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Abstract

Depression is a very common mental health disorder with a devastating social and eco-
nomic impact. It can be costly and difficult to detect, traditionally requiring a significant
number of hours by a trained mental health professional. Recently, machine learning and
deep learning models have been trained for depression screening using modalities extracted
from videos of clinical interviews conducted by a virtual agent. This complex task is chal-
lenging for deep learning models because of the multiple modalities and limited number
of participants in the dataset. To address these challenges we propose AudiFace, a mul-
timodal deep learning model that inputs temporal facial features, audio, and transcripts
to screen for depression. To incorporate all three modalities, AudiFace combines multiple
pre-trained transfer learning models and bidirectional LSTM with self-Attention. When
compared with the state-of-the-art models, AudiFace achieves the highest F1 scores for
thirteen of the fifteen different datasets. AudiFace notably improves the depression screen-
ing capabilities of general wellbeing questions. Eye gaze proved to be the most valuable
of the temporal facial features, both in the unimodal and multimodal models. Our results
can be used to determine the best combination of modalities, temporal facial features, as
well as clinical interview questions for future depression screening applications.

1. Introduction

1.1. Background

Depression is a very common mental illness with large social economic impacts. According
to (Bloom et al., 2012) the global cost projected of mental health conditions in 2030 is 6.0
trillion US dollars. Traditionally, depression is diagnosed by a psychiatrist or psychologists
through clinical interviews. Due to the limited supply of trained clinicians and length of
interviews, these interviews can be very costly for healthcare systems. Worse yet, during the
global pandemic, the number of people with depression has significantly increased (Czeisler
et al., 2020; Hamouche, 2020). On the other hand, with the increasing technology on speech
recognition and chat-bots, virtual agents represent an affordable alternative for solving this
problem of gathering and analyzing clinical interview data. Therefore, detecting depression
using machine and deep learning has become an important research task.
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Figure 1: Depression screening through a virtual agent that asks questions to a patient.
The clinical interview voice recordings, transcripts, and facial features are then
used as input for training a deep learning model to screen for depression.

Prior research has used machine and deep learning for successful diagnostic and prog-
nostic modeling (Dwyer et al., 2018). In particular, depression screening models have used
audio (Flores et al., 2021; Di Matteo et al., 2020; McGinnis et al., 2019) and text (Tlachac
and Rundensteiner, 2020; Senn et al., 2022) as input. Voice recordings represent the one
of the most important inputs, because they allow classification models to leverage both the
audio and text (Asgari et al., 2014; Rodrigues Makiuchi et al., 2019; Tlachac et al., 2021;
Toto et al., 2021; Tlachac et al., 2022a). However, patient screening depression is essen-
tially a multimodality problem (Schoneveld et al., 2021) since each modality may contain
important information for screening models. Leveraging temporal facial features, audio,
and transcripts in a multimodal deep learning model to screen for depression is an open
problem.

1.2. Motivating Example

As cost of clinical interviews increase due to a shortage of trained clinicians (Bureau of
Health Workforce et al., 2021), a virtual agent offers an inexpensive and available alternative
(DeVault et al., 2014). The aim of the virtual agent is to ask relevant clinical interview
questions to ensure sufficient self-disclosure of the patient about her mental state. Then, the
core questions are stored as audio clips, text transcript, and temporal facial features to be
uses as input into a deep learning model, which then predicts if the patient has depression,
as displayed in Figure 1. However, no research has yet been conducted to determine which
is the most relevant question to ask using these three modalities. In the same context, there
is no deep learning model that study the effect of each type of facial feature on predict
depression. Notably, the facial features relevance may even differ by the specific question.
Therefore, this research to identify the relevant question and facial features that is crucial
for training a deep learning model to power an effective and efficient virtual screening agent.
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1.3. Problem Definition and Challenges

Given a set of temporal facial features, voice recordings, and their respective transcripts
with each composed of a patient’s answers to a core question as well the patient’s depression
label, our goal is to determine each participant as depressed or not depressed. Also, we want
to know which are the relevant question that deep learning models need to achieve the best
patient depression predictions, and the effect of including temporal facial features. Notably,
we use both unimodal and multimodal models to screen for depression with facial features.

Training sequential deep learning models on long audio, transcript, and temporal fa-
cial features recordings are challenges as these models can suffer from a vanishing problem
(Pascanu et al., 2013). Also, long sequences have a high computational cost, especially if
leveraging big deep learning architectures such as Convolutional Neural Networks (CNN),
Recurrent Neural Networks (RNN), and recent state-of-the-art transformers models. Fur-
ther, most audio-visual datasets with depression labels consist of a small sample size (Cum-
mins et al., 2015). This makes it difficult to train deep learning models from scratch. Con-
sequently, deep learning models trained with these datasets tend to report low evaluation
metrics (Ma et al., 2016; Huang et al., 2018).

1.4. Our Deep Learning Approach

In this research, we thus seek to improve depression screening capabilities of videos by
leveraging multiple modalities. To accomplish this, we introduce AudiFace, a multimodal
deep learning that leverages temporal facial features, audio, and transcripts. In particular,
our approach to modeling the temporal facial features is unique. Thus, we first compare
the depression screening abilities of landmark, eye gaze, action unit, and all temporal facial
features in unimodal deep learning models. We then incorporate these different types of
facial feature into AudiFace to also take advantage of the predictive abilities of corresponding
audio and transcripts. We tackle the aforementioned challenge of small sample size by
leveraging transfer learning models pre-trained on large corpuses of either audio or text.
Further, to accommodate the longer sequences, we use self-Attention in the models.

To validate our approach, we train the unimodal and multimodal models on modalities
extracted from videos of responses to 15 clinical interview questions in the popular Distress
Analysis Interview Corpus - Wizard-of-Oz (DAIC-WOZ) (Gratch et al., 2014; DeVault et al.,
2014). Thus, we can identify which questions are most useful for depression screening with
different facial features types and combinations of modalities. Our research is important in
that it informs the development of future depression screening applications.

Generalizable Insights about Machine Learning in the Context of Healthcare

1. A unique and valuable deep learning approach to classify temporal facial features,
allowing us to assess the depression screening ability of three types of facial feature.

2. AudiFace, a state-of-the-art multimodal deep learning method to classify videos, is
applicable for the small datasets common in the healthcare domain.

3. Comparison of the depression screening performance of unimodal and multimodal
models that leverage temporal facial features, audio, and transcripts.
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4. Identification of which individual questions are most valuable for depression screening.

2. Related Work

Prior research has detected depression with many different modalities and methods. In
addition to using individual modalities in classification models, multimodal learning classi-
fication using text, audio, or image as input (Ramachandram and Taylor, 2017) has grown
popular in the last decade. The different modalities introduce different challenges for ma-
chine learning and deep learning, due to the complex nature of data (Baltrušaitis et al.,
2018). While multiple studies have attempted to use deep learning for depression screening
(Sharifa et al., 2012; Ma et al., 2016; Dibeklioğlu et al., 2015; Huang et al., 2018; Al Hanai
et al., 2018; He et al., 2021), the models tend to perform poorly when the datasets have
small sample size, due to the challenge of training deep learning models from scratch.

Multimodal deep learning models typically use traditional architectural components
(Victor et al., 2019) such as Recurrent Neural Networks (RNNs) for audio and text as well
as Convolutional Neural Networks (CNNs) for audio and images. For example, from patient
video interviews, He et al. (2021) detects depression severity by using CNNs with audio and
videos input while Al Hanai et al. (2018) trained RNNs with text and audio data to detect
depression. Most of these studies leverage the OpenFace software (Baltrušaitis et al., 2016),
which allows to extract temporal facial features from images or videos. Then, these features
can be used for emotional or neurodevelopmental disorder detection. For example, in Cuve
et al. (2021) the temporal eye gaze tracking features are used to detect autism.

Transfer learning (West et al., 2007) leverages models pre-trained in a similar task to
achieve great classification performance for small target datasets. The most popular pre-
trained audio representation model is VGGish (Hershey et al., 2017) used for diverse audio
tasks (Xie and Virtanen, 2019; Cerutti et al., 2019; Gemmeke et al., 2017; Brown et al.,
2020a). Meanwhile, for text classification the famous Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2018) is a notably well-established language rep-
resentation model. Recent research has notably used such pre-trained audio and text models
together to detect depression from a small datasets of voice recordings (Rodrigues Makiuchi
et al., 2019; Toto et al., 2021; Flores et al., 2022; Tlachac et al., 2022b). These deep transfer
learning models performed better than their traditional deep learning and machine learning
counterparts. Notably, we extended the work done by Toto et al. (2021), adding temporal
facial features to the voice recordings.

In recent years, there has been many proposed natural language processing models that
could be substituted for BERT within multimodal depression screening frameworks. How-
ever, related research (Senn et al., 2022) discovered that BERT with fine-tuning layers
performed better than more recent variations such as RoBERTa (Liu et al., 2019) or Dis-
tilBERT (Sanh et al., 2019) when classifying clinical interview transcripts. Additionally,
there are some other new transformer-based deep learning neural networks that have been
recently proposed, such as DeBERTa (He et al., 2020), BART (Lewis et al., 2019), GPT3
(Brown et al., 2020b), and T5 (Raffel et al., 2020). Furthermore, Zaheer et al. (2020)
proposed a variation of BERT to deal with long sequences. As our research in this paper
focuses on temporal facial features, we leverage the text and audio components in our mul-
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timodal model framework that have previously demonstrated the most success at screening
for depression with clinical interview data (Toto et al., 2021; Senn et al., 2022).

3. Methods

3.1. Deep Learning Methods for Audio Classification

For the voice recordings, we use the popular pre-trained audio architecture VGGish (Her-
shey et al., 2017) to create audio feature embeddings. VGGish transforms voice clips to log
Mel spectrograms that are processed by a multilayer convolutional network to extract em-
beddings vector of size 128 for each second of voice, forming a 2D array that can be used for
depression screening. We also experiment with a variation of the VGGish method, including
a Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) layer over the
embeddings layers of VGGish (Gers et al., 2000). In order to capture longer relationships
between audio clips, we add self-Attention (Lin et al., 2017) on top of the LSTM.

3.2. Deep Learning Methods for Text Classification

Transformer models have become well-established in text classification in recent years with
pre-trained variations applicable for smaller text. The famous Bidirectional Encoder Repre-
sentations from Transformers (BERT) model (Devlin et al., 2018) in particular has demon-
strated previously unattainable success when classifying smaller text datasets. Thus, for
the transcripts, we use BERT to create text feature embeddings. Notably, the pre-trained
BERT model can be fine-tuned using an extra linear layer on top of the CLS token, which
encodes the semantic representation. Also, BERT uses Attention to capture better relations
withing words, however, if the sentences sequences are too long, BERT might not get these
relations. Therefore, we also implement a bidirectional LSTM with an extra self-attentions
layer on top of BERT embedding to capture the longer relations within the transcripts.

3.3. Deep Learning Methods for Temporal Facial Features Classification

Sequential deep learning models can capture complex semantic information in the context
of language modeling. For example, recurrent neural network (RNN), Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber, 1997), and Gated Recurrent Units (GRU)
(Cho et al., 2014) have all been used successfully for text classification with large datasets.
The same approach can be apply to temporal facial features, where instead of images or
video input, we input multivariate features vectors. These features can be generated through
the OpenFace software (Baltrušaitis et al., 2016), which is an open source facial behavior
analysis toolkit. Similar to audio and text classification, we can apply a bidirectional LSTM
with self-Attention over the temporal hidden states from facial features. The self-Attention
layer helps to capture long relationship within facial features, this is specially important
for DAIC-WOZ dataset (Gratch et al., 2014), where some temporal facial features have
long time steps within clinical interviews. Then, we implement two models to screening for
depression, LSTM and LSTM with Attentions, we called the last one LSTM Att.
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Figure 2: AudiFace Framework, adapted from Toto et al. (2021).

3.4. AudiFace Method

As discussed, we use VGGish for audio classification and BERT for transcript classification,
as well as LSTM for temporal facial features classification. Therefore, a straightforward
solution is combining their embeddings in a single model which we refer to as AudiFace in
Figure 2. We leverage self-Attention to each modality after the bidirectional LSTM (biL-
STM), then a embedding was created for text (T.emb), audio (A.emb), and facial features
(F.emb). Finally, we fuse the embeddings through a linear layer for binary classification.

Recently, Audio Assisted BERT (AudiBERT) (Toto et al., 2021) was proposed for voice
classification. Like AudiFace, this deep transfer learning multimodal classification frame-
work also joins the audio and text hidden representations through a linear fusion layer. How-
ever, AudiFace also includes the temporal facial features aspect. From DAIC-WOZ dataset,
there are three types of facial features: landmark position, eye gaze, and action units. Then,
we implement four variations of AudiFace, which are AudiFace-Landmark, AudiFace-Eye
Gaze, AudiFace-Action Unit, and AudiFace-All. This last one model, combines all tem-
poral facial features. For the implementation, we use cross entropy loss function, Adam
optimizer, 2e−5 for learning rate, a step size of 2e−8, and 0.1 as dropout parameter.
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4. Datasets

4.1. Dataset Description

The DAIC-WOZ interviews are designed to support the diagnosis of depression (Gratch
et al., 2014). This dataset was collected by a virtual agent that interviewed people so
the data could be used identify verbal and nonverbal indicators of mental illness (DeVault
et al., 2014). The interview was recorded to then extract data from 189 participants, which
includes audio, transcript, facial features, and labels with depression screening scores. Audio
records ranging between 7 to 33 minutes (with an average of 16 minutes). Facial features,
like landmarks, head pose, eye gaze, and facial action units, were extracted using OpenFace
software (Baltrušaitis et al., 2016) over the video recording of each sessions. The scores
were obtained by administering the first eight questions of the Patient Health Questionnaire
(PHQ-8) (Kroenke et al., 2001). The depression screening score is the sum of all PHQ-8
questions, which ranges from 0 to 24. We define the label for each patient as, if a patient
screens positive for depression based on the common screening threshold of 10 (Kroenke
et al., 2001), in (1).

label =

{
1, if score ≥ 10.

0, otherwise.
(1)

4.2. Methodology for Identifying Questions

We experiment with 15 core questions from the DAIC-WOZ dataset that have at least 90
participant response instances. Alongside each core question, there are a set of follow-up
questions to mimic a realistic conversation and increase self-disclosure (DeVault et al., 2014;
Bickmore et al., 2005). We follow Toto et al. (2021), and concatenate all follow-up questions.

An important part of the methodology is to separate core and follow-up questions as
question wording may vary between interviews with different participants. To this end, we
employ a bag of words approach using a noun and verb pair to identify each core question.
For example, the question “Is there anything you regret?” can be identified by the pair
“anything, regret”. We categorize core questions if they contain a “bag of words” set.
and as follow-up otherwise. Next, we construct two files, one for audio and other for the
facial features, containing each question and participant records. We then use the Natural
Language Toolkit (Bird et al., 2009) to implement this bag of words approach.

Table 1 contains each question with their bag of words and the number of participants
who answered the question, also we can see the average depressed ratio for each question,
which is around 29%, reveling an unbalance datasets. Examples of the real question are
in appendix Figure 4.On the other hand, Figure 3 displays the distribution of duration
(seconds) and time steps video recorded by each question. Time steps distribution shows
shorter answer questions for D5 (diagnosed, depression), D6 (diagnosed, ptsd), and D7
(doing, today), with a median of 2.5, 3.0, and 5.4 seconds respectively. On the other hand,
D3 (argued, someone) and D10 (felling, lately) are the longer answered questions. The
median time steps for all 15 datasets is 642 which is 21 seconds (0.03 seconds by time step).
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Table 1: Questions dataset description with topical bag of words, number of instances, and
the ratio of depressed participants, ordered alphabetically.

Dataset Bag of Words Instances Depressed

D1 advice, yourself 102 28.43%
D2 anything, regret 94 29.79%
D3 argued, someone 103 29.13%
D4 controlling, temper 100 30.00%
D5 diagnosed, depression 94 21.28%
D6 diagnosed, ptsd 92 27.17%
D7 doing, today 105 28.57%
D8 dream, job 95 30.53%
D9 easy, sleep 98 27.55%
D10 feeling, lately 92 29.35%
D11 friend, describe 96 26.04%
D12 last, happy 99 28.28%
D13 proud, life 99 28.28%
D14 study, school 95 30.53%
D15 travel, lot 94 27.66%
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Figure 3: Box plots for the distribution of the duration (left axis) and time steps (right
axis) video recording by question. D5 (diagnosed, depression), D6 (diagnosed,
ptsd), and D7 (doing, today) have lower median duration and time steps.
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Figure 4: Temporal facial features diagram, where for each participant and time steps we
extract the facial landmarks, eye gaze, and action unit.

4.3. Methodology for Temporal Facial Features Questions

One of the main contributions of AudiFace is including the temporal facial features. The
features were provided thanks to OpenFace software (Baltrušaitis et al., 2016) that was
applied to each patient video recording from DAIC-WOZ depression database (Gratch et al.,
2014). In Figure 4, we can see the temporal representation of three types of facial features;
landmarks, eye gaze, and action unit. These types of fractures represent a multivariate
time series, where in case of landmark has 136 dimensions, eye gaze has 12 dimensions, and
action unit has 14 dimensions. We also created an additional datasets with all facial features,
carefully standardizing them between −1 and 1. An important part of the methodology is
extracting the core question, mention in Table 1, to do so, we use the initial and final time
steps from each core question that we got from audio recording, then we extract the facial
features from these specific period of time, and order by question and participant.

5. Results

5.1. Classification Evaluation

While accuracy is the most common metric for classification tasks, the F1 score is preferred
in healthcare because its higher emphasis on the number of true positives. Further, unlike
the F1 score, accuracy is not the most suitable for unbalanced data. From Table 1, we
have an average of 30% of participants who screened positive for depression. Additionally,
F1 score lets us to easily compare with similar studies like used by Toto et al. (2021).
Therefore, we use F1 score defined in equation (2), as the metric to evaluate our models.
The F1 score is notably the harmonic mean of precision and recall. In the Appendix, we
also report on the average precision, recall, and AUC for our models.

F1 =
2TP

2TP + FP + FN
, (2)

where TP refers to the number of true positives, FP refers to the number of false positives,
and FN refers to the number of false negatives. For model evaluation, we formed test
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Figure 5: Aggregated results of F1 score and facial features, averaging the 15 datasets
questions, by the unimodal LSTM and LSTM Attention (LSTM Att) models,
and the multimodal AudiFace model. Note, Attention increases the F1 score.

sets with 20% of each dataset by selecting a randomly stratified sample. The training set
was balanced using upsampling before training the models. Each model configuration was
repeated ten times with randomly initialized weights and we reported the average of the
5 highest F1 scores. To prevent overfitting, early stopping was employed during training.
For temporal facial features, we set to 1, 000 the maximum time steps to input in models.

5.2. Aggregated Results

Figure 5 compares the depression screening capabilities of landmark, eye gaze, action unit,
and all temporal facial features. These results are aggregated over all 15 questions. Adding
Attention to the LSTM greatly increases the average F1 scores and greatly decreases the
standard deviation of the unimodal models. Thus, the LSTM Attention models are more
robust than the simpler LSTM models, presumably due to their ability to seamlessly handle
longer sequences. As such, we recommend using Attention when modeling temporal facial
features. The LSTM Attention models using landmark and eye gaze both achieved an
average F1 score of 0.64. AudiFace further improved the average F1 scores to 0.71.

5.3. Unimodal Models

The unimodal results from Table 2 reveal that different screening modalities are preferred
for different individual interview questions. While text-based BERT classifiers obtained the
highest average F1 score of any question, it was only the best for five of the individual
screening questions. Notably, these questions include datasets D5 (diagnosed, depression),
D6 (diagnosed, ptsd), and D7 (doing,today), which by far have the smallest average number
of time steps, as displayed in Figure 3. We hypothesize this is due to the smaller sequences
not containing sufficient information for the models that screen with audio and temporal
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Table 2: Unimodal Models: average F1 scores from BERT, VGGish, (1) LSTM, (2)
LSTM Att models by dataset.

Text Audio Temporal Facial Features

Dataset BERT VGGish Landmarks Eye Gaze Action Unit All

(1) (2) (1) (2) (1) (2) (1) (2)

D1 0.48 0.71 0.71 0.71 0.24 0.71 0.43 0.60 0.72 0.74
D2 0.66 0.69 0.65 0.69 0.64 0.66 0.74 0.67 0.64 0.67
D3 0.69 0.71 0.64 0.67 0.67 0.68 0.67 0.48 0.68 0.67
D4 0.71 0.72 0.69 0.69 0.68 0.72 0.67 0.69 0.68 0.69
D5 0.89 0.41 0.00 0.51 0.00 0.40 0.00 0.42 0.00 0.47
D6 0.83 0.61 0.41 0.60 0.30 0.57 0.10 0.67 0.20 0.61
D7 0.79 0.72 0.23 0.70 0.23 0.73 0.00 0.65 0.11 0.71
D8 0.68 0.72 0.58 0.69 0.58 0.69 0.64 0.65 0.58 0.65
D9 0.44 0.64 0.38 0.44 0.38 0.46 0.40 0.50 0.38 0.57
D10 0.64 0.64 0.70 0.69 0.68 0.67 0.74 0.50 0.64 0.73
D11 0.66 0.59 0.55 0.64 0.55 0.60 0.55 0.54 0.61 0.59
D12 0.42 0.69 0.57 0.64 0.58 0.66 0.56 0.75 0.56 0.67
D13 0.82 0.70 0.50 0.75 0.62 0.71 0.74 0.79 0.25 0.71
D14 0.69 0.69 0.59 0.68 0.58 0.73 0.69 0.49 0.64 0.66
D15 0.61 0.64 0.64 0.64 0.64 0.63 0.64 0.64 0.64 0.61

facial feature. In contrast, the pre-trained BERT classifiers are known to be successful at
capturing relevant semantic information in shorter text sequences.

The audio VGGish models and temporal facial feature LSTM models tie in regards to
average F1 scores for two datasets, namely, D4 (controlling, temper) and D15 (travel, lot).
Interestingly, after D7, these datasets contain the smallest average number of time steps.
VGGish only achieved the highest average F1 scores for another three of the individual
screening questions. Despite the lower computational cost of the models, the temporal
facial features achieved the highest average F1 scores for five of the individual screening
questions. Action unit features were most useful for D2 (anything, regret), D10 (feeling,
lately) and D12 (last, happy). The remaining two datasets were D1 (advice,yourself) with
all features and D14 (study, school) with eye gaze features.

5.4. Multimodal Models

The F1 score for the multimodal AudiBERT and AudiFace models are displayed in Table
3 for each of the different question datasets. In general, AudiFace variations achieve higher
F1 score for 13 of the 15 datasets than AudiBERT. AudiFace with eye gaze features and
AudiFace with action unit features screened for depression with a remarkable average F1
score of 0.93 for dataset D5 (diagnosed, depression). However, AudiBERT was also very
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Table 3: Multimodal Models: average ± standard deviation of F1 scores from the Au-
diBERT, AudiFace, with different temporal facial features, models by dataset.

AudiBERT AudiFace

Dataset Landmarks Eye Gaze Action Unit All

D1 0.65± 0.04 0.59± 0.02 0.52± 0.03 0.59± 0.03 0.70± 0.01
D2 0.78± 0.05 0.71± 0.01 0.77± 0.00 0.76± 0.01 0.72± 0.00
D3 0.71± 0.02 0.72± 0.02 0.74± 0.02 0.67± 0.01 0.74± 0.03
D4 0.73± 0.01 0.69± 0.00 0.74± 0.02 0.69± 0.01 0.76± 0.02
D5 0.92± 0.05 0.93± 0.06 0.93± 0.06 0.93± 0.06 0.90± 0.01
D6 0.73± 0.03 0.72± 0.10 0.73± 0.00 0.69± 0.03 0.71± 0.04
D7 0.86± 0.00 0.89± 0.02 0.86± 0.00 0.87± 0.02 0.87± 0.03
D8 0.69± 0.01 0.70± 0.02 0.71± 0.00 0.70± 0.01 0.69± 0.00
D9 0.54± 0.04 0.61± 0.07 0.58± 0.02 0.58± 0.02 0.61± 0.04
D10 0.72± 0.03 0.75± 0.03 0.76± 0.00 0.71± 0.03 0.72± 0.01
D11 0.62± 0.04 0.65± 0.03 0.64± 0.06 0.68± 0.08 0.65± 0.03
D12 0.63± 0.02 0.64± 0.05 0.61± 0.03 0.65± 0.04 0.66± 0.01
D13 0.66± 0.08 0.66± 0.01 0.67± 0.00 0.71± 0.01 0.66± 0.03
D14 0.70± 0.02 0.74± 0.05 0.72± 0.00 0.70± 0.03 0.69± 0.05
D15 0.69± 0.03 0.64± 0.00 0.71± 0.02 0.67± 0.00 0.64± 0.00

successful for this dataset with an average F1 score of 0.92. This is an improvement over
the unimodal BERT classifier which achieved an average F1 score of 0.89.

Of the individual facial features, AudiFace performed best with the eye gaze. This
AudiFace variation obtained the highest average F1 scores for 6 datasets (with 2 ties). In
contrast, AudiFace with landmark features won for 4 datasets (with 2 ties) while AudiFace
with action unit features won for 3 datasets (with 1 tie). This is in contrast with the
unimodal models where action unit features won more than the other temporal facial feature
types. The results of the unimodal models suggest that eye gaze is most complementary to
text and audio.

Combining all of the different types of temporal facial features helps improve depression
screening for some of the individual questions. This is most noticeable for D1 (advice,
yourself) where AudiBERT obtained an average F1 score of 0.65, and AudiFace with all
temporal facial features increased the average F1 score to 0.70. Yet, the unimodal model
with all temporal facial features achieved an even higher F1 score, indicating that the
audio and text introduced noise. In contrast, multimodal models achieved a higher average
F1 score than unimodal models for D2 (anything, regret) dataset, with the F1 score for
AudiBERT 0.01 higher than AudiFace with the temporal eye gaze features. However, for
D4 (controlling, temper), AudiFace with all temporal facial features achieves a higher F1
score than any of the other unimodal or multimodal models.

Overall, the multimodal models achieved higher average F1 scores than the unimodal
models for 9 of the 15 datasets. For those 8 of those 9 datasets, AudiFace achieved higher
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average F1 scores than AudiBERT. In some cases, the improvement in average F1 score
from adding temporal facial features is negligible given the standard deviation, like for
D5 (diagnosed,depression). In other cases, like D11 (friend,describe), the temporal facial
features greatly improved the average F1 score. Thus, we must conclude that incorporating
temporal facial features is advantageous for depression screening.

5.5. Question Selection

Understandably, dataset D5 (diagnosed, depression) achieved the highest F1 score of 0.93
when screening for depression with AudiFace in Table 3. However, in practice, this may
not be the best screening question, as it could be perceived as invasive. Therefore, other
questions may be preferred, such as D7 (doing, today) which achieved a respectable F1
score of 0.89 with AudiFace. This is a more general wellbeing question, though the ability
to screen with this question outside of a clinical interview setting still needs to be assessed.

If asking a variety of questions in a single session or over time, other questions that were
useful for screening included D2 (anything, regret) with AudiBERT, D10 (feeling, lately)
with AudiFace, and D13 (proud, life) with BERT. Interestingly, each of these three questions
perform best with different subsets of modalities. This is perhaps due to the length of the
responses or the topic of the question. D2 had fewer average time steps while D10 and D13
had higher average time steps. Both D2 and D13 ask about personal history. On the other
hand, D10 is another general wellbeing question like D7, so AudiFace performed well when
screening for depression with general wellbeing questions.

6. Discussion

Clinical Implications. AudiFace is a promising approach that could decrease the burden
of mental illness screening by replacing screening surveys that assess the existence and
severity of mental illnesses. AudiFace leverages the text, audio, and temporal facial features
extracted from a video. While we used these inputs from responses to individual questions
in the DAIC-WOZ datasets, AudiFace can be applied to any short video. Thus, patients
seeking healthcare could consent to be recorded during patient intake rather than complete
screening surveys. Alternatively, in the future, AudiFace could be incorporated into a
mobile video diary application that automatically performs mental illness screening. As
such, AudiFace could serve as part of a healthcare ecosystem that involves trained clinicians.

Technical Implications. Most of the existing multimodal models in the healthcare do-
main leverage only two modalities. Thus, AudiFace is unique in that combines embeddings
from three input channels extracted from video input. To accomplish this, we innovated
a strategy to use temporal facial features to successfully screen for depression. AudiFace
further improved these screening results demonstrating the value of using all three video
input channels. In particular, we assessed which of the facial feature types was most useful
for depression screening when using an individual interview question in unimodal and mul-
timodal models. Our results are important in that they inform the combination of question
and facial feature type to include when developing future video screening applications.

The integration of temporal facial features has the potential to make AudiFace more
robust than models leveraging only two video input channels. Unlike the audio and tran-
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scripts, the predictiveness of the temporal facial features would not compromised by poor
audio quality, heavy accents, or different dialects. Further, the stigmatization of depression
(Barney et al., 2006) can lead to conscious and unconscious attempts to influence screening
results. In this case, temporal facial features would likely be more useful than the other
modalities given that it is difficult to intentionally alter eye gaze, landmark, and activation
unit features. In AudiFace, the temporal facial feature modeling component is less com-
putationally expensive than the audio and transcript modeling components. Thus, there is
not a trade-off between robustness and computational cost.

Privacy Concern. If the multimodal AudiFace is adopted as part of the healthcare
ecosystem, the recorded video interviews would receive the same protections as any other
medical data. There is unfortunately always the concern of bad agents obtaining access
to protected data, but these interviews would likely be less of a concern than other stored
medical data. In fact, after the modeling occurs, the recording could be deleted, thus
reducing the privacy risk. Our work focuses on the incorporation of temporal facial features,
which are not stored in their raw form and therefore do not pose the privacy risk associated
with the audio or transcripts of the interviews. As such, it would be possible to extract the
temporal facial features for storage during the interview without recording the video. While
the models leveraging only the facial features did not perform as well as AudiFace, these
unimodal models are still an option that would preserve privacy, especially if modeling is
performed outside of a healthcare setting.

Limitations and Future Work. As is common for healthcare datasets, this research
was limited by the number of participants in the existing dataset. Further, the unequal
distribution of depressed participants (Table 1) added an additional modeling challenge. As
such, we are unable to advise regarding the generalizability of the results, which would need
to be assessed before deployment to ensure that the model is not biased by the participant
population. Though, it is worth noting, a strength of AudiFace is it’s applicability to
datasets with limited number of participants. Additionally, AudiFace is applicable for
other video datasets within and outside of the healthcare domain.

This research is also unfortunately limited by the lack of datasets containing videos with
depression labels. We used the DAIC-WOZ dataset which contained facial features derived
from the videos instead of raw videos to protect participant privacy. While we innovated
a unique strategy to utilize these facial features in a temporal manner, we were limited to
using the set of features provided. As such, we were unable to extract additional features or
feature embeddings from raw videos. Further, we were not able to establish an end-to-end
multimodal depression screening pipeline.

Thus, our future work involves collecting a datasets of mobile video recordings with
mental illness labels to further research in this domain. Such datasets would permit us to
determine the screening capabilities of short videos recorded outside of the clinical interview
setting as well as assess the generalizability of the results. Furthermore, raw videos recording
would allow us to extract additional temporal facial features as well as feature embeddings
not present within publicly available datasets in the healthcare domain. Lastly, our future
research involves incorporating more recent transformers within our multimodal framework.
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Appendix

Table 4: Questions dataset description, ordered alphabetically.
Dataset Question Example

D1 What advice would you give to yourself ten or twenty years ago?
D2 Is there anything you regret?
D3 When was the last time you argued with someone and what was it about?
D4 How are you at controlling your temper?
D5 Have you been diagnosed with depression?
D6 Have you ever been diagnosed with PTSD?
D7 How are you doing today?
D8 What’s your dream job?
D9 How easy is it for you to get a good night’s sleep?
D10 How have you been feeling lately?
D11 How would your best friend describe you?
D12 When was the last time you felt really happy?
D13 What are you most proud of in your life?
D14 What’d you study at school?
D15 Do you travel a lot?

Table 5: Landmarks: Average precision, recall, and AUC (also known as balanced accu-
racy for binary classification) by dataset and models.

LSTM LSTM Att AudiFace

Dataset precision recall AUC precision recall AUC precision recall AUC

D1 0.59 0.89 0.60 0.63 0.81 0.64 0.47 0.79 0.41
D2 0.53 0.84 0.51 0.53 1.00 0.50 0.59 0.89 0.60
D3 0.62 0.66 0.63 0.61 0.74 0.62 0.66 0.79 0.68
D4 0.53 0.99 0.50 0.54 0.96 0.53 0.55 0.93 0.54
D5 0.00 0.00 0.50 0.38 0.78 0.55 1.00 0.87 0.93
D6 0.29 0.70 0.50 0.44 0.94 0.50 0.87 0.61 0.77
D7 0.18 0.32 0.52 0.57 0.91 0.59 0.87 0.91 0.88
D8 0.50 0.69 0.46 0.59 0.83 0.55 0.55 0.96 0.54
D9 0.43 0.34 0.47 0.43 0.45 0.47 0.52 0.74 0.57
D10 0.62 0.80 0.65 0.61 0.79 0.64 0.73 0.77 0.73
D11 0.40 0.88 0.48 0.60 0.69 0.63 0.49 0.97 0.63
D12 0.54 0.60 0.50 0.60 0.69 0.58 0.55 0.77 0.59
D13 0.20 0.60 0.57 0.60 1.00 0.69 0.50 0.97 0.55
D14 0.51 0.70 0.47 0.54 0.92 0.51 0.65 0.86 0.65
D15 0.47 1.00 0.50 0.47 1.00 0.50 0.47 1.00 0.50
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Table 6: Eye Gaze: Average precision, recall, and AUC (also known as balanced accuracy
for binary classification) by dataset and models.

LSTM LSTM Att AudiFace

Dataset precision recall AUC precision recall AUC precision recall AUC

D1 0.20 0.30 0.53 0.76 0.67 0.64 0.43 0.66 0.35
D2 0.53 0.81 0.51 0.53 0.87 0.51 0.79 0.80 0.75
D3 0.64 0.70 0.65 0.55 0.89 0.55 0.61 0.93 0.67
D4 0.53 0.95 0.51 0.59 0.92 0.60 0.64 0.88 0.67
D5 0.00 0.00 0.50 0.46 0.35 0.52 1.00 0.87 0.93
D6 0.22 0.47 0.50 0.45 0.78 0.50 1.00 0.57 0.79
D7 0.18 0.32 0.52 0.62 0.89 0.66 0.82 0.90 0.85
D8 0.50 0.69 0.46 0.62 0.78 0.59 0.56 1.00 0.56
D9 0.43 0.34 0.47 0.45 0.47 0.47 0.52 0.67 0.55
D10 0.60 0.78 0.63 0.53 0.91 0.54 0.73 0.80 0.75
D11 0.40 0.88 0.48 0.62 0.58 0.64 0.53 0.90 0.62
D12 0.44 0.85 0.45 0.53 0.87 0.56 0.50 0.78 0.54
D13 0.30 0.50 0.60 0.59 0.89 0.61 0.67 0.70 0.67
D14 0.50 0.69 0.46 0.63 0.87 0.63 0.60 0.90 0.62
D15 0.47 1.00 0.50 0.49 0.88 0.53 0.63 0.85 0.68

Table 7: Action Unit: Average precision, recall, and AUC (also known as balanced accu-
racy for binary classification) by dataset and models.

LSTM LSTM Att AudiFace

Dataset precision recall AUC precision recall AUC precision recall AUC

D1 0.77 0.30 0.54 0.63 0.57 0.60 0.48 0.76 0.43
D2 0.59 1.00 0.61 0.62 0.73 0.60 0.64 0.93 0.67
D3 0.64 0.70 0.65 0.52 0.45 0.52 0.51 1.00 0.52
D4 0.53 0.91 0.50 0.56 0.90 0.55 0.53 1.00 0.52
D5 0.00 0.00 0.50 0.31 0.65 0.54 1.00 0.87 0.93
D6 0.07 0.18 0.50 0.59 0.78 0.65 0.87 0.57 0.75
D7 0.00 0.00 0.50 0.61 0.70 0.60 0.85 0.90 0.87
D8 0.54 0.79 0.52 0.63 0.67 0.61 0.55 0.97 0.54
D9 0.52 0.33 0.52 0.45 0.56 0.48 0.50 0.70 0.54
D10 0.82 0.67 0.76 0.44 0.58 0.42 0.63 0.83 0.65
D11 0.40 0.88 0.48 0.42 0.76 0.51 0.67 0.76 0.71
D12 0.42 0.84 0.45 0.68 0.84 0.69 0.52 0.85 0.58
D13 0.58 1.00 0.67 0.68 0.94 0.74 0.59 0.89 0.66
D14 0.56 0.90 0.56 0.53 0.46 0.50 0.59 0.87 0.60
D15 0.47 1.00 0.50 0.53 0.81 0.57 0.50 1.00 0.55
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Table 8: All: Average precision, recall, and AUC (also known as balanced accuracy for
binary classification) by dataset and models.

LSTM LSTM Att AudiFace

Dataset precision recall AUC precision recall AUC precision recall AUC

D1 0.59 0.92 0.61 0.65 0.86 0.66 0.55 0.97 0.55
D2 0.53 0.81 0.51 0.60 0.76 0.53 0.57 0.97 0.58
D3 0.64 0.73 0.65 0.62 0.73 0.62 0.61 0.97 0.67
D4 0.53 0.95 0.50 0.61 0.79 0.62 0.65 0.91 0.69
D5 0.00 0.00 0.50 0.38 0.62 0.56 0.94 0.87 0.92
D6 0.29 0.15 0.50 0.48 0.84 0.55 0.73 0.71 0.75
D7 0.25 0.07 0.51 0.70 0.72 0.68 0.87 0.87 0.87
D8 0.50 0.69 0.46 0.64 0.66 0.57 0.53 1.00 0.50
D9 0.43 0.34 0.47 0.48 0.70 0.50 0.53 0.74 0.57
D10 0.62 0.66 0.65 0.62 0.89 0.66 0.61 0.90 0.65
D11 0.44 1.00 0.55 0.65 0.54 0.63 0.49 0.95 0.63
D12 0.53 0.59 0.50 0.54 0.88 0.58 0.71 0.70 0.65
D13 0.60 0.16 0.70 0.61 0.85 0.69 0.49 1.00 0.53
D14 0.53 0.81 0.51 0.60 0.73 0.57 0.54 0.97 0.52
D15 0.47 1.00 0.50 0.49 0.81 0.51 0.47 1.00 0.50
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