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Abstract

The ability to search in unstructured reports of electronic health records requires tools that
can recognize clinically meaningful fine-grained descriptions both in queries and in report
sentences. Existing methods of searching reports that use either information retrieval or
deep learning techniques to model use context, lack an inherent understanding of the clinical
concepts or their variants that capture the same underlying clinical semantics. In this
paper, we present a new search algorithm that combines principles of information retrieval
and deep learning-driven textual encoding approaches with natural language analysis of
sentences in reports for fine-grained descriptors of concepts. In particular, we learn a
clinical similarity-preserving embedding from a chest X-ray lexicon using a new contrastive
loss. This allows us to form a report index that is robust to different forms of expressing
for clinical concepts in queries. The results show marked improvement in the quality of
retrieved reports as judged through average recall and mean average precision over a broad
range of difficult queries.

1. Introduction

With the wide-scale adoption of electronic health records (EHR) as the main repositories to
house structured and unstructured data in hospitals, tools for performing clinically relevant
searches have become important for clinicians, staff, and researchers alike. Such tools could
aid in a variety of use cases such as clinical decision support where patients with similar
conditions are searched (Syeda-Mahmood, 2010), auditing and review to see compliance with
care practices (Guo et al., 2018), or cohort selection for patients satisfying inclusion and
exclusion clinical criteria of clinical trials (Spasic et al., 2019). Other secondary use purposes
such as quality assurance, population health management, and clinical and translational
research have also been found made possible due to search capabilities in EHR systems
(Hanauer et al., 2015). Finally, searching in reports has also become important recently
for auto-labeling of image datasets from their companion reports for building deep learning
models (Syeda-Mahmood et al., 2020).
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Despite the importance of this problem, it remains challenging for several reasons. First,
the terms used in the query may be ad hoc and no direct matches may be present in the
reports. Secondly, spelling variants and other synonymous forms may be present. When
the query is fine-grained, i.e. asks not only for the finding but also specifies the laterality,
location, etc. (e.g. “right lower lobe pneumonia”) then the search method should be able
to identify key clinical concept in both queries and report sentences(e.g. “pneumonia”).
Further, it should be able to associate the relevant modifiers with the core finding (e.g.
“right lower lobe”). Finally, the search methods should be relatively fast limiting the
number of query expansions that can be done live during search.

Popular methods address this problem using mainly document-centric (Robertson and
Zaragoza, 2009) or neural vector-based (Reimers and Gurevych, 2019) approaches. In the
document-centric approach, the report text is broken into sentences and their words tok-
enized. In the neural vector approach, the entire sentence or its fragment is encoded as a
neural vector. In the former method, search is achieved through document ranking meth-
ods using the ratio of term frequency to inverse document frequency (TF/IDF). In the
neural vector approach, search is achieved through cosine distance in vector space. Neither
approach has a good understanding of the clinical semantics in terms of focusing on the
core clinical concept and its fine-grained description, their natural spoken variations, nor
equivalent terms that mean the same as the clinical concept occurring possibly in different
use context.

To illustrate this, let us consider the type of responses returned by these methods to
search queries on a database of 2,770 chest X-ray reports drawn from the Indiana Uni-
versity’s collection (Demner-Fushman et al., 2016). For a query such as “right lower lobe
pneumonia” shown in Table 1, the matching sentences from the corresponding reports are
shown in Table 1 Column 1 and 2 respectively for the two methods. As can be seen from the
ranked list produced, there are several mismatches indicating a basic lack of understanding
of the clinical context where the meaning of the core finding or the association of relevant
modifiers with core finding is lost. For example, there are negated instances of pneumonia
(e.g. “no active pneumonia”) or partial matches to terms such as “right upper lobe” which
is not the main focus of the query. The neural IR approach (Reimers and Gurevych, 2019)
also returned results that has little resemblance to the query.

Table 2 shows another example where term similarity in meaning was expected to be
observed. Here the query is “fluid overload” and the intention was to capture cases of
pulmonary edema or vascular congestion. While the TF/IDF’s top match is one of the
matching sentences, it is purely a coincidence due to the match in the term “overload”
rather than due to any semantic understanding of the condition. The neural IR matches
are also inconsistent at best, lacking an understanding of what was significant to capture in
the query from a match perspective. Furthermore, since embedding methods average the
vectors from each of the words to form phrasal vectors, they may not necessarily match
those derived from the shorter query phrases.

Thus we see that to build a robust search engine for clinical documents, there should be
a strong understanding of the clinical concepts including their synonymous ways of express-
ing, a good understanding of negations, as well as an emphasis on fine-grained descriptors.
In this paper we present an approach that addresses many of these deficiencies of existing
search techniques. Specifically we adopt a hybrid approach where we combine principles of
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Query=“right upper lobe pneumo-
nia” using TF/IDF

Query=“right upper lobe pneumo-
nia” using ClinicalBERT

1. No active penumonia. 1. Left-sided cardiomediastinal contours
are obscured by collapse of the left lung.

2. Left upper lobe calcified granuloma
noted.

2. Subsegmental atelectasis verus scarring
in the right midlung and left lower lobe.

3. Stable calcified granuloma in the right
upper lobe.

3. Subsegmental atelectasis in the left lower
lung.

4. Interval development of the mild patchy
airspace opacities within the posterior as-
pect of the right upper lobe, concerning for
underlying penumonia.

4. Granulomatous mediastinal calcifica-
tions.

5. No change in the small calcified granu-
loma in the right upper lobe.

5. Stable atelectatic/fibrotic changes of the
visualized lung, and stable left-sided calci-
fied granuloma.

6. There is stable appearing left upper and
right upper lobe bullous disease.

6. Bronchovascular crowding without typi-
cal findings of pulmonary edema.

7. Stable right upper lobe calcified granu-
loma.

7. Bronchovascular crowding, indistinct
central vascular margination.

8. In the collapsed left upper lobe are
stranding and penumatoceles.

8. Bibasilar pleural scarring.

9. There is round density within the ante-
rior segment of the right upper lobe.

9. Right-sided chest xxxx catheter tip is at
the lower svc.

10. Anterior segment of upper lobe,
rounded focal density.

10. Left-sided tunneled catheter terminates
at the caval atrial junction.

Table 1: Illustration of the difficulty of searching for clinical concepts in radiology reports.
Methods fail to recognize what the key clinical concept is for which a match should
be found. They also do not pair it with relevant modifiers.

information retrieval and deep learning-driven textual encoding approaches with the natural
language analysis of sentences in reports for fine-grained descriptors of concepts. Specifi-
cally, we capture the semantic context by combining vocabulary-driven concept extraction
with natural language analysis of the sentence structure to extract key clinical concepts
along with their associated description modifiers to form fine-grained finding (FFL) pat-
terns that include negations. The method assumes a domain lexicon or ontology that
captures similar meaning terms found in the FFL patterns. All such pairs of terms are used
to learn a contrastive neural embedding such that terms closer in meaning and sense are
projected close together. All the constituent terms of the FFL patterns from the report
sentences are used to form an index linking the terms back to their FFL patterns, their
enclosing sentences and hence their enclosing report documents.

Given a new query representing a phrase, a similar sentence analysis is performed to
extract the FFL pattern from the query. Each element of the query FFL pattern is then
projected into the contrastively learned embedding to retrieve the nearest in meaning term
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Query=“fluid overload” using
TF/IDF

Query=“fluid overload” using Clini-
calBERT

1. Increased interstitial lung markings are
seen, possibly due to volume overload.

1. Hyperinflation lungs.

2. No significant change in pneumothorax
or right pleural fluid.

2. Hyperinflation is present.

3. No pleural fluid collection or pneumoth-
orax.

3. Hyperinflation of the lungs.

4. No pleural fluid or pneumothorax is ap-
preciated.

4. Stable hperinflation without focal alve-
olar consolidation.

5. No pneumothorax or visible pleural
fluid.

5. Stable hyperinflation, bilateral upper
lobe pleuroparenchymal near and nodular
irregularities, right greater than left, xxxx
opacities in the peripheral right lung most
compatible with scarring.

6. No visible pleural fluid. 6. Bronchovascular crowding without typi-
cal findings of pulmonary edema.
7. Bronchovascular crowding, indistinct
central vascular margination.
8. Emphysema and chronic changes are
identified.
9. Emphysema.

Table 2: Illustration of the difficulty of searching for clinical concepts in radiology reports.
A second query case.

vector coming from any database reports. The results are aggregated across all query
FFL pattern elements and ranked to yield overall matches to query. By using a meaning
preserving embedding, we are able to match to similar terms yielding higher sensitivity,
while the overall usage context is still captured in FFL pattern to yield higher specificity
in matching patterns.

Generalizable Insights about Machine Learning in the Context of Healthcare

The use case analyzed in this paper indicates a good example of why incorporation of do-
main semantics is important to improve the performance of machine learning. Even though
the current neural textual embedding approaches are indeed trained on clinical documents,
they cannot identify the core clinical concept, its nearest meaning term, nor the association
of fine-grained descriptions to their core clinical concept. The approach presented here that
combines linguistic structure knowledge (i.e. sentence parsing) with meaning-preserving
clinical domain semantics embedding within a neural or document retrieval framework shows
how machine learning approaches can be augmented with knowledge for improved recogni-
tion. By swapping the domain lexicons for building the knowledge embedding, this method
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could be applicable for search of other domain-specific document databases using neural IR
approaches.

2. Related Work

A number of approaches have tried to address the problem of searching unstructured data
in electronic health records (Natarajan et al., 2010; Meystre et al., 2008), and implementing
them in hospitals (Hanauer et al., 2015). While the early engines attempted to do full text
indexing and search, later versions offered refined search modeling inclusion and exclusion
criteria (Hanauer et al., 2015). There has also been considerable work emphasizing context
modeling such as negations in radiology reports for critical findings (Lacson et al., 2012).
Recently, deep learning-based textual embedding methods have become available that are
being applied to medical text. These methods aim to capture the use context of words in
sentences of text as a surrogate for semantics or meaning (Bartusiak et al., 2019; Mikolov
et al., 2013; Pennington et al., 2014; Devlin et al., 2018). However, these methods cannot
guarantee the preservation of meaning during retrieval especially when the query terms
do not provide sufficient context as can happen in clinical text search. Nevertheless, deep
learning-based NLP models have become popular for medical text being used for medical
text classification, named entity recognition, medical question answering, de-identification
of text or patient phenotyping (Spasic et al., 2020). More recently, these embeddings are
trained on clinical documents to produce specialized versions such as clincalBERT (Huang
et al., 2019) or BioBERT (Lee et al., 2020) which is a domain-specific language represen-
tation model pre-trained on large-scale biomedical corpora. As we showed in Table 1 and
2, while individual methods may address some aspect of the problem, such as negation,
or word context, there is currently no approach that has a full understanding of clinical
semantics, particularly, for searching radiology reports.

3. Methods

Our search algorithm has 4 main stages of processing, namely, (a) fine-grained concept
extraction, (b) synonym expansion using supervised contrastive learning, (c) report index
creation (d) search using contextual encoding. While our approach is generally applicable
to any report collections that is covered by a clinical knowledge such as UMLS meta-
thesaurus, our current implementation is illustrated in the context of chest X-ray radiology
reports based on a chest X-ray ontology/lexicon recently reported in (Wu et al., 2020).

3.1. Fine-grained concept description in sentences

Following the approach described in (Syeda-Mahmood et al., 2020), we adopt the descriptor
Fi =< Ti|Ni|Ci|M∗i > to describe any concept extracted from a sentence where Fi is the fine-
grained label called FFL pattern, Ti is the finding type, Ni = yes|no indicates a positive or
ruled out finding, Ci is the core concept itself, and Mi are one or more of the possible finding
modifiers. For example, to describe an anatomical finding of “left lower lobe pneumonia”, we
use the FFL pattern disease|yes|pneumonia|left|lower lobe. For chest radiology reports, the
concept types are adequately covered by six major categories namely, anatomical findings,
tubes and lines and their placements, external devices, viewpoint-related issues, and implied
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Concept Type Anatomy Synonymous phrases

Mediastinitis Disease Mediastinum mediastinitis, mediastinitis/acute,
mediastinum inflammations, inflam-
matory disorder of mediastinum,
mediastinitides, inflammation of
mediastinum

Shoulder disorder Disease Bones/Soft Tissues sprengel deformity, shoul-
der/adhesive capsulitis, shoul-
der/frozen, shoulder joint disease,
milwaukee shoulder/pseudogout
syndrome, disorder of shoulder,
shoulder disorders

Table 3: Illustration of the variations in the description of a finding across radiology reports.

diseases associated with findings. For the purposes of our experiments in this paper, we
focus on disease concepts as those are the most commonly searched in electronic health
record (Natarajan et al., 2010). The values taken by each of the above variables is derived
from a chest x-ray lexicon as reported in an earlier work (Wu et al., 2020). Currently, the
lexicon consists of over 11,000 unique terms covering 237 concepts that include anatomical
findings, diseases, laterality, location, severity, and other appearance modifiers. Table 3
shows a few entry rows in the lexicon. As can be seen, each entry represents a core concept
and lists potentially synonymous ways in which the concept could be described in reports.
These are unordered lists curated by clinicians using a semi-supervised domain learning
assistant (DLA) tool described in (Wu et al., 2020).

3.2. Extraction of FFL Labels from reports

To automatically extract such patterns from sentences, we use the overall concept extraction
with phrasal grouping algorithm described in an earlier work (Syeda-Mahmood et al., 2020).
Briefly, the algorithm for extracting FFL labels from sentences in reports consists of 4 steps,
namely, (a) core finding and modifier detection, (b) phrasal grouping, (c) negation sense
detection, (d) pattern completion. The vocabulary of core findings from lexicon and their
synonyms was used to detect core concepts in sentences of reports using the vocabulary-
driven concept extraction algorithm described in (Guo et al., 2017).

To associate modifiers with relevant core findings, we used a natural language parser
called the ESG parser (McCord et al., 2012) which performed word tokenization and mor-
pholexical analysis to create a dependency parse tree for the words in a sentence as shown
in Figure 1. The initial grouping of words is supplied directly by the parse tree such as
the grouping of terms “alveolar” and “consolidation” into one term “alveolar consolidation”
shown in Figure 1. Further phrasal grouping is done by clustering the lemmas using word
identifiers specified in the dependency tree. For this, a connected component algorithm is
used on the word positions in slots, skipping over unknowns (marked with u in tuples). This
allows all modifiers present within a phrasal group containing a core finding to be automat-
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Figure 1: Illustration of phrasal grouping algorithm.

ically associated with the finding. For example, the modifier “stable” is associated with the
core finding “alveolar consolidation” in Figure 1. Finally, to determine if a core finding is
a positive or negative finding (e.g. “no pneumothorax”), we use a two-step approach that
combines language structuring and vocabulary-based negation detection (Guo et al., 2017).
The negation pattern detection algorithm identifies words within the scope of negation by
iteratively expanding neighborhood of seed negation terms by traversing the dependency
parse tree of a sentence (Guo et al., 2017).

3.3. Self-supervised Clinical Similarity Learning

In this paper, we develop a new embedding that is designed to capture similarity in the
meaning and sense of multiword clinical terms. It uses a supervised contrastive learning
approach to build an encoder for each clinical term wi in the vocabulary V using the
initial unordered similarity lists provided by an ontology such as the chest X-ray lexicon
Si = {wj |wj ∈ V and wj is clinically synonymous with wi}. The similarity lists obtained
for each clinical term vary in size from 1 to as large as 4,000 in the 11,000 term chest
X-ray lexicon. Note that due to the sub and super concepts being present in the similarity
lists, these lists are not necessarily symmetrical and cannot be recursively merged to form
larger groups without diluting the underlying semantics. Table 3 shows examples of such
similarity lists for a few clinical terms.

We now develop an embedding that captures the essence of these similarity lists and
puts an ordering metric to allow objective comparisons during search. It pulls together all
members of the similarity list of an anchor clinical term as positive samples and pushes
apart the rest as negative examples using a loss designed for this purpose originally for
image classification (Khosla et al., 2020). Given a clinical term wi, we encode it by a one-

hot encoding Ii ∈ {0, 1}|V |, s.t.
∑|V |

i=1 Iij = 1 as an input to the network. As a supervision

label, we form a binary label vector Yi ∈ {0, 1}|V |, s.t.
∑|V |

i=1 Yij = 1 iff wj ∈ Si and 0

7



Searching for Fine-Grained Queries in Radiology Reports

otherwise and
∑|V |

j=1 Yij = |Si|. Thus each similarity list is characterized by a unique binary
pattern label vector.

We generate a new encoder-decoder network consisting of an encoder as a dense fully
connected layer with ReLU activation and a decoder/projection network as another fully
connected layer with ReLU activation. The encoder maps Ii to a representation vector Ri

normalized to unit hypersphere, and the projection network renders the output zi to match
the expected binary pattern vector Yi. The similarity between an anchor clinical term wi

at index i in the ordered vocabulary V , and a candidate term wji that is originating from
the same similarity list Si at index j in the ordered vocabulary V can be captured by the
contrastive loss per similarity list as:

Lcontrast(Si) =
∑

wj∈Si

log
exp(zi · zj/τ)∑

a∈A(i)

exp(zi · za/τ)
(1)

Here zi is the projected vector for word wi and zj is the projected vector similarly
for wji. Finally, za is the projected vector for any term wa either inside or outside the
similarity list (i.e. ideally the entire vocabulary). In general, since the similarity lists are
small in size, the number of negative samples to differentiate them need not take up the
entire vocabulary V , so smaller batch sizes could be used. τ is the temperature to weigh the
contribution from similar vectors. Also, since there are multiple such similarity lists, one
for each vocabulary term, we can train them in sequential fashion through batching using
a cumulative contrastive loss as:

Lcontrast =

|V |∑
j

Lcontrast(Sj) (2)

Overall, the model was trained with 237 similarity lists from the chest X-ray lexicon cov-
ering a 11,000 term clinical vocabulary pertinent to chest X-rays. The designed network
architecture had the following parameters: input and output vector sizes= 11000, encoding
size =300 , temperature=0.05. We tuned the performance varying batch sizes from 200 to
1,000 words, and epochs from 5 to 50. Convergence per similarity lists was usually achieved
within 5 to 10 epochs. We used the Adam optimizer for fast convergence with the learning
rate as 0.001. Two NVIDIA P100 GPUs with 16 GB were used for training and training
took 5 min per batch. The network overall had around 33 million parameters.

3.4. Forming a report index for search

Given a report Rk, and a sentence Sj ∈ Rk, we use the approach described in Section 3.2 to
extract one or more FFL patterns Fi from Sj . Let wl denote a clinical term within Fj . For
example, an FFL pattern disease|yes|calcified granuloma|stable has 4 clinical terms disease,
yes, calcified granuloma and stable. The second term in particular, will be important to
retain in the index to avoid match to negations by design. Then using the similarity
encoding above, each such term can be expanded to clinically similar terms as Gl = {wp ∈
V |d(Wl,Wp) < δ} where Wp, Wl are the similarity encoding vectors of the terms wp, wl

respectively and d(:) is the cosine distance between the encoding vectors. Using each of the
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wp we can now create a reverse index entry wp− > (Fi, Sj , Rk). Thus each sentence will
be indexed by multiple terms wp corresponding to clinically synonymous word variants of
elements in their constituent FFL patterns which already group all elements of a concept
found within a sentence. This pre-processing trades off search time for storage size in the
index. By pre-indexing for all synonymous term variants, we handle term variants of queries.
We also ensure high sensitivity or recall while maintaining search as an O(1) operation per
lookup. It also avoids the need for query expansion during search.

3.5. Searching reports in response to queries

Given a query q consisting of a set of clinical terms, a similar process to that described in
Section 3.2 can be used to form FFL patterns Fq from the query as well by using the lexicon
vocabulary. Here we assume that all queries can be formulated using one or more clinical
terms from the vocabulary within the lexicon or those terms will be not be used during
search and encoding formation. Using each clinical term wq ∈ Fq, we can simply lookup
the report index to find all possible matching FFL patterns from the report sentences. By
accumulating the matches per term, we form a histogram of hits h(Fi) for all matching
Fi ∈ Sj ∈ Rk. Since the FFL patterns contain a minimum of 3 clinical terms (concept type,
positive or negative finding, core finding), retaining h(Fi) > 3 ensures high recall. However
the precision can still be low with such an approach as a large number of matches are still
possible. In our approach we ensure |h(Fi) − |Fq|| is as low as possible implying the FFL
patterns with the highest value of h(Fi) will be retained in this step.

3.6. Final ranking using use context with BERT

The index lookup and ranking step in the previous step pruned a large number of candidates
from the report index while still ensuring a high recall. In the final step, we prune the
resulting ranked list using transformer methods to encode the overall clinical use context
captured in the FFL patterns. Specifically, we form an average vector from the query FFL
pattern B(Fq) =

∑n
i=1B(wqi) where B(wqi) is the BERT-encoded vector for word wqi ∈ Fq.

The B(Fi) can similarly be constructed from each of the ranked FFL patterns matched.
Cosine distance between the BERT query phrase vector and those of the FFL patterns is
used to produce the final ranking and a threshold is chosen. Since the order of modifiers is
fixed in the FFL pattern, the local word context in the FFL pattern is now well captured
by transformer-based methods (Huang et al., 2019; Lee et al., 2020). As the precision and
recall vary based on the chosen threshold, a cross-validation analysis was done to choose
an optimal threshold to balance between precision and recall. While our implementation
currently use the pre-trained BERT from Huggingface (bertbase-uncased), other variants
of BERT could be used including clinicalBERT (Huang et al., 2019).

4. Cohort

To test the efficacy of our approach we formed an evaluation cohort of report dataset and
queries as described below.
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4.1. Dataset

Our experiments were carried out on a public collection of radiology reports provided by
Indiana University (Demner-Fushman et al., 2016). The institutional clearances as well as
the inclusion and exclusion criteria for forming this publicly available dataset has already
been described in (Demner-Fushman et al., 2016). Specifically, a total of 2,557 unique
reports were found in this collection after pruning for duplicates and 10,980 sentences were
extracted from the reports. Using the FFL pattern extraction algorithm, a total of 17,174
patterns were extracted from these sentences averaging 1.56 FFL patterns per sentence.
By pooling all clinical terms within FFL patterns, we obtained 80,122 clinical terms. The
whole index creation process for this report collection took less than 10 seconds to generate.
With larger report collections, this operation can be made scalable by recording the index
in a commercial search engine such as ElasticSearch (Gormley and Tong, 2015).

4.2. Feature choices

Each clinical term found in any FFL pattern was represented by an embedding feature
vector using similarity encoding and neighborhood explorations in the embedding space to
retrieve all related embedding vectors. For our lexicon, this generated 2,952,578 unique
terms that were then used to create the report index.

4.3. Query selection

In order to test the features of different search algorithms, we formed a set of disease queries
by selecting the names of diseases found in the Indiana collection that had at least one report
occurrence. To each of these we added select modifiers characterizing location, laterality,
severity, hedging, and co-association as found commonly in reports. This list is shown in
Table 4 along with the number of report occurrences in our collections that constitute a
match to the query. As can be seen, some of the queries are semantically equivalent and
their results are expected to be identical (for example, “granuloma” and “granulomatous
disease”). A total of 42 queries were used to test all search methods.

4.4. Ground truth evaluation

For each of the queries, a set of ground truth matching sentences were recorded from the
Indiana reports through manual inspection by 2 domain experts. The resulting ground
truth database recorded 945 entries of matches to all 42 queries recorded with a key that
captured both report IDs and sentence IDs per query. Since queries are not likely to ask
for missing diseases rather than presence of diseases, we only considered positive instances
of diseases in our queries even though the report index itself captured negative occurrences
of concepts.

5. Results

In this section, we present our results of testing the proposed approach on the benchmark
queries and the associated report dataset.
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Query N Query N

calcified granulomatous disease 137 fluid overload 10
airspace disease 117 interstitial lung disease 9
prior granulomatous infection 77 penumonia 8
old granuloma 77 atypical infection 3
previous granuloma 77 perihilar calcified granulomas 3
copd or emphysema 51 pericardial effusion 3
emphysema 51 nodules compatible with granuloma 2
copd 51 early pneumonia 2
unchanged granuloma 44 right upper lobe penumobia 1
stable granuloma 44 chest infection 1
right lower lobe granuloma 24 bilateral copd 1
granulomatous disease 20 prior asbestos exposure 1
granuloma 20 mostly likely copd 1
bilateral granuloma 17 pulmonary edema 1
aortic calcifications 14 small granulomatous disease 1
granuloma in the left lower lobe 13 opacities with infection 1
granuloma in the left upper lobe 13 bilateral penumonia 1
osteopenia or other skeletal disease 12 cirrhosis 1
skeletal diseases 12 suspected emphysema 1
consistent with emphysema 11 hyperexpansion consistnet iwth em-

physema
1

chronic granuloma 10 aveolar hemorrhage 1

Table 4: Illustration of queries and the corresponding number (N) of ground truth matches
to test various search algorithms.

5.1. Evaluation metrics

For all the methods tested, we evaluated for each query, a per query precision as the ratio
of number of matching keys over the total number of retrieved keys, while per query recall
was recorded as the ratio of matching keys to the size of the ground truth match set for
the query. In addition, for each query, we recorded the rank of the match for each key in
the ground truth list for the query to compute the mean average precision as described in
(map).

5.2. Comparison methods

To compare our approach to state-of-the-art algorithms for medical text retrieval, we imple-
mented a classical Term Frequency and Inverse Document Frequency (TF-IDF) information
retrieval method that creates a term-document matrix. TF-IDF is made up of two parts,
term frequency (TF) and inverse document frequency (IDF). TF gives the number of times a
term occurs in a document. IDF is computed as the inverse frequency of documents contain-
ing the searched term. TF-IDF rewards term frequency and penalizes document frequency.
BM25 (Robertson and Zaragoza, 2009)improves upon TF-IDF by accounting for document
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Method Reports Sent. Queries Avg.Prec. Avg.Recall MAP Total Time

Ours 2,557 17,174 42 0.41 0.91 0.43 1.62s
BM25 2,557 17,174 42 0.28 0.53 0.33 0.05s

SBERT 2,557 17,174 42 0.09 0.13 0.11 10.50s

Table 5: Retrieval performance comparison of different methods and ablation studies.

length and term frequency saturation. BM25 represents state-of-the-art TF-IDF-like re-
trieval functions in document retrieval, and often achieves better performance compared to
TF-IDF. Hence we adopted the BM25 implementation for a comparison method based on
information retrieval approach.

To compare with neural network approaches, we adopted sentence-BERT (SBERT)
(Reimers and Gurevych, 2019). In SBERT, a siamese network architecture is used to em-
bed queries and documents into the same latent space, enabling nearest-neighbor semantic
retrieval. In inference, since the representation of the candidate texts can be pre-computed,
only the query embedding needs to be computed, enabling fast and efficient retrieval. We
used an identical network to encode the queries and the sentences. The Clinical BioBert
(Huang et al., 2019) was used as our encoder, which was initialized from BioBERT (Lee
et al., 2020) and trained on clinical text. The MEAN-pooling strategy was used the gener-
ate the fixed sized sentence embeddings (by computing the mean of all output vectors). We
employed the same rationale in (Yang et al., 2019; Zhang et al., 2020), which assumes that
the “best” sentence in a document provides a good proxy for document relevance. There-
fore, in retrieval, we compute the cosine similarity between the query and every sentence in
the patient reports, and select the highest sentence score as the report score for ranking.

5.3. Performance

The results of our comparison analysis is shown in Table 5. As can be seen, our method
yields far higher average recall than the comparable methods while still achieving more than
27% improvement in precision over the nearest comparison. The increased recall is due to
the indexing step that already incorporates synonym variants, and fine-grained description
in the FFL pattern. The increased precision is due to the pruning of negation matches
and the computation of average vectors in BERT encoding from clinical terms in the FFL
pattern rather than the entire sentence. Although our method is currently slower than the
BM25, it is amenable to scaling with fast search engine implementations when the report
collection grows large due to the use of an index.

6. Discussion

In this paper, we have introduced several enhancements compared to a traditional IR or
neural IR approaches in searching for clinically meaningful matches to queries in documents.
First, our representation of document text is in the form of clinical context vectors derived
automatically as FFL patterns. Secondly, we introduce a new similarity preserving con-
trastive embedding to capture all meaning-wise variants and spelling variants of concepts.
Finally, our search method allows for fast lookup (O(1)), while still allowing for synonym
expansions and term variants.
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It is a hybrid approach combining principles of information retrieval and textual encod-
ing approaches with the natural language analysis of sentences in reports for fine-grained
descriptors of concepts. The new similarity-preserving encoding leads to a marked improve-
ment in average recall performance across queries as well as significant improvement in
mean average precision.

In a clinical use case, the implications of using our search engine would be greater
flexibility in querying while still ensuring high sensitivity and specificity in capturing the
intentions of the user.

Note that the neural vector search of lexicon terms derived from contrastive embedding
is still a better alternative to direct lookup of lexicon where a small variation in the query
could lead to a miss in the lookup altogether.

Limitations Our approach, however, currently relies on the availability of a domain lexi-
con preferably composed by clinicians who can reflect an understanding of clinical concepts
and their equivalent terms. Automatic generation of such lexicons for different domains
is an interesting future research direction. Further, the current multi-step approach could
be optimized to develop an end-to-end machine learning module that incorporates all the
constituent processing, an aspect that will be explored in future.
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