
Proceedings of Machine Learning Research 85:1–15, 2018 Machine Learning for Healthcare

Multiple Instance Learning for ECG Risk Stratification

Divya Shanmugam divyas@mit.edu
Massachusetts Institute of Technology
Cambridge, MA, USA

Davis Blalock dblalock@mit.edu
Massachusetts Institute of Technology
Cambridge, MA, USA

John Guttag guttag@mit.edu

Massachusetts Institute of Technology

Cambridge, MA, USA

Abstract

Patients who suffer an acute coronary syndrome are at elevated risk for adverse cardiovas-
cular events such as myocardial infarction and cardiovascular death. Accurate assessment
of this risk is crucial to their course of care. We focus on estimating a patient’s risk of
cardiovascular death after an acute coronary syndrome based on a patient’s raw electrocar-
diogram (ECG) signal. Learning from this signal is challenging for two reasons: 1) positive
examples signifying a downstream cardiovascular event are scarce, causing drastic class
imbalance, and 2) each patient’s ECG signal consists of thousands of heartbeats, accompa-
nied by a single label for the downstream outcome. Machine learning has been previously
applied to this task, but most approaches rely on hand-crafted features and domain knowl-
edge. We propose a method that learns a representation from the raw ECG signal by using
a multiple instance learning framework. We present a learned risk score for cardiovascular
death that outperforms existing risk metrics in predicting cardiovascular death within 30,
60, 90, and 365 days on a dataset of 5000 patients.

1. Introduction

Machine learning has led to improved risk stratification models for a number of outcomes,
including stroke (Li et al., 2016), cancer (Heidari et al., 2018), in-hospital mortality (Gong
et al., 2017), and treatment resistance (Perlis, 2013). We consider risk stratification for
patients who experience an acute coronary syndrome (ACS). An ACS entails an abrupt,
reduced blood flow to the heart and refers to three types of coronary artery disease: ST-
elevated myocardial infarction, non-ST-elevated myocardial infarction, and unstable angina.
Treatment can range from invasive surgery to prescription drugs. Informative short-term
risk metrics, can help physicians identify where patients lie on the continuum of acute
coronary syndromes and make the necessary care decisions to reduce adverse outcomes.
Predicting cardiovascular death (CVD) within a certain number of days of hospital admis-
sion is a common task in risk stratification literature (Morrow et al., 2007; Liu et al., 2014;
Myers et al., 2017), enabling direct comparison to existing methods.

Risk stratification models for cardiovascular outcomes frequently operate on electrocar-
diogram (ECG) signals to produce risk scores (Acharya et al., 2003; Rahman et al., 2015;
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Kannathal et al., 2003). Incorporating the ECG signal into a risk model is not straightfor-
ward, however, because it is a time series, often measured for days at a time. Many risk
metrics compute features based on adjacent heartbeats, including the fluctuation of the ST
segment (Klingenheben et al., 2000) and the dynamic time warping distance (Syed et al.,
2009). These heuristics represent a good estimate of what a risky ECG signal may look
like, but it is not well-understood what best indicates higher risk of a cardiovascular event
(i.e. cardiovascular death or myocardial infarction). This presents two challenges:

1. Representation. It is not clear what features to extract from each ECG signal. This
is made especially difficult by the variable duration of heart beats.

2. Homogeneity. Different levels of CVD risk at the patient level do not necessarily
translate to different characteristics at the level of individual heartbeats. A high
risk patient might have more worrisome heartbeats than a low risk patient, but it is
unlikely that they will have exclusively or even a large number of worrisome heartbeats.

Contributions We address these challenges by fusing ideas from two areas of machine
learning: deep learning and Multiple Instance Learning (MIL). We address the representa-
tion challenge by learning predictive features directly from the data, with no task-specific
engineering, using a compact neural network. This is in contrast to most existing ap-
proaches, which extract handcrafted features.

To address the challenge of homogeneity, we cast the task as a MIL problem. MIL as-
sumes that labels for collections of instances are available, but labels for individual instances
are not. In our case, the instances are series of consecutive heartbeats, the collections are the
instances extracted from the ECG signal for a single patient, and the label is the outcome
for the associated patient.

We introduce a task-independent method for learning a signal-based risk metric. Using
this method, we also present a new ECG risk score that outperforms existing ECG-based
risk metrics in terms of AUC for each of 30, 60, 90, and 365 day risk of cardiovascular death.

Technical Significance Existing CVD risk metrics rely on hand-selected features. Out-
side the area of CVD, existing work in machine learning for risk stratification often relies on
end-to-end learning (Geng et al., 2014; Farran et al., 2013). In this work, we present a risk
stratification framework for ECG signals that borrows from both of these approaches, in
which we learn the relationship between consecutive beats and use a simple, fixed function
to aggregate this relationship. We break signal-based risk stratification into three steps: in-
stance extraction, classification, and aggregation. The proposed method outperforms both
feature-engineered approaches and entirely learned models.

Clinical Relevance We aim to reduce the extent to which risk metric development de-
pends on time-intensive feature engineering. While we validate our method only on the
task of risk stratification for cardiovascular death, we make no ECG-specific choices. This
suggests that our approach could also be applied to other problems.

While it is well established that the inclusion of patient features outside of the ECG
increases the predictive power of a given ECG-based risk metric (Syed et al., 2009; My-
ers et al., 2017), we focus on how to incorporate the ECG signal into a risk stratification
model. Using the proposed method, we predict cardiovascular death from a raw ECG signal
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and present a state-of-the-art risk score with respect to CVD within 30, 60, 90 and 365 days.

We include a review of related work in Section 2 and a summary of our method in Section
3. In Section 4, we outline our experimental setup and follow with results in Section 5. We
conclude with a robustness analysis in Section 6 and discussion in Section 7.

2. Related Work

2.1. CVD Risk Stratification

The simplest and most commonly used means of predicting CVD is to construct a model
based on easy-to-quantify patient characteristics, such as age, sex, and Left Ventricular
Ejection Fraction (LVEF) (Cintron et al., 1993; Antman et al., 2000; Tang et al., 2007;
Muntner et al., 2014). There is strong evidence, however, that leveraging ECG signals can
add significant predictive power (Liu et al., 2014).

Because these signals take the form of long time series, it is not obvious how best to
incorporate them into a predictive model. One approach is to treat the entire signal as an
input to a model, either by extracting summary statistics (Malik et al., 1996) or feeding it
into a recurrent neural network (Myers et al., 2017). An alternative is to treat one ECG
signal as a sequence of many examples of heartbeats. A successful means of doing so is to
extract pairs of consecutive heartbeats and represent each pair using a set of informative
features (McCraty and Shaffer, 2015; Syed et al., 2009). These features might include
polynomial fit coefficients (Sun et al., 2012), Legendre coefficients (Myers et al., 2017) and
DTW distance (Liu et al., 2014). Each of these methods rely on heuristics for cardiovascular
risk. In contrast, we propose a method that learns a function to estimate risk directly from
the ECG signal. We build upon existing work by focusing on consecutive heartbeats and
map this problem to the multiple instance learning framework.

2.2. Multiple Instance Learning (MIL)

MIL tasks involve three entities: instances, collections, and labels. In traditional supervised
learning problems, each instance is associated with a label. In MIL, instances belong to
collections and each collection is associated with a label (Amores, 2013). A wealth of MIL
research has occurred since the field’s inception in 1998 (Maron and Lozano-Pérez, 1998)
and we direct interested readers to the survey conducted by (Carbonneau et al., 2018).

There are two basic assumptions in MIL: the standard MI assumption and the collective
assumption. Our work depends upon the collective assumption, which states that positive
and negative collections differ in the percentage of instances that are positive rather than
the existence of a single positive instance.

Our approach is also an example of single instance learning (Foulds and Frank, 2010), in
which each instance inherits the collection label. We focus on the collection label prediction
task corresponding to the downstream patient outcome, as opposed to the instance label
prediction task.

3



Multiple Instance Learning for ECG Risk Stratification

3. Method

We assume a collection of M ECG signals T1, . . . , TM . Each signal is associated with a
unique patient m, and consists of Lm scalar samples. Each patient is associated with a
label ym ∈ {0, 1}, where ym = 1 indicates that the patient died of cardiac death within D
days of hospital admission. D is set to be 30, 60, 90, or 365 days after hospital adminission.
Our task is to predict the label for held-out patients based on their ECG signals.

We treat this as a multiple instance learning problem. This can be formalized as the
construction of three functions:

1. Instance Extractor. A mapping F : T → XN , from the space of ECG signals to
the space of collections of N instances.

2. Instance Classifier. A mapping G : X → [0, 1] from individual instances to proba-
bilistic class predictions.

3. Instance Aggregator. A mapping H : [0, 1]N → [0, 1] from predictions for each of
the N instances in a collection to an overall prediction for the collection.

3.1. Instance Extractor

The input to the instance extractor is the patient’s ECG signal, cleaned according to 4.3.
F then transforms a signal Tm into a set of Nm instances, Xm = {xi

m}
Nm
i=1. In the context of

ECG signals, we choose instances to be groups of consecutive heartbeats. To create these
groups, we identify the peak of each heartbeat using a waveform-based method (Mart́ınez
et al., 2004) and extract one second of data, centered around each peak. We limit the
number of instances taken from each ECG signal to 1000, corresponding to roughly 15
minutes. Our instance construction procedure is shown in Figure 1.

Importantly, we align the peaks of each heartbeat between instances. This is informed by
previous methods that rely on transforming a patient’s ECG signal into “beat space”, where
adjusting for variation in heart rate between patients yields improvements in cardiovascular
risk stratification (Liu et al., 2014).

3.2. Instance Classifier

We employ a compact convolutional neural network (CNN) to map each instance to its
patient outcome. The model consists of two convolutional layers, each followed by a max-
pooling layer, connected to a sigmoid output. Each convolution consists of two filters with
a stride of 2 and kernel sizes of 128 and 64. The maxpooling layer has a stride of 1 and a
width of 4. These sizes correspond to one second and half second windows over the ECG
signal. The error in patient outcome prediction is backpropagated through the network in
this step.

A CNN is well-suited to this task for several reasons. First, it extracts features di-
rectly from the raw data instead of requiring feature engineering. Second, the use of a
CNN provides some translation invariance in the input space through maxpooling. This
adds robustness to the behavior of the instance extraction procedure, in which overlapping
windows in the instance extraction procedure produce redundant examples (see Figure 1).
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Figure 1: The four main steps of instance extraction. First, we identify non-ectopic
beats(marked in orange) from the raw patient’s ECG signal (a). We sample one secondc—
corresponding to 128 samples—around the peak of each beat (b). This can lead to overlap-
ping windows (c), but ensures that peaks are aligned. We then concatenate those windows
(d) to create series of consecutive beats that serve as instances for the proposed method.

Third, it can capture morphological features of signals that are indicative of downstream
risk (Shaffer and Ginsberg, 2017; De Chazal et al., 2004).

3.3. Instance Aggregator

We aggregate instances based on the collective assumption in MIL (Foulds and Frank, 2010).
That is, instead of assuming that only collections with y = 1 have any instances belonging
to this class, we assume that collections with y = 1 have more of these instances than
collections with y = 0. We compute the probability of the collection having label ym = 1
as the mean of the 20 percent of instance predictions with highest probability. I.e.,

G(Xm) =
1

.2Nm

Nm∑
i=1

F (xi
m) · I[F (xi

m) ≥ P80(F (xm))] (1)

where P80(·) is a function that computes the 80th percentile of a set of measurements. This
formalizes our hypothesis that patients likely to die within D days of hospital admission
contain certain pathological beat sequences at a higher rate than low risk patients, but that
most beats still appear normal. Following a convention common in the clinical literature,
we designate patients that fall in the upper quartile of the metric as high risk and the lower
three quartiles as low risk.
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4. Experimental Set-Up

4.1. Data

We use ECG recordings from the 5396 patients from the MERLIN-TIMI dataset (Morrow
et al., 2007) along with downstream labels for cardiovascular death. The sampling rate is
128Hz, and each patient was recorded for approximately 48 consecutive hours upon hospital
admission for ACS. We remove patients who leave the study before 90 days, leaving us with
5245 patients. We also exclude 270 patients with missing patient attributes, to enable fair
comparison to existing methods. Of the remaining 4975 patients, 107 patients died of CVD
within 90 days and 217 died of CVD within 365 days. While there is an extreme class
imbalance for all time horizons, this imbalance is particularly severe at short time scales.

Demographic factors for CVD and non-CVD patients are similar, as are their distribu-
tions of known correlates (including age and smoking status). The dataset is further divided
into 5 randomized train/test splits. We select our method’s hyperparameters (such as in-
stance length and prediction function percentile) using one split, and test on the remaining
four splits.

4.2. Implementation

We implement the network in Keras (Chollet et al., 2015) and TensorFlow (Abadi et al.,
2016), and optimize it using Adam (Kingma and Ba, 2014) with default parameter settings
for learning rate and decay. To address class imbalance, we balance each batch for positive
and negative examples. This leads to over sampling the positive class.

4.3. Preprocessing

Three pre-processing steps are typical when working with ECG data. The first is to remove
ectopic beats from the ECG signal. Next is to remove baseline wander, or noise in the
signal caused by patient motion or respiration. Finally, we normalize the entire signal
based on each patient’s R-wave amplitude in order to correct for inter-patient differences in
measurement. This protocol is described by (Liu et al., 2014), and we perform the relevant
steps using the same Physionet Signal Quality Index package (Li et al., 2007).

4.4. Baselines

We evaluate the proposed approach against two sets of benchmarks: existing CVD risk
metrics and variations of the proposed method. Compared to existing work in multiple
instance learning, the instance number and instance dimension of our dataset far exceeds
the typical scale of MIL datasets (Cheplygina and Tax, 2015), disqualifying several kernel-
based methods because of storage constraints. The only general-purpose MIL method able
to run on our dataset was STK (Gärtner et al., 2002). STK applies a specialized SVM,
which defines collection similarity as the dot product of collection-level statistics including
mean, variance, and standard deviation (Gärtner et al., 2002). This method consistently
yielded AUCs near 0.5 on our data so we omit comparison to it.

We evaluate against three existing CVD risk metrics: TRS (Antman et al., 2000), MVB
(Liu et al., 2014), and LR-RNN (Myers et al., 2017). Morphological variability in beat-space
(MVB) measures risk for CVD by averaging the dynamic time warping distance between
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adjacent beats. The method then learns the best frequency at which to compute variability
between adjacent beats. LR-RNN supplements the first minute of a patient’s ECG signal
with commonly used patient features.

We also test against three variations of our proposed method: MIL-LR, MIL-FCX,
and MIL-Set. MIL-LR uses a logistic regression in place of the the CNN, while MIL-FCX
employs a one-layer fully connected network consisting of X hidden units where X ∈ 2, 3.
We include these as baselines to evaluate the use of a neural network and, in particular,
the use of a CNN. MIL-Set uses a CNN for the instance classification step but learns the
aggregation function, using an approach similar to (Zaheer et al., 2017).

5. Results

In this section, we evaluate our method’s ability to identify patients at risk for CVD within
30, 60, 90 and 365 days of hospital admission for an acute coronary syndrome. We measure
performance using the area under the receiver operating curve (AUC) and the odds ratio.

5.1. Prediction Horizon

We present the performance of the proposed model, MIL-CNN, in terms of AUC in Table 1.
The method achieves state-of-the-art AUCs across all time horizons examined. MIL-CNN
achieves at least a 10 point increase in AUC over each horizon compared to MVB. MIL-LR
performs comparably to MVB, while MIL-FC2 performs better. This suggests the value
of non-linearities in learning a representation over instances. Using a CNN as the instance
classifier offers further improvement, surpassing LR-RNN in terms of mean AUC. MIL-Set
performs poorly, implying that the additional task of learning the aggregation function
hinders the model. LR-RNN is within a standard deviation of the proposed model’s per-
formance, but also makes use of patient data external to the ECG signal. We also compare
MIL-CNN to the same CNN architecture trained across the entire signal (eliminating the
instance segmentation step) and show that MIL-CNN achieves higher AUCs. The table
with these results can be found in Appendix A. For the existing CVD risk metrics, we see
a steady increase in AUC as we go from the 30 day horizon to the 90 day horizon, followed
by a small dip between the 90 day and 365 day prediction performance. This dip could
be because symptoms of cardiovascular death at longer time scales—between 90 and 365
days—pose a more challenging identification task than symptoms of cardiovascular death
within 90 days.

5.2. Odds Ratios

A quarter of the test patients are designated as high risk. This amounts to 312 high risk
patients and 935 low risk patients. We compare the ORs obtained by our method to MVB,
the only one of our baselines that operates exclusively on the ECG signal. Across all time
horizons, our method achieves a higher average OR across splits. The greatest improvement
is seen at the 90 day time horizon, in which MIL-CNN obtains a median OR of 6.33 and
identifies 19 of 28 patients who suffer from cardiovascular death as high risk.
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Days TRS MVB LR-RNN MIL-LR MIL-FC2 MIL-CNN MIL-Set

30 0.68 ±0.067 0.66 ±.055 0.78 ±0.043 0.67 ±.022 0.71 ±.020 .83± .007 0.54 ±.076
60 0.69 ±0.071 0.68 ±.046 0.78 ±0.050 0.68 ±.017 0.75 ±.007 .79± .018 0.54 ±.075
90 0.70 ±0.073 0.68 ±.047 0.79 ±0.052 0.71 ±.031 0.78 ±.009 .81± .003 0.64 ±.080
365 0.70 ±0.055 0.66 ±.060 0.74 ±0.040 0.70 ±.025 0.75 ±.014 .78± .005 0.68 ±.032

Table 1: We report the AUC and standard deviation over four splits of the MIL frame-
work compared to existing CVD risk metrics (TRS, MVB, and LR-RNN). Within the MIL
framework, we test across three instance classifiers: LR, FC2, and a CNN. We also test
against an end-to-end learning approach, MIL-Set. We see that across all time horizons,
MIL-CNN outperforms existing methods.
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ds

 R
at

io

Odds Ratio over Time Horizons

MVB
MIL-CNN

Figure 2: Distribution of odds ratios over time horizon tasks. We consider only MVB and
MIL-CNN, the two risk metrics that operate on the patient ECG signal. We report the
average and standard deviation of the odds ratios over 5 splits. MVB maintains an odds
ratio of about 3 at each time horizon. MIL-CNN demonstrates a higher odds ratio when
forecasting for 90 days, but otherwise obtains an odds ratio of around 5.

6. Robustness

We include tests to demonstrate our method’s robustness to both the choice of instance
extraction function and the choice of instance aggregation function. We also show that our
method is more resilient to class imbalance than MIL-Set. We include MIL-Set to show the
benefit a simple, fixed aggregation function offers.

6.1. Robustness to Instance Extraction Function

In this section, we evaluate the sensitivity of MIL-CNN to the instance extraction function.
Segmentation into consecutive heartbeats is well-justified based on existing literature and
the intrinsic periodicity of the signal, but the optimal number of consecutive heartbeats is
not obvious. We test each MIL method across four instance types: one, two, three, and
four consecutive heartbeats. Our method is robust to this choice.
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Instance Length vs. AUC
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Figure 3: Effect of number of beats per instance on AUC at different time horizons. At
the top, we plot the MIL method’s performance with a CNN as the instance classifier.
Lines clustered in the middle represent MIL performance with variations on the instance
classifier. The purple line shows MIL-Set’s performance on the task. The plots demonstrate
a resilience to instance choice superior to that of MIL-Set, across all horizons.

6.2. Robustness to Aggregation Function

We also test alternatives to averaging the top 20% of the instance predictions. The mo-
tivation for this initial choice lies in how every ECG signal segment need not—and often
does not—present information relevant to patient risk for a particular outcome. First, we
replace the mean with the median. We assess the mean of the top 10%, 20% and 50% of
the instance predictions. We show our results in Figure 4, demonstrating that the choice of
aggregation function–among those tested–has no significant effect on the model’s AUC.

6.3. Robustness to Class Imbalance

We vary the number of positive instances in each training set—providing between 10-90%
of the available positively labeled training data and measure the resulting AUCs. As shown
in Figure 5, the proposed model remains resilient to extreme class imbalance while MIL-Set
does not. As the number of positive instances increases, there is no clear trend with MIL-Set
performance.
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Figure 4: Performance of aggregation functions across a variety of horizons. We see a minor
increase in AUC when using the mean of the top 20 percentile of instance predictions on
all horizons except 365 days. Each AUC is averaged across 5 splits and instance classifiers.

7. Discussion

In this work, we propose a successful way to incorporate a patient’s electrocardiogram
signal into a risk stratification model. We validate our approach by building a risk metric
to identify patients at high risk for cardiovascular death after an acute coronary syndrome
and report state-of-the-art AUCs. Moreover, we present these results for four time horizons:
30, 60, 90, and 365 days.

We also show that our method is robust to hyperparameter choice and continues to
excel in settings that demonstrate severe class imbalance. Two aspects of the method are
worth highlighting. First, we perform no feature engineering, which suggests the method’s
promise in other signal-based risk stratification scenarios. Second, we rely exclusively on a
patient’s ECG signal. This suggests that we could obtain an even better risk metric with
the addition of patient-specific features.

8. Future Work

The success of our approach suggests at least three directions for future work. First, our
ability to forecast long-term outcomes from ECG signals suggests that models for risk
stratification at longer time scales—on the order of years instead of months—may be worth
exploring. This has remained a relatively understudied problem (Bueno and Asenjo, 2016),
but may be tractable using extensions of the ideas presented here. Second, because there is
little in our approach that is specific to ECG signals, it could be applied to risk stratification
using other biometric signals as well. Third, while the objective of this task is binary
classification, multiple instance regression could allow us to forecast patient outcomes, such
as day of cardiovascular death, at a more granular level.
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Figure 5: Testing for model robustness to the number of positive training examples on the
90-day risk stratification task. The x-axis is the percentage of existing positive instances
provided to the model during training. The model normally trains on 77 positive examples
and 3651 negative examples. This plot demonstrates two trends: 1) MIL-CNN is not
sensitive to extreme class imbalance, learning a reasonable risk metric with only 15 positive
examples and 2) MIL-CNN demonstrates less variance in its performance over multiple runs
on the same split.
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Appendix A. CNN Comparison

Days TRS MIL-CNN

30 0.68 ±0.067 0.66 ±.055

60 0.69 ±0.071 0.68 ±.046

90 0.70 ±0.073 0.68 ±.047

365 0.70 ±0.055 0.66 ±.060

Table 2: We compare MIL-CNN to a CNN trained on the contiguous, unsegmented sig-
nal. We see that MIL-CNN outperforms the plain CNN, indicating the importance of the
multiple instance learning framework.
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