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Abstract

Many variables useful for clinical research (e.g. patient disease state, treatment regimens)
are trapped in free-text clinical notes. Structuring such variables for downstream use typi-
cally involves a tedious process in which domain experts manually search through long clin-
ical timelines. Natural language processing systems present an opportunity for automating
this workflow, but algorithms still have trouble accurately parsing the most complex patient
cases, which may be best deferred to experts. In this work, we present a framework that
automatically structures simple patient cases, but when required, iteratively requests hu-
man input, specifically a label for a single note in the patient’s timeline that would decrease
uncertainty in model output. Our method provides a lightweight way to leverage domain
experts. We test our system on two tasks from a cohort of oncology patients: identification
of the date of (i) metastasis onset and (ii) oral therapy start. Compared to standard search
heuristics, we show we can reduce 80% of model errors with less than 15% of the manual
annotation effort that may otherwise be required.

1. Introduction

Electronic Health Records (EHRs) contain a wealth of detailed patient information—such as
past medical history, patient disease status, and treatment response—that can be leveraged
for use cases ranging from improved decision support to cohort creation to retrospective
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Figure 1: Diagram of our proposed approach to event identification in clinical timelines.
Given an unlabeled sequence, our machine learning system can choose to directly
extract the time of an event (e.g. metastatic recurrence), or it can query a domain
expert for a single label (e.g. is the patient metastatic as of this note?). After
receiving the label from the domain expert, the model can adjust its posterior
and directly extract, or repeat the cycle as necessary.

research (Jensen et al., 2012). However, many variables crucial for downstream research
are only captured within unstructured free-text clinical notes; as a result, extracting these
variables often involves an arduous and expensive process of manual abstraction by domain
experts (Allison et al., 2000). This manual chart review process can be particularly time-
consuming when studying chronic diseases (e.g., cancer), in which patients have lengthy
clinical timelines to sift through and structure (Berger et al., 2016). In this work, we consider
extraction of temporal events from a patient’s timeline, such as the date of metastatic
recurrence. While understudied, the extraction of temporal elements enables researchers to
ask key questions, such as whether treatments extend life span, and how disease progression
trajectories differ across subpopulations (Banerjee et al., 2019).

The field of clinical information extraction aims to circumvent the arduous manual
abstraction process via automatic systems that leverage natural language processing (NLP)
and more recently, deep learning in particular (Carrell et al., 2014; Wang et al., 2018;
Rajkomar et al., 2018). While these systems can improve efficiency, this efficiency often
comes at the expense of reliability, and existing systems can make unpredictable mistakes. In
high-risk settings such as healthcare, one solution to this trade-off is to complement machine
learning models with expert human aid that can step in when models fail (Holzinger, 2016).
In this work, we integrate humans into the loop by letting our extraction model, if needed,
iteratively query an expert; this process is shown in Figure 1. By optimizing the queries
solicited, we aim to reduce model errors while preserving most of the time and cost savings
that automated NLP systems provide.

In Figure 2, we show the outcome of running our system over three patients who ex-
perience metastatic recurrence. The left two plots display two patients’ clinical timelines;
since pathology reports directly indicate a metastatic diagnosis, our system felt sufficiently
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Figure 2: Plots of the model’s cumulative probability over time that a given patient was
metastatic. For patients 1 and 2 on the left, due to the sudden jump in cumu-
lative probability, the model feels sufficiently confident to directly extract the
date without eliciting any human input. For patient 3, on the right, before any
queries are made, there is more ambiguity as to the date of metastatic recurrence.
However, after a single query at the marked index, the model calculates a new
posterior probability and is now sufficiently confident to extract.

confident to directly extract date of metastatic recurrence. The rightmost plot displays
another patient’s timeline where the system first queried a label to gain confidence.

Our framework for human-guided search helps regulate the efficiency-accuracy tradeoff
for event identification from sequences, and we introduce the metric Model-derived Query
Utility to choose the optimal query. Over a cohort of breast cancer patients, we empirically
show our system’s efficacy on identifying date of (i) metastatic recurrence and (ii) the start
of a therapy regimen, two tasks that are crucial to leverage oncology real-world evidence.

Generalizable Insights about Machine Learning in the Context of Healthcare

In the field of clinical information extraction (and across most of machine learning and
healthcare), existing works report the performance of a machine learning model unaided
(Wang et al., 2018). However, due to the complexities in healthcare, such models remain
imperfect, and their deployment is therefore subject to skepticism (Saria et al., 2018). On
the other extreme, relying on manual effort alone is often not a scalable option for running
large real-world evidence studies.

Rather than settle for an all-or-nothing approach, in this work, we advocate for a process
in which a human-in-the-loop can step in when algorithms are uncertain, and we extend
existing notions of rejection learning to temporal data. After demonstrating the utility
of such an approach in boosting accuracy with minimal oversight, we hope more work is
invested in considering how models can work in conjunction with domain experts, so that
similar methods are considered viable options for model deployment looking forward.
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2. Related Work

One classic way of controlling the accuracy-efficiency tradeoff is via rejection learning. In
rejection learning, a system learns a classification model h and a rejection model r. The
rejection model r may decide to either “reject” a data point x and incur a cost c(x) (which
can be viewed as asking the human expert to make the prediction), or decide to predict
using h and incur a cost corresponding to misclassification error. Learning to defer (Madras
et al., 2018; Geifman and El-Yaniv, 2019; Mozannar and Sontag, 2020) builds on the re-
jection learning framework by additionally allowing the system to adapt to different types
of experts, where the cost of “rejection” also depends on the expert prediction m, i.e.
c(y, x,m). Unlike learning to defer, our formulation does not attempt to model different
classes of experts, and instead assumes that experts are oracles for the labels. In contrast
to this prior work however, we extend the notion by considering deferral specifically for just
a single label in a sequence.

While sequences have not been studied in the context of the rejection learning frame-
work, there have been sequence-based strategies in the active learning setting, in which
the algorithm chooses full sequences to be labeled as additional training data (Settles and
Craven, 2008). Classic approaches include uncertainty-based methods, that measure aver-
age or total label entropy, and disagreement-based methods; these approaches have been
primarily studied over entire sequences, and where the labeling budget is based on the num-
ber of sequences, not factoring in variable time required per sequence. Tomanek and Hahn
(2009) looked at per-instance labeling, instead of full sequences, for a token-labeling task;
their method involved querying any record where the marginal probability of its likeliest
label was under a given threshold. However, in our settings, labels in a patient timeline are
highly correlated, so this solution may not be optimal. Fang et al. (2017) used a reinforce-
ment learning approach for sequence selection, but assumed a large amount of available
labels for validation, often impractical in healthcare settings. Furthermore, we note the un-
derlying purpose of selecting labels in active learning is different than in rejection learning.
In active learning, the goal is to find those sequences most informative for training a new
model for a downstream evaluation, which is not necessarily equivalent to identifying out-
liers or incorrect sequences. Finally, our objective function is tailored to event identification,
as compared to generic sequences.

Practically, there is great utility in efficient extraction of clinical fields from free-text
notes. Clinical information extraction is an active subfield, mining diverse variables from
comorbidities to treatment exposures to adverse events (Wang et al., 2018). Due to the
clinical importance of recognizing metastasis to oncology cohort creation, there have been
multiple studies showing that one can effectively extract metastatic status from a set of
aggregated patient notes (Ling et al., 2019; Birnbaum et al., 2020). While such studies
have been able to accurately identify metastatic status at a patient-level, they have not
focused on the timing of metastatic recurrence, crucial clinically to assess outcomes using
real-world evidence. As a bridge towards temporal precision, Banerjee et al. (2019) worked
on identifying whether metastatic recurrence was present within a given quarter, by aggre-
gating notes across 3-month time spans. Carrell et al. (2014) worked on a broader task to
identify occurrences of any breast cancer recurrence (ipsilateral, regional, or metastatic),
but discussed how their error rates have implications for the potential introduction of bias.
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Our second task, the extraction of timing of oral cancer therapy start, has been explored
with both rule-based and ML-forward implementations (Wang et al., 2019; Agrawal et al.,
2018). However, in both tasks, no research has studied how to improve extraction by adding
a human-in-the-loop. Here we work towards more-fine grained temporal accuracy and allow
users to set their own tolerance for permissible errors.

3. Methods

In this section, we explain our human-guided search framework, consisting of the event
identification task, our event extraction model, and our algorithm Model-derived Query
Utility for choosing a query for a human-in-the-loop. Our framework iteratively decides
between using the extraction model directly and querying an expert.

3.1. Preliminaries

Our dataset is composed of n sequences denoted by (X1, · · · , Xn) where each sequence Xi is
a set of a variable number of records ti: Xi = (X1

i , · · · , X
ti
i ). We associate with each record

Xj
i a timestamp which we store in the list Ti, i.e. record Xj

i occurs at timetstamp Ti[j].
Finally, denote yi to to be the index at which the event of interest occurs for sequence i.
From this dataset, we construct a set of latent sequence labels zji for j ∈ {1, · · · , ti}, where

zji =

{
0 if j < yi

1 if j ≥ yi
(1)

This framework is sufficient for modeling a variety of clinical temporal extraction tasks.
For example, in our first application, Xi represents the sequence of notes for patient i, yi
represents the index of metastatic recurrence for that patient, Ti[yi] represents the date of
that recurrence, and zji = 0 for the clinical notes before a patient’s recurrence, and zji = 1
for the clinical notes after.

3.2. Event Extraction Model

Given a sequence Xi = (X1
i , X

2
i , X

ti
i ), we would like to extract the event index yi ∈

{1, 2, · · · , ti}. We tackle this task by training a model qθ to directly fit the distribution
of yi given the sequence Xi. In other words, qθ (yi = j|X) is the probability density func-
tion for the model’s belief that the event occurs at index j. We parametrize qθ using an
LSTM (Hochreiter and Schmidhuber, 1997), a Recurrent Neural Network. Our extraction
model takes as input the embeddings for each note, Xi, and passes it through a 1-layer
bidirectional LSTM to obtain the hidden states hi at every timestep. Finally, the hi are
passed through a fully-connected layer followed by a softmax to obtain the model proba-
bilities qθ (yi = j|X) at every timestep i. Further details on embeddings are located in the
experiments.
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We then define pθ

(
zji = 1|X

)
to be the cumulative probability function that the event

has occurred by index j for sequence i, formally defined below:

pθ

(
zji = 1|Xi

)
=

∑
0≤r<=j

qθ (yi = r|Xi) . (2)

The extraction model then estimates the event index, which we call ŷ. We define ŷ to
be the index at the median of the cumulative event distribution, namely the j such that
pθ(z

j
i = 1|X) ≥ 0.5 and pθ(z

j−1
i = 1|X) < 0.5. Recall that the timestamps are stored in Ti,

so that the estimated event timestamp is Ti[ŷ].

3.3. Human-guided extraction

We now introduce a human expert who we assume can accurately label each record Xj
i with

its label zji to reduce ambiguity in our search space; the described process is illustrated in
Figure 1.

In the case with a single event of interest, the feedback received from the expert can be
sufficiently described by two variables: let a be the largest labeled index with a 0 label, and
let b be the smallest labeled index with a 1 label. The index a is initialized at 0, and b is
initialized at ti+1. We can now update our cumulative probability for the event occurrence
in terms of this additional input, namely:

pθ

(
zji = 1|Xi, a, b

)
=

∑
a≤r≤j qθ(yi = r|X)∑
a≤r≤b qθ(yi = r|X)

. (3)

We define ŷi(a, b) to be the estimated index of the occurrence given the obtained bounds
a and b. The objective of our system is to now iteratively select the query whose labeling
would have the greatest effect on shifting this estimate, up until the estimate is sufficiently
stable. If a note j is labeled, the bounds will update to some (a

′
, b
′
) —either (a, j) or (j, b)

depending on the label of j—which has the potential to change our estimate from Equation
3. Our system chooses the index, which if labeled, would shift the estimate date by the
largest number of days. We formalize this notion as Model-derived Query Utility E[∆j

i ],
which is defined in terms of the current estimate ŷi(a, b):

E[∆j
i ] = pθ

(
zji = 0|Xi, a, b

)
· |Ti [ŷi(a, b)]− Ti [ŷi(j, b)]|

+ pθ

(
zji = 1|Xi, a, b

)
· |Ti [ŷi(a, b)]− Ti [ŷi(a, j)]| (4)

Given this metric, at each iteration, we select:

arg max
j∈[a,b]

E[∆j
i ] (5)

label the record at index j, and update [a, b] to [a
′
, b
′
] accordingly. We continue iteratively

until E[∆j
i ] < L for a hyperparameter L that controls the accuracy-efficiency tradeoff. We

note that if E[∆j
i ] < L at the first iteration, no queries at conducted at all.

We prove in Appendix B that in a zero-information scenario with a uniform distribution,
this formulation collapses down to binary search, which has optimal time complexity for
search. This is a greedy approach, but we also devised a reinforcement learning approach
that learns a querying, which we compare to in Section 5 and describe in Appendix C.
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4. Data

4.1. Cohort

We considered a retrospective cohort of breast cancer patients who presented to Memorial
Sloan Kettering Cancer Center. All patient records were de-identified of PHI (e.g. names,
dates), both within structured fields and unstructured clinical notes. This research was
reviewed and determined to be IRB-exempt.

Over this cohort of breast cancer patients, we evaluate our system on two clinically
important extraction tasks, each described in further detail below. All variables were ex-
tracted from notes by non-clinician abstractors who specialized in breast cancer clinical data
collection. Quality control of labeled variables was ensured via scheduled auditing reports
by an overseeing management team.

4.2. Metastatic Recurrence

Our first task is identification of the date of metastatic recurrence, defined as spread of the
disease to distant organs or occurrence of unresectable locally advanced disease. The date
of metastatic recurrence was abstracted as the date of pathologic confirmation, if available.
When an initial metastatic biopsy was not performed, the date was extracted based on
radiologic recurrence instead.

Existing literature has shown that simply identifying whether a patient has experienced
a metastatic recurrence (without time localization) is relatively solvable for machine learn-
ing classifiers (Ling et al., 2019; Birnbaum et al., 2020). Therefore, for our training and
evaluation, we restrict our cohort to only those patients who experienced metastatic recur-
rence.

In addition to a cohort of 476 patients where we have exact extracted date of metastasis,
we additionally have a group of 379 patients with labels with less temporal specificity; the
date of metastasis is approximated as the date of first line metastatic therapy. While not
used for evaluation, we use this approximate cohort to train the extraction model. A consort
diagram is available in Appendix A.

4.3. Therapy Start

The second evaluation task we consider is date of therapy start. In particular, we evaluate
on three drugs taken orally: tamoxifen, letrozole, and palbociclib. Due to their method
of administration, such drugs appear less consistently in structured data (e.g. compared
to intravenous chemotherapy), and therapy regimens may be shifted from the original pre-
scription time due to delays in insurance or pharmacy pickup.

For patients in our breast cohort, abstractors structured all drugs (oral and intravenous)
taken for their breast cancer treatment, including those drugs prescribed for the patient’s
course at another institution. Therefore, we restrict our cohort for this task accordingly to
those patient-drug pairs which are feasibly recoverable, given that our data set does not
include scanned records from outside practices and all dates are de-identified within the
notes themselves.

In our training cohort, we exclude examples in which the drug administration preceded
the first record at the institution or the drug was not mentioned in any notes within one
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month of the noted start date. For our evaluation cohort, we further excluded examples
in which the drug was not mentioned anywhere on the abstracted start date or in the two
weeks following, and where there was no follow-up within 2 months; the purpose was to
exclude patients who come in only for a second opinion or primarily for surgery.

The literature has shown high accuracy at the binary task of determining whether a
patient has taken a certain drug (Agrawal et al., 2018). Therefore, for this task, we assume
we are given a patient and a drug they took, and are asked to return the initial date of
therapy start. Training was conducted over 8,843 patient-drug pairs, validation over 1890,
and evaluation over 508 patient-drug pairs. Training and validation occurred over all drugs,
whereas evaluation took place over just the three aforementioned oral drugs. A full consort
diagram is present in Appendix A.

5. Experiments

In this section, we quantify the efficacy of our human-guided extraction framework on real-
world extraction tasks. Label queries were solicited synthetically from “experts”, i.e. we
make the framework assumption that domain experts can accurately conduct the extraction
task and can return the true zji given Xj

i .

5.1. Comparisons

First, we compare our human-guided extraction framework to model-only and human-only
baselines. Additionally, within our framework, we consider other objective functions for
selecting a query in addition to the Model-derived Query Utility method described in 3.3.
To our knowledge, there is not previous work that has tackled this human-assisted sequential
formulation, so besides the deferral of whole sequences, these objectives are also novel. Each
is described below:

• In Extraction Model Only, we deploy the extraction model with no human input and
estimate ŷi directly.

• In Vanilla Binary Search, we do not use the extraction model and estimate how long
it would take a human using binary search to pinpoint the timing of the clinical event.

• In Whole Sequence Deferral, we choose the P% of notes with highest label entropy
(Settles and Craven, 2008) to undergo a full labeling (via binary search). As in the
previous example P is tested over a variety of hyperparameter choices.

• With Policy Model, we follow the framework from Fang et al. (2017); we devise our
own parametrization and define the reward for a given query as the number of days
closer the estimate is after a query. We vary hyperparameter C, the cost for querying
an expert which is reflected in the reward function. We define a policy model whose
action space consists of querying for a label or directly predicting. Full details of our
implementation of this method can be found in Appendix C.

• We additionally devised a new query method Model-Augmented Binary Search. In it,
the domain expert is iteratively queried at the first record j for which the cumulative
probability of the event occurrence pθ(z

j
i ) is at least 0.5. The model can terminate
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its search early if the left and right bounds for the timing of the event drops below D
days, where D is tuned as a hyperparameter.

5.2. Metastatic Recurrence

5.2.1. Task Setup

Next, we evaluated our system on the metastasis extraction task. We first trained our
extraction model on a dataset of 693 patients, 379 with approximate labels of metastasis
(based on date of first metastatic therapy), and 323 with gold extracted dates. The ex-
traction model was first pre-trained on the gold patients, and then run on the full training
cohort. 50 additional gold labels were reserved for validation of the extraction network,
and 103 were used for testing the final system. For the reinforcement learning comparison,
we use 192 of the patients allocated for training/validation of the extraction network for
training and validation of the policy network instead.

Since documentation of some patients’ metastasis occurred outside this cancer center,
we conducted evaluation based on a shifted metastasis date–namely, the first note in our
available records in which the patient was confirmed metastatic, and the closest possible we
could get on our data set, given that dates in text have been de-identified. For this task, we
considered notes across clinical oncology, pathology, and radiology. In our test set, patients
had a median of 80 notes each.

5.2.2. Implementation Details

First, each record was encoded in a bag-of-words (BOW) fashion using n-grams (1 ≤ n ≤ 3)
that occurred in at least 2% of notes. To generate a lower-dimensional embedding, we
trained a LASSO regression to predict the latent z labels from individual notes, and then
included only the 238 features (8% of the original total) with a nonzero weight in the
LASSO regression in our final BOW embedding. These features included “mets”, “to bone”,
and (stage) “IV”. We note that in our preliminary experiments, we found that these
BOW embeddings outperformed more complex note embeddings, generated via word2vec
or convolutional neural networks.

We use these reduced BOW embeddings per note as input to our extraction model
qθ, in which the output dimension of the LSTM is size 64. We train our network for 20
epochs using a batch size of 8. We use the Adam optimizer (Kingma and Ba, 2014) with
initial learning rate 0.01 and train using l2 regularization with a coefficient of 0.001. These
hyperparameters were selected using the best-performing model on the validation set.

5.2.3. Results

The extraction model alone pinpoints the correct record indicating metastasis within 2
weeks 73% of the time, within a month 84% of the time, and within two months 88% of
the time. If we examine the errors, they often arise when there is confusion in the original
diagnosis, e.g. a lung or breast metastasis that may be a second primary, or from conflicting
information in the original note, e.g. due to copy-forwarding. An example of the latter can
be seen in Figure 2, where a note said both that the patient had “likely metastasis” and was

9



Directing Human Attention in Event Localization for Clinical Timeline Creation

0 1 2 3 4 5 6 7
Average Number of Queries

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

%
 A

cc
ur

at
e 

wi
th

in
 1

 M
on

th

Comparison of Methods on Metastasis Extraction

Method Name
Extraction Model Only
Vanilla Binary Search
Whole Sequence Deferral
RL Policy
Model-aug Binary Search
Model-derived Query Utility

Figure 3: The above plot visualizes the trade-off between the average number of queries
per patient, and the percentage of patients whose estimated date of metastatic
recurrence fell within one month of the first metastatic note. At the bottom
left, one can see the accuracy if the extraction model was used alone, and on the
top right, the number of queries necessary if binary search was used to pinpoint
each variable. We can observe that employment of Model-derived Query Utility
provides the optimal trade-off, compared to the other methods.

“newly diagnosed metastatic”, conflicting signals that a human is better suited at parsing.
A fully manual binary search approach requires an average of 6.8 queries per patient.

Results on the metastasis task after adding a human-in-the-loop are in Figure 3; for
methods with hyperparameters that tune the efficiency-accuracy tradeoff, outcomes are
displayed over a variety of hyperparameters. The ideal case is to be in the top left corner
(full accuracy with no queries required). We can see in the plot that the Model-derived
Query Utility method is Pareto optimal on this dataset. Compared to the other meth-
ods, approximately one fewer query is needed per patient on average to achieve the same
accuracy.

The left of Figure 4a) displays the distribution of required queries for the Model-derived
Query Utility method, with the hyperparameter L = 1. Under this setting, 98% of metas-
tases are correctly localized within a month and 99% are correctly localized within 2 months.
For approximately 60% of patients, no queries are required at all, and for approximately
another 20% of patients, only a single query is needed. On the right in Figure 4b), we can
see the distribution of errors of the estimates ŷ from the initial extraction model, before any
querying. We split our distribution into the 60% of patients that were directly extracted
and the 40% of patients that required further querying. For the directly extracted patients,
we notice that a large majority have very close initial estimates; this is a desirable prop-
erty, because our model can in fact achieve good performance on these patients without
any queries. On the other hand, for patients which Model-derived Query Utility decided to
undergo at least a single round of human-guided querying, initial predictions are far more
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Figure 4: The left plot shows the distribution of number of queries solicited under the
Model-derived Query Utility algorithm at L=1, in which the correct date was
pinpointed within a month 98% of the time; 57% of patients required no queries
at all. The right plot shows the distribution of initial errors of the extraction
model, split into (i) the patients whose dates were directly extracted and (ii)
the patients for whom queries were requested. We note that there were minimal
errors on the set not queried.

erroneous, sometimes having over a 100 day difference, validating the importance of having
a human-in-the-loop.

We examine cases in which our method required no queries while the comparison base-
lines required 3 to 4 queries. In one such example, there was large spacing between the
radiologic evidence plus pathologic confirmation, and oncologist follow-up. The extraction
model waited until the oncologist follow-up to become fully confident. The Model-derived
Query Utility model was sufficiently confident that querying in this case was unnecessary,
but due to the larger time gap, the other methods queried regardless.

5.3. Therapy Start

5.3.1. Task Setup

We first trained the extraction model on the 8,843 patient-drug pairs from breast cancer
patients and validated on 1,890. For the RL policy model, we reduced the train and valida-
tion set size for the extraction model by 3022 and 483 pairs respectively to use in training
and validating the policy network instead. The final system was tested on the 508 pairs in
the evaluation set. Since a patient could take multiple drugs and therefore be in several
pairs, train/validation/test sets were created to ensure no patient overlap between sets.

For this task, we only considered notes from clinical oncology; since we restrict to notes
mentioning the drug, the patients in our evaluation cohort had only a median of 14 notes
each. Evaluation is conducted on the basis of the ground truth abstracted date, even if it
does not correspond to a note.
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Figure 5: Results for the medication extraction task. The plot above shows the trade-off
between the average number of queries per patient, and the percentage of patients
that fall within one month of the gold standard therapy start dates. Model-
augmented binary search and Model-derived Query Utility perform comparably
and provide the most consistent performance across hyperparameter choices.

5.3.2. Implementation Details

Due to the large signal-to-noise ratio in records, we preprocess records based on whether
they contain a mention of the drug; a mention of a drug is a string match of the brand name,
generic name, or a common abbreviation (e.g. “palbo” for palbociclib). We tokenize into
sentences and remove all sentences that do not mention the drug; notes with no mention
of the drug were removed. Moreover, each mention of the target drug was replaced by a
universal CURR DRUG TOKEN, and mentions of other common breast cancer medications were
replaced by a universal OTHER DRUG TOKEN to allow for generalizability of features across
drugs.

Then, similar to the previous task, each preprocessed record was encoded in a bag-
of-words (BOW) fashion using n-grams (1 ≤ n ≤ 3), and thresholded for a vocabulary
size of 650. Unlike the previous task, we omit the use of LASSO regression to generate a
lower-dimensional embedding, based on results of initial experimentation.

Analogous to the previous task, we parametrize qθ using an identical architecture, a
bidirectional LSTM with output dimension 64, followed by a fully-connected layer. We
train our model for 5 epochs using the Adam optimizer and an initial learning rate of 1e-3.
We train using a batch size of 8, and we select the best model using early stoppage by
taking the best-performing model on the validation set.

5.3.3. Results

The extraction model alone gets the correct date within one month 74% of the time and
within two months 90% of the time. If we examine where errors are made, ambiguity in the
underlying extraction model often arises from conflicting reports between prescriber’s plans
and patients’ actions. For example, a note may indicate that the patient is “starting the
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drug” whereas the next note includes that the patient has “refused to switch treatment.”
In examining these cases, we do note poorer calibration of our extraction model, where the
model tends to be overconfident; in the previous example, the cumulative probability was
high once the doctor stated the patient’s regimen had started, despite the downstream later
evidence they had not yet begun. We also ran a binary search baseline with no model input,
which required an average of 4.4 steps to finish at completion.

Results factoring in human input for start of oral therapy extraction are displayed in
Figure 5. On this dataset, Whole Sequence Deferral based on label entropy performs by
far the worst of all the methods here, nearing random performance. The RL policy model
does relatively well at selection of the highest yield queries, but performance quickly tapers
off. We find that our cumulative probability model-based approaches, Model-derived Query
Utility and Model-augmented Binary Search, strongly outperformed other baselines and
performed equivalently to one another. For example, we can achieve 90% accuracy within
a month (a 60% error reduction) with only 30% of the queries a full search would require.

6. Discussion

Our results show that a small amount of human oversight is often sufficient to increase
the reliability of one’s model outputs, validating our human-guided framework for event
extraction. Using the Model-derived Query Utility method, with fewer than an average of
a single query per patient, dates of metastatic recurrence were correctly recovered within
2 months for 98% of patients in the test set, compared to 88% with the extraction model
alone. This new accuracy is sufficiently high enough for most clinical research, while the
initial model accuracy alone may have incurred worries about potential bias and noise
trickling into the downstream applications. Moreover, this approach only requires 13% of
the annotation effort that a binary search approach would have required. This indicates
that there is great promise in using a joint extraction process with Model-derived Query
Utility to manage the trade-off between effort and accuracy.

Compared to metastasis, the wins are less stark for extraction of medication therapy
date. We partially attribute this to our pre-processing, which led to a shorter timeline
length. In our pre-processing, we had already filtered out any notes that do not directly
mention the drug, since (i) such notes are unlikely to contain the start date, and (ii) they
would violate the assumption that a domain expert could tell the status of the drug regimen
based on the note alone. However, such pre-filtering is not necessarily typical in clinical
abstraction settings, so true time savings over a manual chart review may be larger than
our results may indicate. We found that a further detriment to the medication extraction
model was a more miscalibrated extraction model than the one for metastasis, in which the
output probabilities did not fully reflect the true probability of misclassification error. This
skewed the query utility downwards due to model overconfidence. Therefore, recalibration of
extraction models may be a useful intermediate step, using existing off-the-shelf techniques
(Guo et al., 2017).

Future Work Our existing framework can directly extend to jointly extract multiple
events in a clinical timeline, assuming their relative ordering is known. For example, one
may want to track monotonic disease staging across time, e.g. when cancer progresses from
Stage n to n+ 1. qθ would transition to a multivariate model, and E[∆j

i ] could be redefined
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as the sum of the expected date shifts for each new stage. Evaluation on such a dataset
remains a direction for future study.

Another direction for future work is to increase the granularity of a note presented to
the human labeler, by showing or highlighting just a specific subportion of a note. Due to
practices like copy-forwarding, notes can become bloated; clinical oncology notes contain a
median of over five hundred tokens in our dataset. Therefore, there is utility not just in
localizing notes temporally, but also indicating which portion of the note to focus on. A
model could learn to imitate what experts looked at in practice or learn to highlight in a
fully unsupervised fashion.

Limitations As is always the case, we made modeling assumptions that while generally
reasonable, may be simplifications of the messiness of real world clinical data. For example,
our approach of labeling zji hinges on disease stage being monotonically increasing; while
metastatic breast cancer is uncurable, there are other diseases one might want to label with
non-monotonic disease staging. Additionally, we assumed that at any given note, it would
be possible to tell whether or not an event of interest had already occurred. This is often
a sound conclusion, since oncology notes often contain a summary of the patient’s disease
and treatment course thus far, due to copy-forwarding and note bloat. In our drug start
date experiment, we only included those notes that specifically mention the drug, to ensure
this assumption upheld. However, that assumption may not necessarily hold true across
clinical specialties or note writing styles.

Our final limitation is that our evaluation was run as a simulation of human-in-the-loop
interaction, but not as an actual user study. A real user study would allow us to quantify
the speed and the workflow of a labeler before and after use of our system. Further, a user
study may reveal real-world preferences that may inform tweaks to the reward functions
in our system. As a potential example, while manual chart review often involves jumping
through a patient’s timeline, it may be unnecessarily cognitively complex in this setting.
Instead, it may be useful to incur a penalty if notes queried for labels are out-of-order.

7. Conclusions

We have introduced a framework for a human-in-the-loop system that regulates the efficiency-
accuracy trade-off for event identification in clinical timelines. We have contributed a Model-
derived Query Utility metric for query selection that consistently performs as well or better
than other metrics across hyperparameter settings on two clinical event identification tasks:
(i) metastatic recurrence and (ii) the start of an oral therapy regimen, two tasks that are
important to oncological research. Further, we are the first to show that rejection learning
can be used effectively on temporal, sequential data, which saves valuable domain expert an-
notation time in the clinical setting. Our framework can help enable institutions to leverage
the real-world evidence in their unstructured EHR notes at scale, enabling cohort creation
and retrospective clinical studies that would may otherwise have been prohibitively tedious
or expensive to conduct.
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Appendix A. Consort Diagrams

Below is the consort diagram for the metastatic extraction task.

Breast cancer patients assessed  
for eligibility (n=6,565)

Excluded for having experienced no 
metastatic recurrence (n=5,863)

Metastatic breast cancer 
patients (n=703)

With approximate 
labels (n=379)

With gold 
labels (n=323)

Allocated to train 
data set (n=379)

Allocated to:
Train data set (n=170)
Val data set (n=50)
Train data set (n=103)

Below is the consort diagram for the oral therapy extraction task.

Breast cancer patient-
drug pairs (n=20797)

Excluded for occurring before the 
first note or having no note 
mention the drug within 30 days 
of the noted start time (n=8395)

Remaining patient-drug pairs 
(n=12402)

Training 
set
(n=8843)

Test set 
(n=1459)

Validation 
set (n=1890) Excluded for not mentioning 

drug within 2 weeks of start, 
or having no follow-up within 
2 months (n=951)

Test (n=508)

18



Directing Human Attention in Event Localization for Clinical Timeline Creation

Appendix B. Proof of Reduction to Binary Search

Theorem The Model-derived Query Utility formulation collapses down to binary search
in a zero-information scenario (uniform time and probability distribution).

Proof Without a loss of generality, we can say that the endpoints for any given iteration are
0 and t, and that T[j]=j. By definition of the uniform distribution, the marginal probability

at any given point j can be calculated by p(yj = 1|0, t) = j/t. Then, since p(y
t
2 = 1|0, t) =

1/2, we have that ŷ = t
2 . Given our ŷ, we do casework to find the j that corresponds to

arg maxj E[∆j ]. We let ẑ be the latent labeling corresponding to ŷ.

Case 1: ẑj = 1

The case that ẑj = 1 occurs with probability j/t, making (a∗, b∗) = (0, j) and ŷ[a
∗, b∗] = j/2.

Case 2: ẑj = 0

The case that ẑj = 0 occurs with probability 1− j/t, making (a∗, b∗) = (j, t) and ŷ[a
∗, b∗] =

(t− j)/2.
Plugging in, E[∆j ] = (j/t)(t/2− j/2) + (1− j/t)(j/2). This quadratic has its maximum

at j = t/2, the halfway point of the interval. This indicates that the point that maximizes
Model-derived Query Utility over a uniform distribution is the midpoint, equivalent to binary
search.
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Appendix C. Reinforcement Learning Details

C.1. Decision-making agent

We view this formulation as a Markov Decision Process, where an agent views a state
s ∈ S that encodes information about the past queries Q and the representations of the
extraction model, f , conditional on the queries. The agent must choose an action a ∈ A
that corresponds to either querying an index i, or making a final extraction.

The process terminates when the agent makes a prediction, or when the agent can verifi-
ably determine the true labelling of the sequence. After termination, a reward is determined
by the final accuracy of the extraction model, conditioned on the queried information.

C.1.1. State

At every state, we retain a history of past queries Q = {q1, · · · , qm}. Our state si is com-
posed of three components: a positional encoding of every index, the predicted marginals
pθ(yi|{q1, · · · , qm}), and the final-layer hidden states of the prediction network at every
index, hi.

Positional Encoding Following (Vaswani et al., 2017), we use a sinusoidal positional
encoding. Formally, for every index i, we define our positional embedding vector −→pi of
length 64 as

−→pi (j) =

{
sin(r

j
64 · i), for j is even

cos(r
j−1
32 · i), for j is odd

where j represents the indices of −→pi , spanning from 0 to 63.

Predicted Marginals Using the predicted probabilities of our model pθ(y = i|X,Q) at
every index i, it is possible to induce marginals

ẑi = pθ(zi = 1|X,Q) = pθ(i ≥ y|X,Q) =
∑
i≥y

pθ(y = i|X,Q)

Hidden States The third component of our state is the hidden states of the extraction
model at every index, hi. We concatenate all components to form our state, si = [pi, ẑi, 1−
ẑi, hi].

C.1.2. Action

Our action space is A = {q1, · · · , qn, p}, where a = qi indicates the act of querying the
oracle for the label of note i, and a = p indicates the act of making a final prediction.

C.1.3. Reward

As training signal for the policy model, we may use a scalar reward which represents how
well our extraction model performed after using all query information. However, using a
delayed reward at the end of each example makes learning difficult. Instead, we advocate

20



Directing Human Attention in Event Localization for Clinical Timeline Creation

for reward shaping (Ng and Jordan, 2003), where intermediate rewards are provided to
accelerate the learning process. Thus, we define the reward at a given state as

R(si−1, a) =

{
Acc(y, fθ(X|q1, · · · , qi)) +Acc(y, fθ(X|q1, · · · , qi−1))− C if a 6= p

0 if a = p

where C is a hyperparameter for the cost of querying. In other words, the reward is
the incremental improvement of querying, offset by a query cost. When the query cost
outweighs improvement in accuracy, the model is incentivized to quit the process by making
a prediction. There are many possibilities for parametrizing Acc(y, ŷ), but here we use
Acc(y, ŷ) = |y − ŷ|.

C.2. Reinforcement learning

We use a reinforcement learning approach to learn a good policy for our agent. Formally, we
define a policy network πβ(s) = pβ(a|s), s ∈ S, a ∈ A that assigns probabilities to actions,
given the current state of the agent.

We aim to find a set of values for β that maximizes the expected reward under the
policy πβ. Thus, our objective is to maximize

J(β) = E(s1,a1,s2,a2,··· )[

∞∑
t=0

γtR(st, at)]

where actions ai ∼ πβ(si) are sampled from the policy and the next state si+1 ∼ p(·|si, ai)
is obtained via the MDP transition function. In this setting, γ is the discount factor of the
MDP.

We optimize J(β) by applying the policy gradient theorem and the REINFORCE al-
gorithm Willia (1992). First, we sample a trajectory under the current policy πβ to
obtain {s1, a1, s2, a2, · · · , sT , aT }, where ai ∼ πβ(si). In order to compute an estimate
of the gradient of our objective, we first compute the cumulative reward at every step,
vt =

∑T
j=t γ

t−jRj . Our gradient then is

∇βJ(β) =

T∑
t=0

vt∇β lnπβ(at|st)

C.2.1. Policy Architecture

We parametrize our policy model using a 1-layer Transformer encoder block as in (Vaswani
et al., 2017), followed by a fully-connected layer. Because there are n + 1 actions for an
input of length n, we concatenate a trainable bias to the output of the fully-connected layer
before passing it through a softmax function. In our experiments, we use a transformer
with a hidden dimension of 64 and 16 attention heads.

C.2.2. Training Scheme

We train for 20 epochs using batched gradient ascent over sampled trajectories. In order
to facilitate training, we use a warm-up scheme that linearly increases the hyperparameter
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C from 0 to its desired value every epoch. We train using the Adam optimizer with ini-
tial learning rate 1e-3. All hyperparameters were selected using cross-validation over the
validation set.
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