective events. The performance is generally better in retrospective
events, since data post alarm onset can be used for classification.

We find that the SDAE achieved a better F1-score and Challenge score than the MLP
and MLP-PCA. The SDAE achieved an AUC of 0.91 (0.85, 0.97) and a higher F1 score (0.73
vs 0.65) and Challenge score (77.6 vs 73.8) than PCA/MLP. Using data only from prior to
the alarm onset, SDAE with beat-level FFT-transformed ECG (from the targeted 3-second
interval) achieved a Challenge score of 77.59, outperforming other baselines, including the
winning Challenge 2015 entry (score 75.10) by Kalidas and Tamil in the real-time event.
SDAE reduced the v-tach false alarm rate of the test set from 79.64% to 11.3% (suppressed
151 false v-tach alarms), at the cost of missing 11.1% (5 out of 45) true alarms. We report
the specificity of SDAE when sensitivity is set at 0.89; SDAE has a higher specificity (0.86)
than the other baselines for the real-time event.

Table 2: Performance Using Two-Channel ECG (N=221). RT (realtime), Retro (retrospective).

Event Features Sens. Spec. Prec. F1 AUC Score

1 MLP RT FFT 3-sec interval 0.89 0.73 0.45 0.60 0.87 (0.80, 0.94) 67.98

2 PCA-MLP RT FFT 3-sec interval 0.87 0.78 0.48 0.62 0.89 (0.83, 0.96) 69.29

3 SDAE RT FFT 3-sec interval 0.84 0.79 0.51 0.63 0.89 (0.82, 0.95) 68.49

4 MLP RT FFT of beats 0.89 0.67 0.52 0.64 0.89 (0.83, 0.96) 71.65

5 PCA-MLP RT FFT of beats 0.89 0.80 0.50 0.65 0.88 (0.82, 0.95) 73.82

6 SDAE RT FFT of beats 0.89 0.86 0.62 0.73 0.91 (0.85, 0.97) 77.59

7 Challenge,1st RT ECG 0.89 0.80 - - - 75.10

8 Challenge, 2nd RT ECG/ABP 0.82 0.84 - - - 72.73

9 Challenge, 1st RT/Retro ECG 0.90 0.82 - - - 76.75

10 Challenge, 2nd RT/Retro ECG/ABP 0.85 0.84 - - - 75.07

3.4. Varying the number of training examples

We investigate how the SDAE behaves under different feature representations (beat-by-
beat vs. FFT-transformed 3-second waveform segments) as a function of the labeled data
size. Table 3 shows the classification performance of SDAE as the training data size varies
from 25 to over 300 using FFT transformation of 3-second segment versus beat-by-beat

10



Representation Learning Approaches to Detect False Alarms

data respectively. Using FFT-transformed beat-by-beat data, SDAE scales gracefully as
the training sample size is reduced to 25.

Table 3: SDAE performance as a function of training size using two ECG channels. (Test set N=221)

Training Size 25 50 150 250 337

1 FFT waveform 0.63 (0.53, 0.72) 0.63 (0.53, 0.72) 0.87 (0.80, 0.94) 0.88 (0.81, 0.95) 0.89 (0.82, 0.95)

2 FFT B2B 0.86 (0.79, 0.93) 0.87 (0.80, 0.94) 0.91 (0.85, 0.97) 0.91 (0.85, 0.97) 0.91 (0.85, 0.97)

Using 25 training samples, SDAE with beat-by-beat data achieved an AUC of 0.86 (0.79,
0.93) which is only slightly worse than when using the full training data size (N=337) (p =
0.035). Using 50 or more training samples, SDAE with beat-by-beat data achieved similar
performance as using the full data set (AUC of 0.87 [0.80, 0.94] trained with 50 samples vs.
0.91 [0.85, 0.97] with full dataset, p-val = 0.058). This showcases that leveraging beat level
information is crucial for ensuring good predictive performance when labels are scarce.

4. Discussion and Related Work

Human heart beats generate a wide-range of complex ECG dynamics, which have been
studied extensively under both healthy and pathological conditions. Classical ECG analyses
are based on hand-crafted features obtained from temporal and/or frequency analyses, which
are then used as inputs in a machine learning classifier. Recent advances on deep learning
inspire new models where features are learned from segments of ECG signals. While deep
learning has made significant advances in the domains of image and voice analysis, the
application of deep learning in physiological waveform analysis has had limited success,
partly due to limited availability of labeled data. Expert-defined rule-based approaches or
simple machine learning models (such as gradient boosting, or random forest) combined
with hand-crafted features often outperform more complex models, such as deep neural
networks (Clifford et al., 2017).

Here, our results indicate that direct application of several machine learning techniques
on raw waveforms performed poorly (with the current training sample size). We show that
learning representations of the FFT-transformed ECG waveforms results in significantly
better performance than using raw waveforms. We study both linear and non-linear em-
beddings of ECG for the purpose of detecting true v-tach alarms. When comparing the
performance of PCA/MLP and SDAE using various ECG feature transformation, we ob-
serve that both achieved similar AUCs in most settings. When beat-level frequency features
from two-channels of ECG were used, SDAE achieved a slightly higher AUC and a better
Challenge score than PCA/MLP. Further investigation is required to characterize the per-
formance of these approaches as the sample size increases. One avenue of future work is to
leverage large amounts of unlabeled data to improve the quality of the nonlinear embeddings
in the SDAE.

Tests on 2015 PhysioNet Challenge dataset indicate that, for both linear and non-linear
embeddings, representation learning approaches that exploit the underlying known physi-
ological structure, specifically, using FFT-transformed ECG beats, averaged over multiple
cardiac cycles, lead to higher Challenge scores compared to models that use the entire ECG
waveform segments. In the case of SDAE, this procedure is key to out-performing previ-
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ous known best results from PhysioNet 2015 Challenge. We conjecture that this averaged
fourier feature representation significantly simplifies the learning task (relative to models
that use the entire ECG waveform segments) under the constraint of limited labeled data.

The 2015 PhysioNet Challenge event focused on five types of life-threatening arrhyth-
mias, including asystole, extreme bradycardia, extreme tachycardia, ventricular tachycar-
dia, and ventricular fibrillation/flutter. More than 200 entries were submitted for this event
(see the collection of articles in the special issue of Physiological Measurement (Clifford
et al., 2015)). Among all the arrhythmia alarm types, v-tach has proven to be the hardest
to classify, and received the lowest prediction accuracy (Clifford et al., 2015). While ma-
chine learning approaches have been proposed (Eerikinen et al., 2016; Ansari et al., 2016),
the winning entry in v-tach alarm classification by Kalidas and Tamil (2016) used logical
analysis to improve classification results from SVM classification, and Plesinger et al. (2016)
used signal processing and rule-based reasoning to achieve the second best performance in
v-tach alarm classification in the 2015 PhysioNet Challenge.

Early work on v-tach false alarm reduction by Aboukhalil et al. (2008) used a data
fusion approach with rule-based logic to reduce 5 types of false arrhythmia alarms from
42.7% to 17.2% (on average) when simultaneous ECG and arterial blood pressure waveform
were available. They reported false v-tach alarm suppression as the most challenging task
(with the lowest suppression rate among all alarm categories tested), with a reduced false
v-tach alarm rate from 46.6% to 30.8%, at the cost of suppressing 14.5% and 4% of the true
alarms in the train and test set respectively. In (Schwab et al., 2018), a supervised multi-
task learning approach was proposed to reduce the number of training labels required to
suppress general ICU false alarms. Our work, in contrast, focuses on v-tach false alarms, and
uses FFT-transformation of individual ECG beats for scalable learning. Rajpurkar et al.
(2016) used a deep convolutional neural network for arrhythmia detection, and obtained
good performance with a significantly larger dataset.

5. Conclusion

We developed a supervised representation learning approach to detect false v-tach alarms
from two leads of ECG waveforms, and obtained improved performance over several base-
lines, including previous results in the same task using the PhysioNet 2015 Challenge
dataset. Our final best-performing model used a supervised denoising autoencoder, SDAE,
to learn non-linear embeddings of spectral dynamics, averaged over multiple cardiac cycles.
These results suggest that generative modeling may play a role in tackling the problem
of v-tach false alarm detection. Future work will extend the current approach to combine
information from multi-channel physiological waveforms (PPG, ABP) for false arrhythmia
alarm reduction. We expect the full potential of such representational learning methods will
lead to more significant results when the sample sizes are greatly increased. We also ex-
pect that representation learning will play an important role in analyzing other biomedical
waveforms, such as time series of blood pressure, respiration, electroencephalogram (EEG),
and photoplethysmogram (PPG).
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Appendix A: Identify Potential V-Tach Episodes

A model for ventricular beats identification was trained using a total of 107,129 annotated
beats from lead II of the MIT-BIH database (7,104 ventricular beats). A model for lead
V was also trained using 96,189 annotated beats from lead V in MIT-BIH database (7,010
ventricular beats). We extracted the FFT features from all beats, and trained a ventricular-
beat logistic classifiers to classify a beat as either a ventricular or non-ventricular beat based
on the FFT transformed features. The 10-fold cross validated median training AUC (and
inter-quartile range) of this ventricular beat classifier is 0.94 (0.93, 0.94) using the MIT-BIH
arrhythmia dataset.

For each beat (in the last 25-seconds of each record) in the PhysioNet Challenge dataset,
we used the MIT-BIH ventricular beat model to estimate the probability of each beat being
a ventricular beat based on the FFT of individual beats. At each beat j, with onset time
tj , we estimated the probability of the next five beats starting at time tj being ventricular
beats, by averaging v-beat probabilities of the following five beats. The onset time Ti

of the potential v-tach region of each record i is identified as the onset time of the beat
with the highest running 5-beat ventricular-beat probability (from among the beats with
RR-intervals smaller than 600 ms). For each record i, we extracted its FFT features by
averaging FFT of all individual beats in a K-second window starting at time Ti. We chose
K to be 3 (seconds), since the v-tach is defined as 5 consecutive ventricular beats with heart
rate of over 100 bpm, and therefore a 3-second of ECG interval should be sufficient in length
to identify potential v-tach episodes (5 beats at less than 600 ms RR-interval per beat).

Appendix B: MLP Parameter Settings

The first layer of both input channels is a 64 neuron layer, with ‘ReLU’-activation, followed
by a dropout of 0.5. The channels are then added together and given to 128-neuron ‘ReLU’
layer. Finally, a final sigmoid layer is applied for prediction.

Appendix C: SDAE Parameter Settings

The SDAE uses the ‘adam’ optimizer in attempt to minimize ‘mean-squared-error’ and
‘binary cross-entropy’ loss. Each input channel sequentially leads into a layer of size 64,
each using a ‘ReLU’ activation function. Afterwards, the output of the size 64 hidden layer
is given to a layer size of 32, which uses a ‘sigmoid’ activation function. The output of both
of the 32 unit hidden layers are added together in order to find an underlying representation
of the combined data. Depending on the results of the grid search, Gaussian noise is applied
to the summed layer. The leads are once again separated and sent into a decoding 64 unit
‘ReLU’ layer, and a 41 unit ‘ReLU’ layer, which attempts to reconstruct the original signal
from its respective lead. The output of summed layer is fed into a simple feed forward
neural network. This simple feed forward neural network consisting of only 1 hidden layer
with a hidden unit size of 128 and a ‘ReLU’ activation function; the output is then fed
into a sigmoid layer to obtain a prediction. The model utilizes the ADAM optimizer, and
a batch size of 64.
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