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Abstract

While functional magnetic resonance imaging (fMRI) remains one of the most widespread
and important methods in basic and clinical neuroscience, the data it produces—time series
of brain volumes—continue to pose daunting analysis challenges. The current standard
(“mass univariate”) approach involves constructing a matrix of task regressors, fitting a
separate general linear model at each volume pixel (“voxel”), computing test statistics for
each model, and correcting for false positives post hoc using bootstrap or other resampling
methods. Despite its simplicity, this approach has enjoyed great success over the last two
decades due to: 1) its ability to produce e↵ect maps highlighting brain regions whose
activity significantly correlates with a given variable of interest; and 2) its modeling of
experimental e↵ects as separable and thus easily interpretable. However, this approach
su↵ers from several well-known drawbacks, namely: inaccurate assumptions of linearity
and noise Gaussianity; a limited ability to capture individual e↵ects and variability; and
di�culties in performing proper statistical testing secondary to independently fitting voxels.
In this work, we adopt a di↵erent approach, modeling entire volumes directly in a manner
that increases model flexibility while preserving interpretability. Specifically, we use a
generalized additive model (GAM) in which the e↵ects of each regressor remain separable,
the product of a spatial map produced by a variational autoencoder and a (potentially
nonlinear) gain modeled by a covariate-specific Gaussian Process. The result is a model that
yields group-level e↵ect maps comparable or superior to the ones obtained with standard
fMRI analysis software while also producing single-subject e↵ect maps capturing individual
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di↵erences. This suggests that generative models with a decomposable structure might o↵er
a more flexible alternative for the analysis of task-based fMRI data.

1. Introduction

For twenty years, functional magnetic resonance imaging (fMRI) has been one of the most
prominent experimental modalities in the fields of cognitive and clinical neuroscience, al-
lowing researchers and clinicians to investigate relationships between brain regions and
functions or behaviors of interest (e.g., memory consolidation (Fogel et al., 2014; Wittmann
et al., 2005) and decision making (Hampton and O’Doherty, 2007)). However, the data
produced by these experiments — time series of 3D brain images (“brain volumes”) — are
both high-dimensional and high-noise and continue to pose daunting analysis challenges
(Zhang et al., 2020; Burock and Dale, 2000; Zwart et al., 2008). In particular, each brain
volume comprises tens to hundreds of thousands of smaller 3D units (voxels) whose blood
oxygen level dependent (BOLD) signal (Ogawa et al., 1992) is captured throughout time.

In response to these challenges, numerous studies have sought to model neuroimaging
data, most typically focusing on widely available benchmark datasets using resting state
connectivity (Ju et al., 2019; Suk et al., 2016; Mao et al., 2019; Tahmassebi et al., 2018),
structural scans (Henschel et al., 2020; Tian et al., 2020; Gunawardena et al., 2017; Zhang,
2018) and fMRI (Gadgil et al., 2020; Riaz et al., 2018; Sarraf and Tofighi, 2016). However,
this large and growing literature, which most often focuses on prediction and classification,
has largely ignored task-based fMRI, data that result from designed experiments aimed at
testing particular scientific hypotheses. In particular, such data are generated for purposes
of statistical inference on covariates of interest. Thus, there is a need for models that address
both the complexity of fMRI data and the goals of scientific inference.

Here, we take an alternative approach aimed directly at this problem. Since the quanti-
ties of interest to experimenters are spatial e↵ect maps that quantify the e↵ects of covariates
on brainwide activity, we use a hybrid approach, combining deep generative models (for the
maps) with Gaussian Processes (for each covariate) in a generalized additive model (GAM)
approach. That is, we “nest” deep generative models inside a well-understood statistical
framework that produces separable (and thus interpretable) e↵ect maps for each covariate
of interest. As we show, this model produces results comparable to conventional fMRI
analysis methods while better capturing spatial variability and allowing for more flexibility
in modeling non-linear e↵ects in data.

Generalizable Insights about Machine Learning in the Context of Healthcare

As mentioned, task-based fMRI is a highly popular imaging modality in both basic and
clinical neuroscience, as it allows researchers to test hypotheses about brain function in
health and disease states through carefully designed and controlled experiments. For ex-
ample, classic tasks like the n-back paradigm (Koshino et al., 2005; Ragland et al., 2002;
Blokland et al., 2008) have allowed clinical researchers to discover biomarkers of working
memory deficits typically observed in psychiatric diseases like schizophrenia (Jansma et al.,
2004; Callicott et al., 2003; Nicodemus et al., 2010) and to relate these to variables of
interest such as clinical severity scores (Hashimoto et al., 2009) and genotypes for mark-
ers involved in dopaminergic or glutamatergic neurotransmission (Egan et al., 2001; Apud
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et al., 2017; Egan et al., 2004). Similarly, fMRI studies have shown that children diagnosed
with Autism Spectrum Disorder (ASD) fail to activate sound-processing brain regions in
response to vocal sounds (Gervais et al., 2004) and have overall altered activity patterns
in key brain regions associated with social functioning (Philip et al., 2012), which might
explain the social deficits typically observed in ASD. fMRI has also helped unveil abnor-
malities in fronto-limbic activation patterns, which has been linked with episodes of mania
typically seen in bipolar disorder (Chen et al., 2011). Though these are only a a few exam-
ples, task-based fMRI is widely used as both a diagnostic and a research method across the
brain sciences, where it serves as a key link between higher-level cognitive function, brain
spatio-temporal dynamics, and putative molecular and genetic mechanisms of disease.

The alternative fMRI analysis framework we propose here compares favorably to the
current state of the art detailed below while harnessing the flexibility of deep generative
models to capture high-dimensional and complex data. Moreover, this approach retains the
interpretable constructs (e↵ect maps) with which neuroscientists and clinicians are famil-
iar, allowing it to serve as a bridge between established methods and modern techniques.
Ultimately, developing better methods to model these data will empower clinicians and neu-
roscientists to utilize fMRI to its full potential and discover valuable links between molecular
mechanisms, neural function and high-level behavior in health and disease.

2. Related Work

Standard approaches to fMRI data analysis routinely make use of compression and dimen-
sion reduction-based approaches such as independent component analysis (ICA) (Bai et al.,
2007; Calhoun et al., 2009), canonical correlation analysis (Friman et al., 2001; Hardoon
et al., 2007; Lin et al., 2014), and less frequently sparse dictionary learning (Lee et al., 2011;
Eavani et al., 2012; Wu et al., 2014; Lv et al., 2015), but these approaches typically rely
on strong assumptions like linearity and spatial independence which are violated for fMRI
data. In addition, SVM-based classification methods, known within the field under the
name multi-voxel pattern analysis (MVPA) (Norman et al., 2006; Mahmoudi et al., 2012)
have been widely used to localize particular kinds of task e↵ects within the brain while
making weaker statistical assumptions.

More recently, there has been an explosion of work using deep networks to model di↵erent
modalities of brain imaging data, including resting state (rs-fMRI), structural, and di↵usion
tensor imaging (DTI). For example, deep neural nets have been used to extract latent
features from fMRI data, which can then be used for downstream classification tasks (Huang
et al., 2016; Jang et al., 2017; Suk et al., 2015; Han et al., 2015). They have also been used
for de-noising neuroimaging data (Yang et al., 2020; Zhao et al., 2020). These models have
also been extensively used to classify imaging data into di↵erent diagnostic groups or into
di↵erent brain networks (Khosla et al., 2019; Li et al., 2018; Sarraf and Tofighi, 2016; Ju
et al., 2019; Ren et al., 2017) and to predict values of regressors of interest from imaging
data (Chen et al., 2019; Jiang et al., 2020; Jonsson et al., 2019). These applications have
been primarily driven by the advent of public datasets focused on diagnosis and disease
prediction, along with the wide availability of modalities like rs-fMRI and DTI, which are
comparatively easier to obtain for large cohorts.
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However, markedly less attention has been given to the use of deep unsupervised ap-
proaches in capturing high-level representations of brain network organization and dynamics
directly from low-level brain imaging data. As an example, Huang et al. (2017) utilized a
deep convolutional autoencoder to extract high-level representations from task-based fMRI
data and found that such representations not only have good correspondence with theo-
retical models of brain response but are also superior to dictionary learning approaches in
detecting task-related regions. Suk et al. (2016) coupled a deep Auto-Encoder with a hid-
den Markov Model (HMM) to learn non-linear functional relations among brain regions and
estimated the dynamics of such relations from rs-fMRI data. More recently, Qiang et al.
(2020) adopted neural architecture search along with a deep belief network to achieve an
optimal scheme for modeling task-specific and resting state functional brain networks in an
unsupervised fashion. Moreover, some of these studies (Matsubara et al., 2021, 2018) have
utilized unsupervised approaches to di↵erentiate between diagnostic criteria and capture
the high levels of individual variability typically observed in fMRI data.

The most closely related work to our model is that of Zabihi et al. (2021), which analyzed
task-based data using a standard variational autoencoder (VAE). They visualized latent
representations across di↵erent tasks, showing that these were distinguishable, but they
did not examine the role of task covariates or experimental designs. Likewise, Zhao et al.
(2019) used a VAE to analyze MRI data with age considered as a covariate, but they did not
model task-based data. Thus, to our knowledge, ours is the first work to use autoencoders
to address statistical inference in designed experiments, the major goal of scientific analysis
in functional MRI experiments. Moreover, the structure of our model di↵ers from the
standard VAE in producing covariate-specific, interpretable e↵ect maps for variables of
interest, similar to those produced by standard GLM-based approaches.

3. Methods

3.1. Mass univariate regression for fMRI analysis

We denote the brain BOLD signal at time t as xt, with individual voxel intensities xtj , where
we let j range over all spatial locations. We further assume a set of covariates defined at each
time, {ct↵}, where ↵ indexes not only experimental conditions but also nuisance variables
like head motion and respiration for which we would like to control. In the mass univariate
approach, the e↵ects of these regressors are modeled independently for each voxel:

xtj ⇠ N

 
X

↵

�t↵�↵j ,�
2

j

!
�t↵ = ct↵ ⇤ ht , (1)

where � is the experimental design matrix. Each column of � is formed by up-sampling
the original covariate time series, convolving it with the hemodynamic response function
ht (the assumed transfer function between local brain activity and BOLD response), and
finally down-sampling the result of this convolution to match the resolution of the sampling
rate of the original data (Woolrich et al., 2001). Typically, the matrix is further processed by
de-meaning regressors and performing pre-whitening based on an estimate of the temporal
autocorrelation in the data before fitting a General Linear Model (GLM) at each spatial
location (Woolrich et al., 2001). The resulting �↵j can be viewed as e↵ect maps (one per
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regressor ↵) parameterized by spatial location j. In practice, after voxelwise model fitting,
summary statistics and estimated covariances are aggregated across separate experimental
runs and participants in a manner equivalent to mixed e↵ects models (Beckmann et al.,
2003; Woolrich et al., 2004). The downside of this approach, mentioned above, is that
there is no sharing of statistical strength across voxels in estimating the maps �↵j . Thus,
while cluster corrections and related methods successfully control for false positives, they
only indirectly control for false negatives, typically by setting liberal voxelwise statistical
thresholds before resampling. In addition these methods ignore the natural correlation
structure, both spatial and temporal, present in the data.

3.2. The GAM-VAE model

In contrast, we propose to model entire brain volumes using a single generative model based
on variational autoencoders (VAEs) (Kingma and Welling, 2013; Rezende et al., 2014). In
the VAE, one assumes a generative model in which the data, xt, are drawn from a distri-
bution p✓(x|z) that depends on a lower-dimensional latent variable z and is parametrized
by ✓. Inference for z then proceeds by choosing a class of posterior distributions q�(z|x)
parametrized by � and minimizing the Kullback-Leibler divergence between the approxi-
mate and true posterior, DKL(q�(z|x)kp✓(z|x)), over (✓,�). More concretely, we take

p✓(x|z) = N (µ✓(z), diag(�
2)) p(z) = N (0, I) q�(z) = N (⌫�(x), diag(⌘

2

�(x))), (2)

where µ, ⌫, and ⌘ are functions approximated by deep neural networks, I is the identity
matrix, and we allow a separate variance �2

j for each voxel. We then maximize a stochastic
approximation to the evidence lower bound (ELBO):

log p(x) �
X

t

Ez⇠q� log p✓(xt|z) + Ez⇠q� log p(z) +H[q�] . (3)

Here H is the di↵erential entropy of the approximate posterior, and the expectations are
approximated by drawing samples (Blei et al., 2017; Kingma and Welling, 2019). We have
also assumed that observations xt are independent and identically distributed, though this
is known to be a poor approximation in the case of highly temporally autocorrelated fMRI
data. We justify this on three grounds: First, this mirrors standard fMRI analysis, in which
autocorrelation is assumed to be adequately modeled by the autocorrelation of regressors,
the convolution by ht in (1), and a pre-whitening of the design matrix (Woolrich et al.,
2001). Second, the sluggishness of the BOLD response in relation to underlying neural
activity argues for experimental designs in which temporal dynamics are treated as nuisance
variables to be averaged over. Finally, as we shall see, our model naturally lends itself to
extensions where the evolution of the latent variables zt can be modeled explicitly as in,
e.g., (Le et al., 2017; Maddison et al., 2017; Naesseth et al., 2018) or using recurrent neural
networks, though we do not pursue that here.

Of course, (2) does not include the e↵ects of the covariates c. The most general extension
is to include these values as inputs to the maps µ, ⌫, and ⌘, but in the case of µ, this creates
di�culties for interpretability, since the e↵ect of each c↵ then potentially depends on the
values of all other covariates. Instead, we indeed take ⌫(x, c) and ⌘(x, c) but assume for µ
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a generalized additive model (GAM) (Hastie and Tibshirani, 1990) in which the observed
mean signal is a sum of covariate-specific e↵ects:

µ(zt, ct) = �0(zt) +
X

↵

(�↵(ct↵) ⇤ ht) · �↵(zt) . (4)

�↵(ct↵) ⌘ ↵ct↵ + f↵ ↵ ⇠ N (a, v2) f↵ ⇠ GP(0, k) (5)

That is, we assume a set of e↵ect maps �↵ parameterized by neural networks and a set
of covariate-dependent gain functions �↵. These gain functions are composed of a linear
term (↵ct↵) and a potential non-linearity (f↵) drawn from a Gaussian Process with kernel
k (Williams and Rasmussen, 2006). As in the general linear approach, each covariate e↵ect
�, representing the neural response, is convolved with the hemodynamic response (ht),
following the steps described in Woolrich et al. (2001), and this result is used to scale the
e↵ect map �↵. Note that the Gaussian process in (5) does not model � itself but the
di↵erence between the covariate e↵ect and its best linear approximation, ↵ct↵. While the
GP is theoretically flexible enough to model � itself, we found that in practice the residual
formulation performed better, perhaps because of the di�culty of the GP in capturing a
pure linear trend. As a result, the linear coe�cients ↵ represent the presence or absence
of a linear covariate e↵ect, while credible intervals for the GP allow us to assess potential
nonlinearity. The result is a model that incorporates the natural covariance structure of
brain volumes via the VAE, potentially nonlinear covariate responses via the Gaussian
Process, and does so in a manner that preserves experimental interpretability (Figure 1).

More specifically, for the Gaussian Process f↵, we use a sparse variational approximation
(Hensman et al., 2015) in which the full GP is parameterized by its values at a small set
of inducing points c̃↵: u↵ ⌘ f↵(c̃↵). For each covariate, the locations c̃ and GP values
u of the inducing points are variational parameters to be optimized over, along with the
parameters of the kernel k(·, ·). With these conventions, we follow (Hensman et al., 2015)
in writing (for a single GP)

q(f) =

Z
p(f |u)q(u)du, (6)

where f ⌘ f(c) is the vector of GP values evaluated at the observed covariate values c and
q(u) = N (m,S) is a variational Gaussian posterior over u. For a model with Gaussian
observations, q(f) can be calculated in closed form:

q(f) = N

⇣
Am,Knn +A(S�Ku)A

>
⌘
= N (f̄ ,⌃) (7)

with Ku the matrix formed by evaluating the kernel at each pair of inducing points, Knn

the kernel matrix formed by the data points, Knu the matrix of kernel distances between
inducing points and data points, and A ⌘ KnuK

�1
u . Finally, recalling that q() = N (a, v2),

we can then write (for a single covariate)

� = c+ f ⇠ N (ac+ f̄ ,D+⌃), (8)

where again, vectors indicate values of the functions at the observed covariate values and
Dij = v2c2i �ij is the (diagonal) covariance of c. We will use (8) to draw samples for
approximating expectations in our training objective.
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Figure 1: Schematic of the GAM-VAE fMRI model. Each fMRI volume is compressed
to a lower-dimensional representation using a probabilistic encoder network. La-
tent space vectors are then sampled and fed to a probabilistic decoder, which
yields a base map (blue) and a set of covariate-specific maps (dark green). The
gain of each covariate map (light green) is the sum of a linear e↵ect term (↵ct↵)
and a potential non-linearity modeled by a Gaussian process. Finally, the full
mean reconstruction of the input is obtained by adding the base and the scaled
covariate maps. Variance is modeled on a per-voxel basis, yielding a separate
variance map (purple).

3.3. Network Architecture, Training and Map Reconstruction

For the encoder and decoder neural networks, we used a standard convolutional neural
network architecture previously used for images (Go�net et al., 2019), generalized to 3D
convolutions for brain volumes. The encoder consisted of 5 convolutional layers, 3 batch
normalization layers, and 4 fully-connected layers (see Appendix A for details). Networks
responsible for the mean (�0), covariate-specific (�↵) e↵ects, and for the lower triangular
and diagonal matrices used to construct the Cholesky factor of the covariance matrix shared
both convolutional and fully-connected early layers and so shared feature sets. Analogously,
the decoder network consisted of 4 fully-connected layers, followed by 5 transposed 3D-
convolutional layers and 3 batch-normalization layers (Appendix A).

For the covariate-specific Gaussian Processes (5), as detailed above, we used the sparse
variational approximation of (Hensman et al., 2015) defined at a small number of inducing
point locations, and we optimize the parameters of this distribution. More specifically, we
fixed a small number of uniformly spaced inducing points per covariate (c̃↵) and learned a
posterior over u↵. For our kernels, we used a radial basis function (Gaussian) kernel whose
length scale and variance were jointly trained with the VAE.
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For our approximate posterior, we take the slope  and inducing point values u for
each covariate, along with the zt, as our latent variables. That is, we take q(z,u,|x) =Q

↵ q(↵)q(u↵)
Q

t q(zt|xt) and write the full ELBO as:

log p(x) �
X

t

Eq [log p(xt|zt,,u)] + Eq[log p(z) + log p() + log p(u)] +H[q]

�

X

t

Eq
⇥
Ep(�t|,u) log p(xt|zt, �t)

⇤
+ Eq[log p(z) + log p() + log p(u)] +H[q]

=
X

t

⇥
Eq(�)Eq(zt|xt)

log p(xt|zt,�)�DKL(q(z|xt)kp(z))
⇤

�DKL(q()kp())�DKL(q(u)kp(u)) (9)

where the first two lines follow by a double application of Jensen’s inequality, the vector
� once again indicates the estimated gains at the observed data points, and we have used
Eq(�) = Eq(,u)Ep(�|,u) in the third line. As is typically done, we approximate the sum
over data points by a randomly selected minibatch of size B ⌧ N and approximate the
expectations via samples: zt⇤ ⇠ q(zt|xt) and �⇤ ⇠ q(�), where � is now evaluated only
at points in the minibatch and sampling is done via (8). This yields the doubly stochastic
ELBO

log p(x) & N

B

X

t2B
[log p(xt|zt⇤,�⇤)�DKL(q(z|xt)kp(z))]

�DKL(q()kp())�DKL(q(u)kp(u)). (10)

The divergence terms in (10) can be recognized as regularizers that encourage the approxi-
mate posteriors to remain close to their respective priors (Ho↵man and Johnson, 2016), and
it is well-established that there are benefits to both disentangling in the latent space and
robustness in upweighting such terms (Higgins et al., 2017; Ho↵man and Johnson, 2016).
Details of computing these KL divergences in closed form can be found in Appendix B. In
what follows, we replace the weighting by N

B by an additional hyperparamter ⇢ to arrive at
our composite objective:

L(�↵, ct↵, zt) = �ELBO+ ⇢
X

↵

GPDKL(�↵(ct↵)) + �
X

↵

k�↵ � �̂↵k
2, (11)

In this objective, the first term represents the classic ELBO objective for the VAE, the
second term (GPDKL) represents the sum of the KL divergence terms for q() and q(u), and
the third term is an additional regularizer, which biases the model toward e↵ect maps close
to the estimated GLM solution: �̂ = (�>�)�1�>x. Using these solutions, which can be
e�ciently computed even for large data sets, substantially improved the final learned maps.
In practice, we used the design matrix produced by FSL’s FEAT module in computing
�̂, which includes the up-sampling, HRF convolution, downsampling, and pre-whitening
described in Woolrich et al. (2001).

The full GAM-VAE model was trained via using the Adam optimizer, approximating
gradients using samples from the approximate posteriors to compute expectations in (9)
(Blei et al., 2017; Kingma and Welling, 2019). Hyperparameters ⇢ and � were chosen via
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grid-search in a held out sample (n=3 subjects), using di↵erent possible values sets ((1, 10,
50, 100) for ⇢ and (0.05, 0.5, 1.0 and 2.5) for �, respectively) to yield mean reconstructions
with the highest visual quality (see Appendix C). For our synthetic signal experiments (see
below), we used (⇢, �) = (10, 0) and for the experiments validating on biological e↵ects we
used (⇢, �) = (10, 1.0).

4. Cohort and Data

Data consisted of 8 subjects (6 female, age = 31.13 ± 7.7 yrs), whose fMRI data were
acquired as a part of the neurofeedback task of the NKI-Rockland sample (Nooner et al.,
2012). Briefly, the NKI-Rockland sample consists of data from a total of 180 residents
of Rockland, Westchester, or Orange Counties (NY) or Bergen County (NJ), aged 21–45
years. This sample uses minimal psychiatric exclusion criteria — i.e., it excludes subjects
with Global Assessment of Function (GAF; DSM-IV) below 50, history of acute or chronic
substance abuse, of psychiatric hospitalization, diagnosis of schizophrenia, or prior suicide
attempts requiring medical intervention. It also excludes individuals with other chronic or
serious medical conditions (e.g., epilepsy, TBI, stroke). For a full description of medical
exclusion criteria, see McDonald et al. (2017).

Data were acquired using a 3T Siemens Magnetom TrioTrim scanner (TR = 1400 ms,
TE = 30 ms, voxel size = (2.0mm)3, flip angle = 65 degrees, FoV = 224 mm) (Nooner et al.,
2012). The Checkerboard Task, in which subjects were presented either a checkerboard or a
fixation cross on a gray background screen, utilized a block design, with each block lasting
20s and a total of four blocks per category (i.e., four checker, four fixation-cross). This task
is known to evoke strong activity in brain areas responsible for visual processing (Nooner
et al., 2012).

4.1. Data Preprocessing

For each subject, data preprocessing consisted of motion-correction, registration to each
subject’s structural scan (T1w), warping to MNI space, brain-masking and down-sampling
to 41⇥49⇥35. No spatial smoothing was applied, and slice-timing correction was omitted,
since data are multi-band. Finally, single volumes were normalized globally (i.e., across all
subjects) prior to being fed to the GAM-VAE model. Task covariates included the task
period itself (representing the e↵ect of checkerboard presentation) plus 6 motion regressors
(3 translational, 3 rotational). For analysis, only brain activity-related covariates (in this
case task period) were convolved with the hemodynamic response function (HRF) in (4).
Here, following the structure of FSL’s FEAT module, we modeled the HRF using a double
gamma structure, with two separate gamma probability density functions to capture the
peak (g1(t) = Ga(t; k = 6, ✓ = 1)) and the post-stimulus undershoot (g2(t) = Ga(t; k =
12, ✓ = 1)). These two gamma distributions were combined to yield the hemodynamic
response function (Figure 1):

HRF(t) = g1(t) + 0.35g2(t) (12)
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4.2. Evaluation Approach/Study Design

The goal of our experiments is to compare the GAM-VAE approach to the current standard
of practice analysis approach, the mass univariate model. For these analyses, we used FSL
(Jenkinson et al., 2012; Woolrich et al., 2009; Smith et al., 2004). We also compared
selected analyses with another widely used software package, SPM (Penny et al., 2006),
which produced very similar results. Since standard methods have been the subject of
nearly two decades of active development, our tests were aimed at providing evidence that
(a) our model, which uses approximate Bayesian methods, nonetheless controls for false
positive rates when a ground truth e↵ect is known to be present; (b) these properties degrade
gracefully as the signal to noise ratio of the e↵ect is lowered; and (c) the GAM-VAE could
produce equivalent (or better) e↵ect maps to those found via standard approaches. That is,
we investigate both the power and calibration of our model, as well as its interpretability.

4.3. Results on Synthetic Experiments

A key di�culty in assessing the performance of statistical methods on fMRI data is that
true synthetic data are challenging to simulate, while ground truth e↵ects are unknown in
real data. Thus, to test how well the proposed model can recover a known ground truth
signal, we added a synthetic regressor, a large (13 ⇥ 13) hand-written “3,” to the checker
dataset volumes, creating new, altered datasets. More specifically, the added signal was
placed at a constant location in the frontal lobe, with varying signal intensities (2000, 1500,
1000, and 400 arbitrary units (a.u.)). The intensity of the added signal was constant across
all voxels and varied only across tests and was active only during control/fixation blocks
so as to overlap minimally with time points at which the visual checkerboard stimulus was
presented.

We trained the GAM-VAE model on these altered datasets for 400 epochs, at which
point convergence was achieved and reconstructions had good visual quality on inspection.
For these control simulations, we randomly initialized all contrast maps and no GLM reg-
ularization was applied (i.e., � = 0). Additionally, since the added signal is artificially
introduced (and, therefore, not subject to hemodynamic filtering), we did not convolve the
GP for the synthetic regressor with the HRF.

Figure 2 shows the resulting average maps (across-participants) for the synthetic re-
gressor e↵ect. Panel A shows a map of the ground-truth signal, overlaid on an anatomical
standard template. Panel B shows the average maps generated by our model capturing
the synthetic signal across four di↵erent signal intensities (e.g., 400, 1000, 1500 and 2000
a.u.). For each intensity, the model was trained using 3 di↵erent seeds (rows in panel B).
As expected, the model can correctly recover the shape of the synthetic e↵ect for higher
signal intensity values, with reconstruction degrading as signal strength decreases.

Figure 3 shows a quantitative assessment of our model’s ability to estimate the e↵ect
size of this synthetic regressor. To perform this analysis, we mimicked a real experiment
(in which the shape of the signal would be unknown) by analyzing data within a spherical
mask centered on the location of the synthetic signal. We then defined total e↵ect size as
the sum of the intensities of all voxels within the mask. Likewise, we performed standard
mass univariate GLM analysis on these data and used the same masking approach (mask
was applied to the un-thresholded and un-corrected average contrast maps), and compared
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Figure 2: Performance of the GAM-VAE model on synthetic data. A: Ground
truth e↵ect map for synthetic regressor added. B: Average synthetic regressor
maps at di↵erent signal intensity values (3 di↵erent seeds per intensity).

both results to the ones obtained for the ground truth maps. As Figure 3 shows, both our
proposed GAM-VAE model and the GLM underestimate e↵ect sizes in general, though our
model comes closer to correctly estimating e↵ect sizes.

5. Results on Visual Stimulation Data

To assess the ability of the GAM-VAE to infer well-validated biological e↵ects, we trained
the model using a benchmark dataset consisting of repeated presentations of a visual stim-
ulus. For these data, the model was trained for 400 epochs, at which point convergence
was achieved and reconstructions had good quality upon inspection. To aid convergence,
we applied a regularization term which enforced our model to produce solutions close to
the GLM estimates (11, � = 1.0).

Figure 4 shows the resulting group average task contrast map generated by our model,
along with the average contrast map obtained using the standard GLM approach. Note that
the GAM-VAE e↵ect map appears smoother and exhibits both fewer spurious activations
outside of visual cortex and fewer “missing” voxels than the GLM map (see credible intervals
for q() and sample �(ct↵) plots in Appendix D). In Figure 5 we also show comparable task
contrast (visual stimulus on versus o↵) maps for two sample participants. These maps
are generated by averaging across all task-containing volume reconstructions for each given
subject. As can be seen, the exact location and spatial extent of the stimulus e↵ect varies
slightly from subject to subject, though all subjects show a consistent response around
visual area V1 (see maps for the remaining 6 subjects in Appendix E). Thus, our model is
able to capture both population-level inferences and individualized e↵ect estimates.
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Figure 3: E↵ect Sizes predicted by GAM-VAE model and GLM vs. ground truth

for di↵erent signal intensities. E↵ect sizes were computed as the sum of sur-
viving voxels inside a spherical mask centered on location of the original ground-
truth signal. Green, blue and purple lines represent ground-truth, GAM-VAE
and GLM e↵ect size estimates, respectively. Error bars represent standard devi-
ation across three independent simulations carried out for each signal strength.
Both models underestimate the ground truth e↵ect size, though the GAM-VAE
is slightly more accurate, coming closer to the true e↵ect sizes.

It is also of interest to note that analysis run-time across all levels took approximately
13 hours total for this small cohort (n = 8). While this is comparable to run times using
the standard approach, our model has the potential to yield significantly lower run times
for larger data sets (e.g., data sets with more runs and more subjects). This is because our
model does not require running separate analyses for each level separately (e.g., each run,
each subject, and then across subjects) before aggregating results and, additionally, it does
not require the expensive re-shu✏ing procedures necessary for post hoc inflated false positive
control (e.g., for searchlight multi-voxel pattern analysis (Allefeld and Haynes, 2014)).

6. Discussion

In this work, we have proposed a new framework for modeling and analyzing task-based
fMRI data using deep generative models. More specifically, we nest a deep convolutional
auto-encoder inside a GAM framework so as to produce separate and interpretable covariate
e↵ect maps. These e↵ect maps are in turn scaled by covariate-specific gains modeled as the
sum of a best linear e↵ect estimate and a potential non-linearity (modeled by covariate-
specific, one-dimensional Gaussian processes). This approach not only maintains the highly
desirable properties of existing fMRI analysis methods (e↵ect separability, generation of
spatial e↵ect maps) but also provides more flexibility (e.g., potential non-linear gains) and
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Figure 4: Average e↵ect maps for visual data set experiments. Group average maps
generated by the proposed GAM-VAE model (top row) vs. the GLM (bottom
row). Note that GAM-VAE model not only captures V1 e↵ect appropriately,
but also produces smoother and more contiguous clusters, with fewer spurious
activations outside of V1.

avoids known drawbacks encountered with the standard GLM approach. For instance, the
VAE-GAM framework proposed here models entire volumes at once, which allows it to
better account for the inherent spatial auto-correlations observed in fMRI data and avoids
some of the statistical testing challenges like inflated false positive rates that require careful
correction in the mass-univariate approach.

As we have shown, the proposed VAE-GAM model allows us to correctly recover the
shape, size and location of a known synthetic signal added to BOLD data. Additionally, it
is capable of producing higher-quality e↵ect maps for true biological signals of interest. In
particular, our maps exhibit smoother e↵ect clusters, fewer spurious voxels outside of the
main e↵ect cluster, and e↵ect maps for individual participants.

Taken together, the results presented here suggest that deep generative models might
provide a new approach to analyzing fMRI data while accounting for some of the modeling
challenges inherent to this imaging modality. Ultimately, a more flexible fMRI analysis
approach based on a reduced dimensionality latent variable might better model e↵ects of
interest to neuroscientists and clinicians, particularly patterns of structured spatiotemporal
activity associated with cognitive functions and disease processes. Therefore, developing,
validating, and perfecting models like this one should be of great value to both basic and
clinical neuroscience research communities.

Limitations Here, we do not directly attempt to incorporate the temporal autocorre-
lation inherent in fMRI data into our generative structure. Instead, we model this time
dependency indirectly using a convolution operation between the stimulus function and the
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Figure 5: Single subject task e↵ect maps for 2 sample participants. Each map
was generated by averaging over all task-containing volume reconstructions for a
given subject. Note that the exact location and spatial extent of inferred task
covariate e↵ects varies slightly from subject to subject. Maps are displayed at
the location at which the main activation cluster is most easily visible for a given
subject.

hemodynamic response curve, in a similar manner to what is typically done in a standard
GLM analysis. Although we do not directly tackle this issue here, modeling a time series
of volumes directly and generating a corresponding sequence of latent variables (Naesseth
et al., 2018; Le et al., 2017; Maddison et al., 2017) will yield an even more flexible modeling
framework, capable of accounting for both spatial and temporal e↵ect variations which is
not achieved by any fMRI analysis method currently in use.

Another limitation lies in the fact that VAEs are known to underestimate posterior vari-
ance and, therefore, might yield overconfident results (Böhm et al., 2019). Addressing this
issue and arriving at a model capable of providing strong statistical guarantees to researchers
interested in quantifying and comparing e↵ect sizes across subjects and conditions is also an
important area for improvement. Developing such tools would also be broadly interesting
and relevant to the ML community, as it would address a major problem encountered in
calibrating VAE-based models.

We also note that, in our current model structure, the latent variables produced by
the encoder network (zt) likely capture some covariate-specific information, along with
anatomical (spatial) and temporal information. That is, covariate-specific information is
likely not entirely modelled by �(ct↵). Here, adversarial approaches that attempt to decode
task covariates ct↵ from latent variables zt could prove useful in reducing mutual information
between these sets of variables and so providing a cleaner distinction between task-specific
e↵ects and anatomical and temporal information.
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Abnormal cortical voice processing in autism. Nature Neuroscience, 7(88):801–802, 2004.
ISSN 1546-1726. doi: 10.1038/nn1291.

Jack Go�net, Richard Mooney, and John Pearson. Inferring low-dimensional latent de-
scriptions of animal vocalizations. bioRxiv, page 811661, 2019. doi: 10.1101/811661.

K. A. N. N. P. Gunawardena, R. N. Rajapakse, and N. D. Kodikara. Applying convolutional
neural networks for pre-detection of alzheimer’s disease from structural mri data. In
2017 24th International Conference on Mechatronics and Machine Vision in Practice
(M2VIP), page 1–7, 2017. doi: 10.1109/M2VIP.2017.8211486.

16



Deep Generative Analysis for Task-Based Functional MRI Experiments

A. N. Hampton and J. P. O’Doherty. Decoding the neural substrates of reward-related
decision making with functional mri. Proceedings of the National Academy of Sciences,
104:1377–1382, 2007.

Xiaobing Han, Yanfei Zhong, Lifang He, Philip S Yu, and Liangpei Zhang. The unsuper-
vised hierarchical convolutional sparse auto-encoder for neuroimaging data classification.
page 12, 2015.

David R. Hardoon, Janaina Mourão-Miranda, Michael Brammer, and John Shawe-Taylor.
Unsupervised analysis of fmri data using kernel canonical correlation. NeuroImage, 37
(4):1250–1259, 2007. ISSN 1053-8119. doi: 10.1016/j.neuroimage.2007.06.017.

Ryu-ichiro Hashimoto, KangUk Lee, Alexander Preus, Robert W. McCarley, and Cyn-
thia G. Wible. An fmri study of functional abnormalities in the verbal working memory
system and the relationship to clinical symptoms in chronic schizophrenia. Cerebral Cor-
tex, 20(1):46–60, 04 2009.

Trevor J Hastie and Robert J Tibshirani. Generalized additive models, volume 43. CRC
press, 1990.

L. Henschel, S. Conjeti, S. Estrada, K. Diers, B. Fischl, and M. Reuter. Fastsurfer - a fast
and accurate deep learning based neuroimaging pipeline. NeuroImage, 219:117012, 2020.

James Hensman, Alexander Matthews, and Zoubin Ghahramani. Scalable variational gaus-
sian process classification. In Artificial Intelligence and Statistics, pages 351–360. PMLR,
2015.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual
concepts with a constrained variational framework. International Conference on Learning
Representations, 2017.

Matthew D Ho↵man and Matthew J Johnson. Elbo surgery: yet another way to carve up
the variational evidence lower bound. In Workshop in Advances in Approximate Bayesian
Inference, NIPS, volume 1, page 2, 2016.

H. Huang, X. Hu, J. Han, J. Lv, N. Liu, L. Guo, and T. Liu. Latent source mining in fmri
data via deep neural network. In 2016 IEEE 13th International Symposium on Biomedical
Imaging (ISBI), page 638–641, Apr 2016. doi: 10.1109/ISBI.2016.7493348.

Heng Huang, Xintao Hu, Yu Zhao, Milad Makkie, Qinglin Dong, Shijie Zhao, Lei Guo,
and Tianming Liu. Modeling task fmri data via deep convolutional autoencoder. IEEE
transactions on medical imaging, 37(7):1551–1561, 2017.

Hojin Jang, Sergey M. Plis, Vince D. Calhoun, and Jong-Hwan Lee. Task-specific feature
extraction and classification of fmri volumes using a deep neural network initialized with
a deep belief network: Evaluation using sensorimotor tasks. NeuroImage, 145:314–328,
2017. ISSN 1053-8119. doi: 10.1016/j.neuroimage.2016.04.003.

17



Deep Generative Analysis for Task-Based Functional MRI Experiments

J.M Jansma, N.F Ramsey, N.J.A van der Wee, and R.S Kahn. Working memory capacity
in schizophrenia: a parametric fmri study. Schizophrenia Research, 68(2):159 – 171, 2004.

Mark Jenkinson, Christian F. Beckmann, Timothy E. J. Behrens, Mark W. Woolrich, and
Stephen M. Smith. Fsl. NeuroImage, 62(2):782–790, 2012. ISSN 1053-8119. doi: 10.
1016/j.neuroimage.2011.09.015.

Huiting Jiang, Na Lu, Kewei Chen, Li Yao, Ke Li, Jiacai Zhang, and Xiaojuan Guo.
Predicting brain age of healthy adults based on structural mri parcellation using con-
volutional neural networks. Frontiers in Neurology, 10, 2020. ISSN 1664-2295. doi:
10.3389/fneur.2019.01346. URL https://www.frontiersin.org/articles/10.3389/

fneur.2019.01346/full.

B. A. Jonsson, G. Bjornsdottir, T. E. Thorgeirsson, L. M. Ellingsen, G. Bragi Walters, D. F.
Gudbjartsson, H. Stefansson, K. Stefansson, and M. O. Ulfarsson. Brain age prediction
using deep learning uncovers associated sequence variants. Nature Communications, 10
(11):5409, 2019. ISSN 2041-1723. doi: 10.1038/s41467-019-13163-9.

R. Ju, C. Hu, p. zhou, and Q. Li. Early diagnosis of alzheimer’s disease based on resting-
state brain networks and deep learning. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 16:244–257, 2019.

Ronghui Ju, Chenhui Hu, Pan Zhou, and Quanzheng Li. Early diagnosis of alzheimer’s dis-
ease based on resting-state brain networks and deep learning. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, 16(1):244–257, Jan 2019. ISSN 1557-9964.
doi: 10.1109/TCBB.2017.2776910.

Meenakshi Khosla, Keith Jamison, Amy Kuceyeski, and Mert R. Sabuncu. Ensemble learn-
ing with 3d convolutional neural networks for functional connectome-based prediction.
NeuroImage, 199:651–662, 2019. ISSN 1053-8119. doi: 10.1016/j.neuroimage.2019.06.012.

Diederik P Kingma and Max Welling. Auto-Encoding variational bayes. dec 2013.

Diederik P Kingma and Max Welling. An introduction to variational autoencoders. arXiv
preprint arXiv:1906.02691, 2019.

Hideya Koshino, Patricia A. Carpenter, Nancy J. Minshew, Vladimir L. Cherkassky, Timo-
thy A. Keller, and Marcel Adam Just. Functional connectivity in an fmri working memory
task in high-functioning autism. NeuroImage, 24(3):810 – 821, 2005.

Tuan Anh Le, Maximilian Igl, Tom Rainforth, Tom Jin, and Frank Wood. Auto-encoding
sequential monte carlo. arXiv preprint arXiv:1705.10306, 2017.

K. Lee, S. Tak, and J. C. Ye. A data-driven sparse glm for fmri analysis using sparse
dictionary learning with mdl criterion. IEEE Transactions on Medical Imaging, 30(5):
1076–1089, 2011. ISSN 1558-254X. doi: 10.1109/TMI.2010.2097275.

X. Li, N. C. Dvornek, X. Papademetris, J. Zhuang, L. H. Staib, P. Ventola, and J. S. Duncan.
2-channel convolutional 3d deep neural network (2cc3d) for fmri analysis: Asd classifica-
tion and feature learning. In 2018 IEEE 15th International Symposium on Biomedical
Imaging (ISBI 2018), page 1252–1255, 2018. doi: 10.1109/ISBI.2018.8363798.

18

https://www.frontiersin.org/articles/10.3389/fneur.2019.01346/full
https://www.frontiersin.org/articles/10.3389/fneur.2019.01346/full


Deep Generative Analysis for Task-Based Functional MRI Experiments

Dongdong Lin, Vince D. Calhoun, and Yu-Ping Wang. Correspondence between fmri and
snp data by group sparse canonical correlation analysis. Medical Image Analysis, 18(6):
891–902, 2014. ISSN 1361-8415. doi: 10.1016/j.media.2013.10.010.

Jinglei Lv, Xi Jiang, Xiang Li, Dajiang Zhu, Hanbo Chen, Tuo Zhang, Shu Zhang, Xintao
Hu, Junwei Han, Heng Huang, and et al. Sparse representation of whole-brain fmri signals
for identification of functional networks. Medical Image Analysis, 20(1):112–134, 2015.
ISSN 1361-8415. doi: 10.1016/j.media.2014.10.011.

Chris J Maddison, John Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi, An-
driy Mnih, Arnaud Doucet, and Yee Teh. Filtering variational objectives. In Advances
in Neural Information Processing Systems, pages 6573–6583, 2017.

Abdelhak Mahmoudi, Sylvain Takerkart, Fakhita Regragui, Driss Boussaoud, and Andrea
Brovelli. Multivoxel pattern analysis for fmri data: a review. Computational and mathe-
matical methods in medicine, 2012, 2012.

Zhenyu Mao, Yi Su, Guangquan Xu, Xueping Wang, Yu Huang, Weihua Yue, Li Sun,
and Naixue Xiong. Spatio-temporal deep learning method for adhd fmri classification.
Information Sciences, 499:1–11, 2019. ISSN 0020-0255. doi: 10.1016/j.ins.2019.05.043.

T. Matsubara, K. Kusano, T. Tashiro, K. Ukai, and K. Uehara. Deep generative model
of individual variability in fmri images of psychiatric patients. IEEE Transactions on
Biomedical Engineering, 68(2):592–605, 2021. ISSN 1558-2531. doi: 10.1109/TBME.
2020.3008707.

Takashi Matsubara, Tetsuo Tashiro, and Kuniaki Uehara. Structured deep generative model
of fmri signals for mental disorder diagnosis. In Alejandro F. Frangi, Julia A. Schnabel,
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Appendix A. Network Architecture Details

Figure 6: Neural Network Architecture. Panel A: Encoder network architecture. All
3D-convolutional layers have kernel size 3 and stride of either 1 (layers 1, 3 and
5) or 2 (layers 2 and 4). Panel B: Decoder network architecture. Transposed
3D-convolutional layers 1, 3 and 5 have kernel size 3 and stride 1. Transposed 3D-
conv layer 2 has kernel size 3 and stride 2. Finally, transposed 3D-convolutional
layer 4 has kernel size (5, 3, 3) and stride of 2. Solid black arrows indicate ReLU
activation functions. The dashed black arrow indicates an exponential function
(to enforce positivity of variances) and the dashed gray arrow a sigmoid function.
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Table 1: Encoder Network Parameter Counts and Shapes
Layer Weights Bias Shape

Conv 1 216 8 [8, 1, 3, 3, 3]

Batch norm 1 1 1 1

Conv 2 1728 8 [8, 8, 3, 3, 3]

Conv 3 3456 16 [16, 8, 3, 3, 3]

Batch norm 3 8 8 8

Conv 4 6912 16 [16, 16, 3, 3, 3]

Conv 5 6912 16 [16, 16, 3, 3, 3]

Batch norm 5 16 16 16

Fc 1 1614400 200 [200, 3072]

Fc 2 20000 100 [100, 200]

Fc 31, Fc 32, Fc 33 5000 50 [50, 100]

Fc 41, Fc 42, Fc 43 1600 32 [32, 50]

Table 2: Decoder Network Parameter Counts and Shapes
Layer Weights Bias Shape

Fc 5 2000 850 [50, 40]

Fc 6 5000 100 [100, 50]

Fc 7 20000 200 [200, 100]

Fc 8 768000 3840 [3840, 200]

Convt 1 6912 16 [16, 16, 3, 3, 3]

Batch normt 1 16 16 16

Convt 2 6912 16 [16, 16, 3, 3, 3]

Convt 3 3456 8 [16, 8, 3, 3, 3]

Batch normt 3 16 16 16

Convt 4 2880 8 [8, 8, 5, 3, 3]

Convt 5 216 1 [8, 1, 3, 3, 3]

Batch normt 5 8 8 8
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Appendix B. Sparse Gaussian Process Details

Assuming

p(z) = N (0, I) (13)

q(z|x) = N (ν(x),η2(x)) (14)

p(κα) = N (0, v2
0) (15)

q(κα) = N (aα, v
2
α) (16)

p(uα) = N (0, s2
0I) (17)

q(uα) = N (mα,Sα), (18)

we have

DKL(q(z|x)‖p(z)) =
1

2

‖ν(x)‖2 +
∑
j

η2
j (x)−

∑
j

log η2
j (x)−D

 (19)

DKL(q(κ)‖p(κ)) =
1

2

∑
α

(
v2
α

v2
0

+
a2
α

v2
0

+ log
v2

0

v2
α

− 1

)
(20)

DKL(q(u)‖p(u)) =
1

2

∑
α

(
1

s2
0

tr(Sα) +
1

s2
0

‖mα‖2 +M log s2
0 − log |Sα| −M

)
, (21)

where D and M are the dimensions of the latent space and the number of inducing points
per regressor, respectively.

For this work, we simplified this setup by choosing a fixed number of equally spaced in-
ducing points over the observed range of each covariate. That is, we optimized over u but not

Z, as well as the parameters `α and σ2
α of the RBF kernels kα(x, x′) = σ2

α exp
(
− 1

2`2α
(x− x′)2

)
.
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Appendix C. Simulations Performed with Di↵erent Hyper-Parameter

Values

Figure 7: Cross-Validation Runs for � = 0.05, 0.5, across all 4 possible values for

⇢ 2 {1, 10, 50, 100}. As � decreases, contrasts begin to show spurious activation
clusters outside of V1. This can be seen across all values of ⇢, but it is generally
more pronounced for higher ⇢ values.
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Figure 8: Cross-Validation Runs for δ = 1.0, 2.5, across all 4 possible values for
ρ ∈ {1, 10, 50, 100}. As δ increases, maps become sparser and more pixellated.
As ρ increases, maps begin to show more spurious activation outside of main V1
effect cluster.
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Appendix D. Credible Intervals for q(κ) and Sample γ(ctα) Plots.

Figure 9: Panel A) Credible intervals for q(κ) for all 7 covariates modelled on visual
stimulus experiment. Note that we can confirm the presence of a linear effect for
the visual task covariate (magenta), head translation in “z” axis (dark blue) and
rotation over “x” axis (green). Panel B) Sample plots for γ(ctα) gain for head
translation in “z” axis (left) and in “x” axis (right).
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Appendix E. Additional Individual Subject Map Samples

Figure 10: Single subject average task maps for remaining 6 participants in our
cohort. Conventions are as in Figure 5. As before, note individual differences
in the exact location and spatial extent of the inferred task effect.
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