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Abstract

We propose a general framework for diagnosing brain disorders from Electroencephalogra-
phy (EEG) recordings, in which a generative model is trained with EEG data from normal
healthy brain states to subsequently detect any systematic deviations from these signals.
We apply this framework to the early diagnosis of latent epileptogenesis prior to the first
spontaneous seizure. We formulate the early diagnosis problem as an unsupervised anomaly
detection task. We first train an adversarial autoencoder to learn a low-dimensional rep-
resentation of normal EEG data with an imposed prior distribution. We then define an
anomaly score based on the number of one-second data samples within one hour of record-
ing whose reconstruction error and the distance of their latent representation to the origin
of the imposed prior distribution exceed a certain threshold. Our results show that in a
rodent epilepsy model, the average reconstruction error increases as a function of time after
the induced brain injury until the occurrence of the first spontaneous seizure. This hints
at a protracted epileptogenic process that gradually changes the features of the EEG sig-
nals over the course of several weeks. Overall, we demonstrate that unsupervised learning
methods can be used to automatically detect systematic drifts in brain activity patterns
occurring over long time periods. The approach may be adapted to the early diagnosis of
other neurological or psychiatric disorders, opening the door for timely interventions.

© 2022 A. Farahat, D. Lu, S. Bauer, V. Neubert, L.S. Costard, F. Rosenow & J. Triesch.
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1. Introduction

Epilepsy is a very common neurological disorder. Nearly 1% of the world’s population
will develop epilepsy at some point in their lives. Roughly 30% of these epilepsies will
become drug-resistant (Kwan and Brodie, 2000), i.e., seizures cannot be controlled through
medications. Epilepsy is often triggered by an initial brain injury, which is followed by a
clinically silent so-called latent phase, during which the brain is undergoing a cascade of
structural and functional changes. This process where the healthy brain transforms into an
epileptic brain capable of generating spontaneous recurring seizures is called epileptogene-
sis (Loscher, 2019; Pitkédnen and Engel, 2014). Importantly, the longer an epilepsy has been
established, the more resistant to treatment it will be. Therefore, to issue early medical
interventions and provide the potential epilepsy patients a better chance of living seizure-
free lives, it may be helpful to identify epileptogenesis already before the first spontaneous
seizure (FSS), which defines the beginning of an established epilepsy (Moshé et al., 2015).

EEG is a popular tool to measure brain activity at a high temporal resolution and it is
often used in clinical settings and animal research (Loscher, 2019). The task of detecting
epileptogenesis during the latent period, where there are no seizures yet, with EEG is very
challenging and under-researched (Engel Jr and Pitkédnen, 2020; Pitkédnen et al., 2016),
since it is often clinically silent. One contributing factor is that the data during this latent
epileptogenesis phase is hard to acquire, especially in human patients. Usually, patients
receive medical care only after experiencing at least one seizure. In animal epilepsy models,
it is possible to acquire EEG data before the onset of the chronic seizures. However,
due to a lack of well-established EEG biomarkers and well-annotated datasets, detecting
epileptogenesis prior to the first spontaneous seizure remains a big challenge (Pitkdnen
et al., 2016; Engel Jr and Pitkédnen, 2020).

Recent advances in machine learning (ML) offer promising directions for epilepsy re-
search and have delivered encouraging results including seizure forecasting in canines with
epilepsy (Nejedly et al., 2019), seizure forecasting and cyclic control in human patients (Stir-
ling et al., 2021), epilepsy detection in clinical routine EEG data (Uyttenhove et al., 2020), as
well as epileptogenesis detection and staging in animal epilepsy models (Lu et al., 2020b,a).
Specifically, there have been several studies on biomarker discovery for identifying epilepto-
genesis focusing on high-frequency-oscillations (HFOs) (Bragin et al., 2004; Burnos et al.,
2014), dynamics of theta band activity (Milikovsky et al., 2017), asymmetry of background
EEG (Bentes et al., 2018), and nonlinear dynamics of EEG signals (Rizzi et al., 2019).

Generally, applying supervised ML to medical diagnosis problems is often hampered
by the lack of large amounts of labeled training data. Therefore, we here consider a fully
unsupervised learning framework that does not require any annotated data. Rather, the idea
is to train a model to capture the statistics of normal healthy brain activity and use the
model to subsequently detect systematic deviations from the healthy state. In our case, the
types and the frequency of anomalous signals indicating the progression of epileptogenesis
are not accessible and unpredictable during training. The signals are gradually evolving,
which reflects the underlying changes taking place in the brain, evolving from a healthy brain
to an epileptic one. This nature of the data renders a large amount of overlapping features
between the healthy phase and the epileptogenic phase, which imposes grave difficulties for
anomaly detection.
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Inspired by the work from Schlegl et al. (2017) and Makhzani et al. (2015), we propose
an adversarial autoencoder (AAE) network for anomaly detection in epilepsy progression.
AAEs proposed by Makhzani et al. (2015) impose a prior distribution on to the latent
codes learned by the encoder through the adversarial training. Here, we propose a flexible
framework that makes use of different loss terms such as the reconstruction loss and the
distance of the encoding distribution to the prior distribution to compute different anomaly
scores.

Here, we would like to emphasize on one fundamental difference between our work and
other works on seizure detection and prediction, i.e., there is no seizure yet in the data
of interest in our work. We focus on detecting slow changes in brain activities before the
very first unprovoked epileptic seizure aiming for early diagnosis of epilepsy (Fisher, 2015).
This is a much more challenging problem that has only been recently addressed, but never
with unsupervised methods (to the best of our knowledge).

Specifically, our contributions can be summarized as follows:

e We present an unsupervised adversarial autoencoder framework for detecting slowly
evolving anomalies in brain activity.

e We validate our approach with data from a rodent epilepsy model and demonstrate
good discriminative ability of signals from different phases of the epileptogenesis pro-
cess.

Generalizable Insights about Machine Learning in the Context of Healthcare

In medical applications, massive amounts of data have been collected, however, obtaining
expert annotations is extremely expensive and often infeasible. Especially, during the early
disease progression phase, e.g., the case of early diagnosis of epilepsy, where the background
normal activities are dominating the collected data and only gradual changes of certain
features are involved. Our approach provides the opportunity of modeling the normal
(healthy) data in an easy-to-acquire clinical setting and of detecting the slow evolution of
disease progression in the collected query data. We emphasize that our framework is very
general and could be applied to other neurological and psychiatric disorders, supporting
early diagnosis and intervention. Moreover, our ablation studies show the significance of
using adverserial training to further restrict the prior distribution of the latent space of the
autoencoders trained on normal (healthy) EEG data. It led the autoencoders to learn an
approximation to the normal (healthy) data distribution that maximized the separability
between the normal (healthy) and anomalous (unhealthy) data.

2. Related Work

Early diagnosis of epilepsy holds great potential, since it might enable timely treatments
that could potentially alter or even halt the disease progression. However, analysing large
scale EEG data to discover bio-markers of epilepsy progression is very challenging. Re-
cently, there has been an increasing interest in this area. For example, Rizzi et al. (2019)
applied nonlinear dynamics analysis of EEG signals via recurrence quantification analysis.
They found a significant decrease of the so-called embedding dimension in early epileptoge-
nesis that correlates with the severity of the ongoing epileptogenesis. Buettner et al. (2019)
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identified two frequency sub-bands that are mostly effective in separating a healthy group
from an epilepsy group with classic signal processing methods. Applying ML methods, Lu
et al. (2020b) investigated the usage of raw EEG time series to distinguish mildly-injured
and epileptogenic brain signals and demonstrated the potential of DNN-based methods in
epileptogenesis detection. Furthermore, they extended the methods for staging the progres-
sion of epilepsy before the manifestation of the first spontaneous seizure (Lu et al., 2020a).
In contrast to these supervised methods, we here propose an unsupervised anomaly detec-
tion approach, where the model is only trained with EEG signals that have been recorded
prior to the disease-inducing injury in a rodent epilepsy model.

Anomaly detection (AD) describes a class of problems to detect samples that do not
conform to the regularities of the training data. It can be addressed in a supervised learning,
semi-supervised learning, or unsupervised learning fashion given the availability (or not) of
sample labels (Gu et al., 2019). It can also be viewed as a one-class learning problem,
where the training data are deemed to be the one class of interest. The models are trained
to learn a classification boundary, either on a hyperplane (Scholkopf et al., 2001), or a
hypersphere (Tax and Duin, 2004; Ruff et al., 2018) to separate anomalies from the nominal
data (Shen et al., 2020; Ruff et al., 2019). Various AD methods are based on an encoder-
decoder framework. In this framework, the model consists of two parts: an encoder and a
decoder. The encoder maps the input into a lower-dimensional latent space representation,
which the decoder uses to output a reconstructed version of the input. The reconstruction
error between input and its reconstruction is usually used as the anomaly score, i.e., samples
with high reconstruction error are deemed to be anomalous (Malhotra et al., 2016; Zhou
et al., 2019). In addition, the error between the encoded latent vectors of the original input
as well as that of the reconstructed input can be incorporated when defining the anomaly
score (Kim et al., 2019). In the case where the knowledge of the anomalies is not accessible
or is unpredictable during training, one can impose a regularizer on the learned latent
distribution. Abati et al. (2019) propose to equip a deep autoencoder with a parametric
density estimator, where the latent vector is generated in an autoregressive fashion. The
overall model is trained to minimize the reconstruction error between the input and the
output of the decoder network, as well as the log-likelihood of generating the latent vectors
given the learned encoder network.

Adverserial autoencoders (AAEs) proposed by Makhzani et al. (2015) extend this no-
tion of anomaly by imposing a prior distribution over the learned posterior by an encoder
network through adversarial training. Specifically, an autoencoder is trained to reconstruct
the input with low error, and an adversarial training process is applied to match the learned
posterior distribution of the latent representation of the autoencoder to a prior distribution.
One of the benefits of the AAE framework is the flexibility in choosing the prior distribu-
tions (Makhzani et al., 2015). The difference between AAEs and variational autoencoders
(VAESs) is that VAEs use a KL-divergence term to impose a prior distribution on the latent
code distribution, however AAEs achieve this by the adversarial training procedure. Schlegl
et al. (2017) proposed a deep convolutional generative adversarial network trained to cap-
ture a manifold of normal anatomical variability in optical coherence tomography images
of the retina based on the weighted sum of residual loss, a measure of reconstruction error,
and discrimination loss. In Pidhorskyi et al. (2018), the proposed model consists of auto-
encoders under the adversarial training paradigm. Specifically, the probability distribution
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Figure 1: (a) Timeline of the experiment for the stimulated group (top) and the control
group (bottom). Perforant pathway stimulation (PPS) is only performed on the
PPS group but not the control group.(b) Proposed network structure. The back-
bone is a standard autoencoder, where the encoder Enc, encodes the input into
a latent representation z and the decoder Dec, reconstructs the input from the
vector z. Dis, is a discriminator that distinguishes whether a sample z is from
the encoded representation or drawn from the prior distribution ¢(z).

of the normal samples is learned through the encoder-decoder framework, and the anomaly
score is computed through the evaluation of the probability of the test sample, i.e., normal
samples will achieve high probabilities and anomalies will exhibit low probabilities.

It is common that the aforementioned methods assume that during the training there are
no anomalous samples. However, in our case, we do not enforce this assumption, and in fact,
we expect during the training phase, the model will encounter close-to-anomalous samples
due to the nature of the experiment setup. Whilst many anomaly detection problems require
label information during training (Gu et al., 2019; Tax and Duin, 2004), our method is
completely unsupervised.

3. Dataset

The dataset used in this study stems from intracranial EEG recordings with a single
depth electrode from a rodent mesial temporal lope epilepsy with hioppocampal sclerosis
(mTLE-HS) model, where epilepsy is induced by electrical perforant pathway stimulation
(PPS) (Norwood et al., 2011; Costard et al., 2019). Two groups of animals were considered
by Costard et al. (2019): (1) PPS-stimulated rats, which developed epilepsy after an average
epileptogenesis duration of 24 days (standard deviation 15 days), (2) control rats that had
the depth electrode implantation as in the PPS group, but did not undergo the PPS and
did not develop seizures by the end of recording (recording time was limited by the lifetime
of the battery of the wireless transmitter). Continuous EEG recordings were obtained from
the time of implantation of the depth electrodes. On average, a week of pre-stimulation
(baseline) period was recorded for all rats. The EEG was recorded at the sampling rate of
512 Hz and band-pass filtered between 0.5 Hz and 176 Hz. Additionally, a notch filter at
50 Hz was applied to all the recordings.
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The animal cohort used in this study consists of seven PPS-stimulated rats and three
control rats. It is worth noting that during the data acquisition, there are several sources
of noise in the signals: (1) electronic interference to the wireless transmission, which results
in occasional extremely high amplitude peaks, (2) data loss during the transmission, which
results in unchanging values for certain periods. To handle the these problems, we applied
an outlier filtering method from MATLAB: filloutliers ! with the parameters method
= ’pchip’; movmethod = ’movmedian’; window = 50. Furthermore, we discarded the
segments that have more than 20% data loss, which resulted in around 5% of the total
recordings being discarded. Due to lack of annotations of artifacts such as movements,
muscle twitching, chewing, etc., we do not discard them specifically. The time span of the
experiment and the different phases are shown in Figure 1a.

4. Methods

In this section, we describe the proposed adversarial autoencoder-based anomaly detection
method in detail. The main idea is to train our model with only normal data from the
training animals and measure the deviation of the test animal data from the learned distri-
bution with an anomaly score based on two performance metrics: reconstruction error and
distance of the latent code to the origin of the prior distribution. Code will be available
online? for reproducability.

4.1. Proposed Model

We formulate our task as an unsupervised anomaly detection problem by learning only
the distribution of the baseline EEG data through an adversarial autoencoder (AAE). The
AAE is composed of three sub-networks: encoder, decoder, and discriminator (Figure 1b).
The encoder is trained to map the input data into a lower-dimensional latent space p(z|X),
which the decoder uses to reconstruct the input p(X|z). By being trained to discriminate
between true samples from the prior distribution and the fake samples generated by the
encoder, the discriminator generates a teaching signal to the encoder to generate a latent
code that matches the prior distribution. This adversarial loss serves two purposes: first
it acts as a regularizer for the training and second it is used as an additional performance
metric as we explain later. Specifically, the discriminator is trained with the loss function:

L1 = — log(Dis(z)) — log(1 — Dis(E(X))) (1)

where z are the true samples from the prior distribution and X are the data samples. On
the other hand, the encoder and the decoder are trained with the loss function:

Lag = ||X — Dec(Enc(X))||” (2)
and the encoder/generator is trained with the loss function:

Lgen = — log(Dis(Enc(X))) . (3)

1. https://www.mathworks.com/help/matlab/ref/filloutliers.html
2. https://github.com/amr-farahat/Epileptogenesis
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Figure 2: Receiver operating characteristic (ROC) curve for classifying baseline versus
epileptogenesis periods for each animal in our dataset (n = 10). We show here
the ROC curve for the 0.8R anomaly score which is a weighted average of the
R and D based anomaly scores. We use the count of supra-threshold one-second
segments within one hour as an anomaly score. The threshold is selected to be the
99" percentile of the training distribution of reconstruction errors and distances
to the origin of the prior distribution of the latent space for the R and D based
anomaly scores, respectively.

Input data are one-second EEG segments collected as described in Section 3. The
encoder model is a residual convolutional neural network (He et al., 2016) that consists
of two blocks each composed of four residual units. Each residual unit is formed of two
convolutional layers with kernel size = 3 x 3 followed by batch normalization (Ioffe and
Szegedy, 2015) and RELU activation functions. The number of kernels gradually doubles
from 64 to 512 every two residual units and the signal gets downsampled at the beginning
of each block with stride = 2. At last, we have a convolutional layer with a kernel of size
1 x 1 to collapse the feature maps into the 128-dimensional latent code. The decoder model
follows the same architecture, but with the use of transposed convolutions to upsample the
latent code into the original 512-dimensional input size. The discriminator model is a fully
connected network formed of two hidden layers each with 1000 units and followed by a
leaky RELU activation function with a = 0.2. The output layer is formed of one unit with
a sigmoid activation function for binary classification.

The model is trained in two phases: a reconstruction phase and a regularization phase.
In the reconstruction phase, both the encoder and the decoder are updated to minimize
the reconstruction loss (Equation 2). In the regularization phase, the discriminator is first
updated to distinguish between the true samples drawn from the prior distribution and the
samples generated by the encoder (Equation 1). Then, the encoder/generator is updated to
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fool the discriminator (Equation 3). We balance the contributions of both £Lagr and Lgen
to the trainable weights of the encoder/generator by a weighting parameter that we set to
0.99 and 0.01 respectively. All parts of the model are updated with the Adam optimizer
(Kingma and Ba, 2014) with base learning rate = 0.0002, $; = 0.5 and B2 = 0.999. The
prior distribution is a multivariate normal distribution with g = 0 and ¢ = 0.1 (see more in
Section 5.2). We used MATLAB for preprocessing the data and used python for creating
and training the models (specifically using the TensorFlow library (Abadi et al., 2015)) and
performing the post-hoc analysis of the results. It takes approximately 1.5 hours to train
one epoch of 330-360 hours of EEG data.

After training, the AAE can be used to scan the query data to look for deviations from
the training data distribution. In the data space, anomalous data are expected to have high
reconstruction errors. On the other hand, depending on the nature of the changes in the
brain activity due to the disease process (global or local changes in the signal), anomalous
data can be expected to either lie in the the low or high probability density areas of the
prior distribution used for training (Schreyer et al., 2019). For that reason, we additionally
test the value of using the distance of the latent code to the origin of the prior distribution
to define anomalous data.

4.2. Cross-validation Scheme

We adopt a leave-one-out (LOO) cross-validation scheme where we iterate over the list of all
animals (seven PPS rats and three control rats) and in each iteration, we withhold the data
from the test animal completely and train the model on the normal data collected from all
other (nine) animals. Since we aim for the model to capture the features of a normal EEG
signal, we only use the data from the baseline period of the PPS groups. Additionally, we
include the data from the control animals from the entire recording period. Note that it
is shown that in longitudinal EEG recordings, various noise sources will be introduced due
to the degradation of the implanted depth electrodes and changes in the electrode-tissue
interface near the electrode (Kappenman and Luck, 2010; Straka et al., 2018). Hence, it is
important to include the data from the control animals covering weeks of recording time in
order to make sure that the model utilizes epileptogenesis-related features for discriminating
between baseline and epileptogenesis periods and not the artifacts induced by the long-term
recording. Specifically, we randomly selected 30 hours from the baseline period of each PPS
animal and 75 hours from the whole recording period from each control animal to create
the training dataset for each test animal in a LOO cross-validation scheme.

4.3. Detection Process

After training the full model on the training data from 9 out of 10 animals, we tested the
ability of the trained model to distinguish between baseline and epileptogenesis periods of
the data from the withheld test animal. Note that animals in the control group did not
undergo the PPS. In order to keep the terms “baseline” and “epileptogenesis” consistent
between the PPS group and the control group, we use the following notation for the control
group. Baseline: one week period after the electrode implantation; epileptogenesis: starting
10 days after the electrode implantation. During testing, we apply the trained model to
scan the data from the whole recording period of the test animal and compute the following
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metrics for each one-second segment x: the reconstruction error (R) and the distance of
the latent code to the origin of the prior distribution (D):

R(x) = [|x — Dec(Enc(x))| (4)

D(x) = |0 — Enc(x)| (5)

We set a threshold (\) for these metrics based on the statistics of the training data,
which is the 99" percentile of the distribution of R and D computed from the training
data. They are denoted by Ar and Ap, respectively.

In order to aggregate the evidence from longer recording time periods and at the same
time simulate a clinical setting, we compute the number of suprathreshold segments within
a certain time window (7 = one hour), for both the baseline and the epileptogenesis data
of the test animal and consider this number as the anomaly score (S).

Sr(T) = Zn: IRi (6)

where
1 if R(xz) > g
Irn; = 7
R {0 otherwise (™)
and "
Sp(T) = ZIDi (8)
i=1
where
1 if D(x;) > A
O (9)
0 otherwise

where n is the number of one-second segments in time window 7, e.g., 3600 in one hour.

Consequently, we evaluate the ability of this aggregated anomaly score to distinguish
between baseline and epileptogenesis data by computing the receiver operating characteristic
(ROC) curve and calculating the area under the curve (AUC). We compute the ROC-AUC
with the aggregated R and D metrics. Moreover, we investigate whether a weighted average
of both anomaly scores would lead to better classification results.

5. Results

5.1. Epileptogenesis Detection

The main goal of this study is to investigate the potential of using electrical brain activity
in an unsupervised way for predicting brain disorders and follow their development as the
brain activity deviates from its baseline distribution. We trained an AAE on the baseline
intracranial EEG data collected from PPS rats before stimulation and from control rats in
a leave-one-out cross-validation scheme. For each test animal, we used the corresponding
model to scan its whole data and record the average reconstruction error for each one-second
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Figure 3: Average area under the curve (AUC) for the PPS animals and control animals
for different definitions of the anomaly score and different models. (a) Standard
convolutional autoencoder (CAE). (b,c) Adversarial CAE with different prior dis-
tributions. (d) Principal Component Analysis (PCA). In each panel, R denotes
the reconstruction error metric, D denotes the metric based on distance of the
latent code to the origin of its prior distribution. The remaining columns consider
weighted averages of R and D; the weight of R is indicated. The asterisks above
the bars denote that the difference between PPS and control animals is statisti-
cally significant according to a Mann—Whitney U test (*:p < 0.05, **:p < 0.02).

segment in the data space. Additionally, we recorded the distance of the latent code to the
origin of its prior distribution. We considered different metrics to compute the anomaly
score: the reconstruction error in the data space (R) and the distance to the origin of
the Gaussian prior distribution in the latent space (D). Using each of these metrics, we
computed an anomaly score by counting the number of supra-threshold segments within one
hour. The threshold was computed as the 99*" percentile of the training distribution of this
metric. We randomly sampled 1000 hours from each of the baseline and the epileptogenesis
periods of the test animal, computed the anomaly scores for them, and calculated the
receiver operating characteristic (ROC) curve for discriminating between the two periods
for each test animal in the dataset. We also computed additional anomaly scores as the
weighted averages of the anomaly scores computed based on the R and D metrics which we
denote R where x € [0, 1] and represents the weight assigned to the R-based anomaly score
where the D-based metric is assigned the weight 1 —x (see Figure 2 for the ROC curve based
on the 0.8R metric as it was our best performing anomaly score and Figure 3c for the average
area under the curve (AUC) for all anomaly scores). We observe that control animals have
their ROC curves around the diagonal which is expected since they were not exposed to
PPS and therefore there should not be a significant difference between their baseline and
hypothetical epileptogenesis periods. On the other hand, while there is variability among
PPS animals, all their ROC curves lie above the diagonal, which denotes above chance
discrimination performance. This is also reflected in the significant difference between the
average AUC of PPS and control animals (Figure 3c first two bars). Contrarily, we note that
the anomaly score based on the D metric alone does not show a difference between animal

10
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groups (Figure 3c third and fourth bars), which means it is not a good metric for computing
the anomaly score for discriminating between baseline and epileptogenesis periods. Next in
the ablation study, we examine the value of the adversarial loss as a regularizer.

5.2. Ablation Study

In Figure 3c, we noticed that the discriminative ability of the model using only the R metric
is better than that with only the D metric. This is reflected in the AUC from control animals
being around the chance level for the R metric and significantly above the chance level for
the D metric. This suggests that the differences between the normal and anomalous data
in the data space are too subtle for the encoder to push them into the low-density areas in
the lower-dimensional latent space.

To further investigate the relevance of different loss components of the proposed method
to the final epileptogenesis detection task, we performed ablation studies. To this end,
we trained a standard convolutional autoencoder (CAE) (Figure 3a) and an adverserial
CAE with a standard Gaussian prior distribution (¢ = 1.0) (Figure 3b) rather than our
proposed method with ¢ = 0.1 (Figure 3c). We notice that even though the D metric
did not prove useful alone for computing an anomaly score that maximizes the separability
between baseline and epileptogenesis periods, adding the adversarial loss acted indirectly
as a regularizer that boosted the discriminability of the R-based anomaly score as evident
by the high variability of the average AUC of the PPS and control animal groups in case of
the standard CAE (Figure 3a first two columns). Average AUC of PPS animals improved
from 0.82 with std = 0.13 to 0.85 with std = 0.08. Additionally, using the weighted average
of both R and D based anomaly scores improved the average AUC of PPS animals from
0.85 with std = 0.08 to 0.89 with std = 0.06 (0.8R) but only when training with prior
distribution with ¢ = 0.1 while there was no improvement for the standard CAE or when
training with prior distribution with ¢ = 1.0. This can be explained by the fact that at the
beginning of training with standardized inputs and random weights, the encoder already
produces a latent code that approximates samples from a standard Gaussian distribution.
Consequently, the discriminator does not get the chance to learn the prior distribution and
send a teaching signal to the encoder/generator. Therefore, making the problem harder for
the encoder/generator by restricting the standard deviation of the prior distribution has a
better regularizing effect on the trained models.

Moreover, we compared to a linear baseline for reconstruction-based anomaly detection
by using Principal component analysis (PCA) to reduce the dimensionality of the data to
128 components and then project back to the data space and compute a reconstruction
error. We merely obtain average AUC for PPS animals of 0.82 with std = 0.11 which does
not show statistically significant difference to the control group AUCs (Figure 3d). This is
comparable to the standard CAE results, but falls short to our best achieved results with
the adversarial CAE with a gaussian prior distribution with o = 0.1 (Average AUC = 0.89
with std = 0.06).

5.3. Time Course of Epileptogenesis

We have shown so far that the R-based anomaly score was successful at differentiating
between EEG signals recorded during the baseline period and the epileptogenesis period
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Figure 4: Fraction of one-second segments that exceeds the median of the training distri-
bution of reconstruction errors (supra-median fractions) for each animal in our
dataset (n = 10) for the baseline (a) and epileptogenesis (b) periods. Comparing
supra-median fractions between the first (early) and last (late) day of the baseline
(c) and epileptogenesis (d) periods for each animal in our dataset (n = 10). Aver-
age percentage of change between early and late supra-median fractions for each
animals group (PPS or control) for baseline (e) and epileptogenesis (f) periods.
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after PPS. Next, we examined what the temporal evolution of reconstruction errors of the
EEG signal can reveal about the epileptogenesis process. For each full 24-hour day in the
baseline and epileptogenesis periods, we computed the fraction of one-second segments that
have a reconstruction error that exceeds the median of the reconstruction error training
distribution (fraction of daily supra-median segments in Figure 4). We notice that the time
course of supra-median fractions is complex and variable across animals in both periods.
However, it is less variable in the baseline period specifically when we consider the difference
between the control and PPS animal groups (Figure 4a and quantified in Figure 4c by
contrasting the first and the last full-days of the whole period). On the one hand, all
animals tend to have either stable or slightly increasing daily supra-median fractions across
the whole baseline period. On the other hand, in the epileptogenesis period (Figure 4b
and quantified in Figure 4c), control animals tend to have stable or decreasing daily supra-
median fractions. This is in contrast to PPS animals, which mostly, with the exception of
only one animal (PPS 7), have increasing daily supra-median fractions. Additionally, we
computed the percentage change in the daily supra-median fractions between the first and
last day for baseline and epileptogenesis periods for each animal in our dataset. Looking
at the averages across animal groups for each period (Figure 4e and f), we observe that
both animal groups have comparable percentage change in daily supra-median fractions in
the baseline period (p-value is 0.18 with Mann—Whitney U test). In contrast, PPS animals
show significantly higher percentage change than control animals in daily supra-median
fractions during the epileptogenesis period (p-value is 0.02 with Mann—Whitney U test).
These results show that the epileptogenesis process causes alternations to the brain that
are reflected in its electrical activity, which is in turn reflected in the ability of the model to
reconstruct this electrical signal. These changes in brain activity get progressively stronger
and consequently, the reconstruction errors increase.

6. Discussion

Machine learning techniques have been transforming many domains of investigation, in
particular those that require detecting patterns in vast amounts of data. Healthcare ap-
plications have been at the top of the list of these domains, specifically when it comes to
diagnosing diseases or rehabilitating patients by training machine learning models on la-
beled biomedical data like X-Rays (Rajpurkar et al., 2017), magnetic resonance imaging
(MRI) (Lundervold and Lundervold, 2019), EEG (Lu et al., 2020a; Farahat et al., 2019),
and electrocardiograms (ECG) (Hannun et al., 2019). Machine learning algorithms trained
on large amounts of data can discover new patterns in the data, e.g., diagnostic biomark-
ers, that may be too subtle to be detected by humans. However, one problem is that the
data collected in the medical domain are usually imbalanced. There is a scarcity of abnor-
mal data that corresponds to certain diseases and disorders relative to normal data from
healthy subjects. Also, collecting data from patients is subject to regulations that protect
the privacy of the patients which makes it harder to obtain.

One potential approach to overcome this problem of scarcity of abnormal data is to
leverage the abundance of normal data by training machine learning models to learn the
distribution of normal data and then survey the query data for deviations from this learned
distribution. Clinically, this approach can work as a screening procedure for individuals with
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risk factors who can then be further evaluated by professionals. Technically, this approach
has the advantage of only requiring the relatively cheap data of healthy subjects. However,
this approach is challenging when the deviations from normal data caused by the disease
process are subtle (especially early in the disease) and develop gradually over a long period
of time, which is the case in epileptogenesis.

In this study, we have given a proof of concept that such an approach can be implemented
through an adversarial convolutional autoencoder model. We trained the model on normal
EEG data collected from a rodent epilepsy model and used it in an anomaly detection
paradigm to screen the data of test animals to discriminate between the data collected before
and after PPS, i.e., to detect a developing epilepsy. The anomaly scores were computed
based on how the reconstructed signal deviates from the original signal and could be viewed
as a proxy of how the epileptogenesis process develops over time after PPS. This is important
as anticipating epilepsy before the FSS could urge medical intervention that significantly
improves the patients’ long-term quality of life (Moshé et al., 2015). Note that we chose
the time window of our anomaly score computation to be one hour — which is clinically
feasible — to act as a simulation for a clinical routine.

Limitations The main goal of this study was to test the potential of an unsupervised
deep anomaly detection paradigm in detecting subtle changes in brain electrical activity as
a consequence of a brain-altering disease process. Despite the success of the approach, it still
falls short of a fully supervised approach. In particular, using the same dataset, a previous
supervised approach achieved an average AUC = 0.93 for distinguishing between baseline
and epileptogenesis in PPS rats (Lu et al., 2020a), in contrast to 0.89 for our approach. This
is expected as in our approach, the model does not have access to any epileptogenesis data.
Another difference is that the authors of that study used five-second segments instead of
one-second segments used here. However, we also experimented with five-second segments
and obtained similar results. Nevertheless, given the advantages of our approach mentioned
earlier, it is worth pursuing and with further advances in unsupervised and self-supervised
learning techniques, we expect further improvements.

Another limitation of our approach is that we computed anomaly scores on relatively
short one-second (or five-second) EEG segments. While our approach aggregates these
scores over longer periods of one hour, it does not look for patterns at these longer time
scales. This choice was motivated by the fact that identified frequency bands that effectively
differentiate healthy subjects from epileptics in the epileptogenesis period lay above 1 Hz
(Buettner et al., 2019). However, we can not exclude the possibility that there is additional
valuable information in lower frequency bands that are not usually considered in EEG
analysis.

A final limitation is the relatively small number of individuals considered in this study.

Outlook In the future, we plan to pursue two broad directions with this approach. First,
we aim to translate the results to human patients at risk of developing epilepsy. Second,
we would like to test the generality of the approach by applying it to other neurological or
psychiatric disorders. In particular, several psychiatric disorders are characterized by the
alternation of episodes of different “states”. Examples are bipolar disorder or schizophre-
nia. Detecting transitions between these states early and automatically could improve the

14



DIAGNOSING EPILEPTOGENESIS WITH DEEP ANOMALY DETECTION

management of such disorders. Critically for both research directions is to investigate the
applicability of the approach to non-invasive surface EEG recordings.
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