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Abstract

Annotating medical images for the purposes of training computer vision models is an ex-
tremely laborious task that takes time and resources away from expert clinicians. Active
learning (AL) is a machine learning paradigm that mitigates this problem by deliberately
proposing data points that should be labeled in order to maximize model performance. We
propose a novel AL algorithm for segmentation, ALGES, that utilizes gradient embeddings
to effectively select laparoscopic images to be labeled by some external oracle while reducing
annotation effort. Given any unlabeled image, our algorithm treats predicted segmenta-
tions as truth and computes gradients with respect to the model parameters of the last
layer in a segmentation network. The norms of these per-pixel gradient vectors correspond
to the magnitude of the induced change in model parameters and contain rich informa-
tion about the model’s predictive uncertainty. Our algorithm then computes gradients
embeddings in two ways, and we employ a center-finding algorithm with these embed-
dings to procure representative and diverse batches in each round of AL. An advantage of
our approach is extensibility to any model architecture and differentiable loss scheme for
semantic segmentation. We apply our approach to a public data set of laparoscopic chole-
cystectomy images and show that it outperforms current AL algorithms in selecting the
most informative data points for improving the segmentation model. Our code is available
at https://github.com/josaklil-ai/surg-active-learning.

1. Introduction

In recent years, both computer-assisted surgery and the automation of surgical video anal-
ysis have shown significant promise in effectively preventing adverse surgical events and
postoperative outcomes. The advent of deep neural networks for computer vision has al-
lowed for scalable surgical workflow analysis, skill assessment, and automated surgical feed-
back for surgical trainees that is unprecedented in surgery (Maier-Hein et al., 2017). Many
recent works have adopted convolutional neural networks (CNNs) for recognition tasks on
laparoscopic or open surgical video at the frame-level, including tool detection for operative
skill assessment, surgical phase recognition, and the detection of anatomical features (Jin
et al., 2018; Twinanda et al., 2017; Ban et al., 2021). Automated analysis coming from
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deep learning models holds great potential for surgical education, training, and research
(Mascagni et al., 2021).

To realize the aforementioned potential of AI in surgery, a detailed visual understanding
of the surgical scene over the course of a surgery is necessary. This can be used both to
improve the effectiveness of AI-assisted surgery and to ensure surgical safety. A key com-
ponent of this is the segmentation of anatomical tissue and structures and instrumentation
employed during the surgeries. Segmentation is especially relevant for AI in surgery since
many works (Madani et al., 2020; Islam et al., 2019; Hasan et al., 2020) utilize the seg-
mentation of the surgical scene as a way to delineate tissue and organ boundaries or clearly
identify tools in the surgical scene for either retrospective analysis, real-time corrective feed-
back, or clinical decision support. For example, Madani et al. (2020) utilize segmentation
models to accurately and safely identify dangerous zones of dissection in order to guide
clinician decisions during operation.

Therefore, there is active work in developing deep learning based semantic segmentation
models (Yang et al., 2017; Gorriz et al., 2017; di Scandalea et al., 2019; Sourati et al., 2018).
However, as a consequence of their data hungry nature, collecting a large amount of training
data as is standard for training good deep learning models is labor-intensive. The acquisition
of large, quality training data sets diverts time and resources away from expert clinicians,
which detracts the entire point of utilizing deep learning models for fast, accurate, and
scalable computer-assistance and surgical analysis. In general, for most biomedical tasks,
acquiring labels for training images requires clinicians with years of background to create
the most high quality and reliable image labels (Kim et al., 2020). Carefully labeling data at
the frame-level for segmentation of laparoscopic or open surgical videos is not only tedious
and expensive, but also unique in that there are highly variant prevalences of different
morphological features in the data. Thus, labeling efforts that don’t take into consideration
the informativeness of data can lead to a data set with redundant samples. For the purposes
of developing accurate deep learning models for surgery, it is critical to take into account
these considerations as we wish to target larger sets of anatomy and instrumentation for a
broader range of surgeries with diverse and complicated workflows.

Active learning (AL) offers the potential of being an effective way of maximizing the
performance of deep learning models with minimal available data. Active learning is a
framework for machine learning where a model has the ability to beneficially select its own
training data (Cohn et al., 1994). In the context of deep learning, a neural network is first
trained on a fixed initial training set, and then by some acquisition function, iteratively
identifies batches of new data from some unlabeled set that should be labeled by some
external oracle (Gal et al., 2017). After labeling, these new data points are included in the
training set, and the model is retrained. However, if new data points are chosen without
regarding model uncertainty or batch diversity, these new labeled data points may not
contribute much to model performance gain (e.g. training a network on 100 diverse images
will yield much better model generalizability than training a network on 1000 very similar
images). Thus, it is critical in AL to choose a query function that intentionally selects
difficult and diverse samples for the model to learn in order to maximize performance.

Several works have applied the active learning paradigm to domains where labeling is
costly, such as in biomedical image segmentation (di Scandalea et al., 2019; Sourati et al.,
2018; Kim et al., 2020; Yang et al., 2017). However, these approaches require specialized
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model architectures effective only on particular data sets that do not generalize well to
surgery. In addition to model restrictions, many existing approaches do not consider diver-
sity of acquired samples in each round of AL. Our approach utilizing gradient embeddings
encapsulates model uncertainty by measuring how much a new data point influences changes
in model parameters. Moreover, these gradient embeddings intrinsically store semantic class
information that distinguishes new data points from each other, thus ensuring the hetero-
geneity of the acquired batch. A few existing approaches have utilized gradient information
in a similar way for the classification setting (Ash et al., 2020), but semantic segmentation
presents additional challenges that we address such as class imbalance, difficult spatial or
structural relationships, and high-dimensionality.

In this work, we propose a novel AL framework called ALGES: Active Learning with
Gradient Embeddings for Semantic segmentation. First, we give a new perspective into mea-
suring model uncertainty by observing pixel-level contributions to the gradients of semantic
segmentation model parameters with the cross-entropy loss. Specifically, we introduce two
ways of summarizing gradients to produce gradient embeddings at the image-level and at
the semantic-level. These two approaches confront the problem of high-dimensionality of
semantic data, a challenge that does not exist in the classification setting. We note that
the L2-norms of these gradient embeddings can be used as a measure of uncertainty for
data points that need to be selected for labeling. ALGES relies on the core idea that these
gradient embedding magnitudes encode uncertainty information in a robust manner. Fur-
thermore, we compare how these methods of embedding generation perform when used as
seeds to the k-MEANS++ initialization strategy (Arthur and Vassilvitskii, 2007), which
ensures diversity of the acquired batch of uncertain data points. Finally, we apply ALGES
to a publicly available data set of laparoscopic surgery images (Hong et al., 2020), where
class imbalance and semantic difficulty are key issues. In summary, our contributions are:

• We develop a new AL framework that leverages gradient information at the semantic
level in a way which to our knowledge, has not been previously explored.

• We introduce two methods of deriving gradient embeddings for segmentation at the
image-level and semantic-level for unlabeled images that can be used to acquire diverse
batches of data with high model uncertainty.

• ALGES displays performance increases over established AL algorithms on a segmen-
tation data set of laparoscopic cholecystectomy images (Hong et al., 2020) that is a
sample of real-world surgical video data.

• Our proposed method is generalizable to model architecture and data setting, making
ALGES a prime candidate for querying data to be annotated in not only laparoscopic
surgery, but a broad variety of biomedical domains, where unlabeled data is abundant
and highly heterogeneous. ALGES is adaptable, simple, and effective.

Generalizable Insights about Machine Learning in the Context of Healthcare

This work highlights the significance of understanding how model parameters change so
that the best training data set can be assembled under a limited budget. Deep learning
models are trained with gradients, and data points that induce large gradients are ones
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which the model has to make large updates to its parameters in order to learn. Thus, gra-
dients intrinsically hold uncertainty information and should be incorporated in approaches
designed to improve model performance with limited data. ALGES is one of the first ap-
proaches to utilizing gradients of segmentation losses in the active learning setting, and this
idea could be useful in creating frameworks for other computer vision tasks on biomedical
data. This work outlines a fruitful direction for research in minimizing labeling efforts to
spare valuable clinician time and resources, while also improving model performance for
AI-assisted surgery in the enhancement of surgical healthcare.

2. Related Work

Many works have investigated the active learning paradigm in the context of computer
vision. However, the breadth of literature is relatively limited for active learning for seg-
mentation as opposed to image classification. Here, we review the current state of active
learning research and the application of this framework in biomedical image segmentation.

There are several established AL approaches in the classification setting, such as Max
Entropy sampling, Margins sampling, and Least confidence sampling, which utilize a model’s
prediction probability as a measure of uncertainty for unlabeled data points, of which a batch
of highly uncertain samples are acquired (Shannon, 1948). The Bayesian active learning
by disagreement algorithm incorporates ideas from Bayesian modeling in deep learning in
approaching the AL framework (Gal et al., 2017). Newer approaches to AL for classification
problems have emerged where the diversity is considered in order to reduce redundant data
points in acquired batches (Kirsch et al., 2019; Hemmer et al., 2020; Sener and Savarese,
2018). In this manuscript, we focus on the more challenging semantic segmentation setting.

There has been growing work in developing AL frameworks for the nuanced semantic
segmentation space. Yang et al. (2017) proposed a new fully convolutional neural network
architecture that performs state-of-the-art in gland and lymph node segmentation, but their
AL algorithm hinges on this highly specialized model architecture and is not robust to other
architectures that perform better on other biomedical data sets. Sourati et al. (2018) used
Fisher information as a criterion for querying the best images for patch-wise segmentation
of both adolescent and newborn brains. Their work demonstrates how gradients of model
parameters are used to infer the value of an image being labeled, however they aggregate
gradients in a limiting way to reduce the parameter space when computing the Fisher in-
formation, which hinders the ability to capture rich spatial information in the multi-class
segmentation setting. di Scandalea et al. (2019) similarly tries to leverage uncertainty as
a criterion by using dropout regularization in an axon-myelin segmentation model, while
Mackowiak et al. (2018) take a unique approach incorporating annotation cost when cre-
ating measures for selecting regions for annotation, although both methods do not address
diversity when acquiring regions for annotation, which could lead to redundant data.

A few more recent works try to capture the notion of semantic difficulty in their ap-
proaches. Siddiqui et al. (2020) teaches a novel framework that utilizes RGB-D data to
simulate entropy and divergence of multiple vantage points in order to query regions for
annotation. This approach is impractical in the surgery setting and many other biomedical
domains, since pose and depth information is not readily available with this type of data.
Xie et al. (2020) also introduce a unique probability attention module that ensures that
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a similar semantic difficulty value is computed for pixels of a particular semantic. This
semantic difficulty is guided by an error mask and is combined with uncertainty informa-
tion to rank images that should have the highest priority for annotation. We compare our
method with this work in subsequent sections.

Other works attempt to mitigates various problems arising in larger batch settings in
active learning. Ghorbani et al. (2021) approach scalability in AL by filtering data points
with the highest data Shapley values in the unlabeled pool before applying traditional
AL methods in an attempt to reduce the unlabeled data space. Citovsky et al. (2021)
propose an efficient active learning algorithm for dealing with the batch sizes several orders
of magnitude larger than typical settings, although we focus on the small batch setting as
is common for AL for small biomedical data sets.

A key preliminary work (Ash et al., 2020) to this manuscript proposes an algorithm
for batch active learning in the classification setting using gradient embeddings. These
embeddings are computed as a scaling of normalized activations from the penultimate layer
of any neural network. They show that the magnitude of the gradients of the parameters
in the last layer of a network implicitly contains information on a data point’s influence
on the model, and thus can be used as a natural measure of model uncertainty. However,
computing and utilizing gradient embeddings in this manner is not readily apparent in the
segmentation setting. Our work introduces two methods, one considering gradients for the
image as a whole, and one considering gradient contributions from each pixel along with
semantics, to show how gradient embeddings can be effectively used in active learning for
semantic segmentation.

3. Methods

3.1. Preliminaries

We provide an overview of ALGES in Figure 1. In the subsequent sections, we clearly define
the AL problem and show two methods of deriving gradient embeddings for segmentation.

3.1.1. Active learning

For completeness, we explicitly formulate active learning in the batch setting. Let D =
DL ∪ DU denote the entire set of data points, DL denote labeled data, and DU unlabeled
data. Given D , a modelM trained on DL, and a batch size B, the AL objective for each
round is to select B images x∗ from DU using a query function q:

{x∗1, . . . , x∗B} = q({x : x ∈ DU},M)

where q can be any function representing a criterion for selection. Concretely, the AL
framework selects a batch of data points from the unlabeled data pool via some criterion
utilizing the current trained model. A simple AL objective function is the random sampling
method, which is equivalent to selecting B data points uniformly at random from the
unlabeled pool. There are other common acquisition functions used to select batches of
unlabeled data for labeling, and we compare our method to these standards in subsequent
sections.
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A. Training on labeled data

B. Use trained model to compute gradients for unlabeled data  

D. k-MEANS++ 
initialization in embedding 
space 

E. Annotation by oracle

C. Summarize gradients 

into gradient embeddings 

Figure 1: Workflow of ALGES. A) First, the segmentation model is trained on the limited
initial pool of training data which have labels, DL. B) The trained model then
makes predictions on the unlabeled data DU and computes gradients G for each
image as outlined in this manuscript. C) The gradients G per image are summa-
rized in the two methods we demonstrate in this work into gradient embeddings g
per image. D) The centroids of these embeddings are found using k-MEANS++
initialization, resulting in a diverse and representative batch of images. E) The
selected images are annotated by a clinical expert or other external oracle and
added to the training pool of labeled data DL, where the model is retrained and
the entire process is repeated until the model achieves the desired performance.

3.1.2. Segmentation model, inputs, and outputs

Let lowercase bold letters denote vectors and uppercase bold letters denote matrices. Let f
represent a neural network with parameters θ = (W,V) where W denotes the parameters
of the last layer of the network and V denotes the parameters of all other layers in the
network. Then f(x, θ) = σ(W · z(x,V)), where σ denotes a nonlinearity (i.e. softmax,
σ(x)i = exi/

∑K
k=1 e

xk) and z(x,V) represents activations coming from the penultimate
layer of the network.

In this work, we consider a segmentation model where the weightsW = (w1, . . . ,wK)⊤ ∈
RK×d of the last layer of the network are the parameters of a 1× 1 convolution layer with
K filters, where K is the number of output classes and each filter wk ∈ Rd×1. We denote a
singular input instance to this model as X ∈ R3×N×M , where N and M are the dimensions
of the image, and we signify the ground truth output as Y ∈ RK×N×M with the same
height and width dimensions as the input. Let xij ∈ R3 indicate a singular pixel in the
input, where 1 ≤ i ≤ N and 1 ≤ j ≤ M , and yij ∈ RK a one-hot encoding of the corre-
sponding ground truth classification of this pixel. Finally, we can define the predictions of
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Figure 2: (a) The input, in our application a laparoscopic image. (b) Ground-truth segmen-
tation of the input delineating relevant anatomy and instruments. (c) Current
model predictions. (d) Gradients induced by this output. The magnitudes in the
heat map are L2-norms of the gradient embeddings per pixel.

this model as Ŷ ∈ RN×M where each pixel has prediction ŷij = argmaxk∈{1,...,K} pijk, and

where pij = f(xij , θ) ∈ RK are the predicted class probabilities for an individual pixel.
We note that semantic segmentation of any image can be thought of as multiple multi-

class classification problems, where the input for each problem is one pixel with 3 RGB
values and the output is some one-hot encoding representing the predicted semantic class
of that pixel.

3.1.3. Computing Gradients for Segmentation with Cross Entropy Loss

Ash et al. (2020) utilize gradient embeddings in the classification setting to acquire batches
of unlabeled data. They compute gradients a for the final fully connected layer in a neural
network. We observe that segmentation models typically have dense output, and many have
1 × 1 convolutions convolved over penultimate activations. This is equivalent to multiple
smaller classification problems where the convolution filters are like the weights of a fully
connected layer. We derive gradient expressions with respect to segmentation and will
utilize these when we present our approach in subsequent sections. We use these calculated
gradients to produce embeddings at the image-level and then explore a different approach
that incorporates semantic information not readily present at the pixel level.

Consider the semantic segmentation setting. A commonly used loss function in optimiz-
ing segmentation networks is the standard cross-entropy loss. Since we do not have labels
in the active learning setting at first, we must treat the current model’s predictions of the
output as ground truth. The cross-entropy loss for one image is then:

LCE(f(X, θ), Ŷ) =
1

NM

∑
ij

ℓij

=
1

NM

∑
ij

(
−

K∑
k=1

ŷijk ln pijk

)

=
1

NM

∑
ij

(
ln

(
K∑

k=1

ewk·zij

)
−wy · zij

) (1)

which can be thought of as an average of per-pixel losses. We can then use the expression
for the gradients corresponding to any output label k computed in Ash et al. (2020) for
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an individual pixel, since the classification of a pixel is a multi-class classification problem.
Substituting into the segmentation formulation above:

∂LCE

∂wk
=

1

NM

∑
ij

∂

∂wk

(
ln

(
K∑

k=1

ewk·zij

)
−wy · zij

)

=
1

NM

∑
ij

(pijk − I(k = ŷij))zij =
1

NM

∑
ij

(
∂L

∂wk

)
ij

∈ Rd

∂LCE

∂W
=

(
∂L

∂w1
, . . . ,

∂L

∂wK

)⊤

(2)

where
(

∂L
∂wk

)
ij
= (pijk − I(k = ŷij))zij is an individual pixel’s contribution to the gradient

calculation for weights wk. Note that each wk is d dimensional, and they represent weights
for a particular output class. There are (N ×M)×K such terms, which we can interpret
as a matrix:

G =



(
∂L
∂w1

)
11

. . .
(

∂L
∂wk

)
11

. . .
(

∂L
∂wK

)
11

...
...

...(
∂L
∂w1

)
ij

. . .
(

∂L
∂wk

)
ij

. . .
(

∂L
∂wK

)
ij

...
...

...(
∂L
∂w1

)
NM

. . .
(

∂L
∂wk

)
NM

. . .
(

∂L
∂wK

)
NM


∈ R(N ·M)×K×d (3)

This matrix G represents each pixel xij ’s contribution to the gradients of the parameters
in the last layer of the model.

3.2. Our approach

Our approach to active learning for multi-class semantic segmentation is detailed in Algo-
rithm 1. We first randomly sample B images from the available unlabeled data DU and
train a model on this initial batch of images. Then, for each iteration of AL, we employ
the current model to make predictions on all remaining unlabeled data and compute gra-
dient embeddings in two different approaches, at the image-level and at the semantic-level,
which we describe in the next sections. The resulting embeddings are used as a seeding to
the k-MEANS++ initialization algorithm, which selects centroids of these unlabeled data
embeddings that are consistently of high magnitude and high diversity (Arthur and Vassil-
vitskii, 2007). The selected unlabeled data points are then sent to an external oracle for
labeling and then consumed in the labeled data set, and the process is repeated again with
a model trained on this slightly larger training data set.

3.2.1. Image-level Gradient Embeddings

We investigate computing gradient embeddings per-image in two ways. The first directly
computes induced change in the weights W due to the entire image, which is a more direct
extension of Ash et al. (2020). To compute gradient embeddings gX per image, we consider
the last convolutional layer weights W in the segmentation model as the weights of a fully
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Algorithm 1 ALGES: Active Learning with Gradient Embeddings for Segmentation

Require: A segmentation network f(X, θ), an unlabeled data pool DU , number of active
learning rounds R, and batch size B.

1 Randomly sample some initial pool DL of training data from DU with labels.
2 Train model f with parameters θ1 on DL.
3 for r ← 1 to R do
4 for all X ∈ DU do

5 1. Get prediction on X, Ŷ.
6 2. Compute the gradient embedding gX by Eq. 4 or Eq. 6.

7 end
8 Use these embeddings in the k-MEANS++ initialization algorithm with B centroids to

define a subset DB ∈ DU of B images.
9 DL ← DL ∪ DB

10 DU ← DU\DB

11 Train the model on DL to get updated parameters θr+1.

12 end
13 return θR+1

connected layer. We can then define the k-th block of the gradient embedding for one image
as:

(gX)k :=
∂L

∂wk

⊤
=

1

NM

∑
ij

Gk ∈ Rd
(4)

which is an average of the vector values across columns of G. Intuitively, the resulting K×d
dimensional vector summarizes gradient information from every pixel for each class. The
L2-norm each element of (gX) is a measure of how much an input image X influences the
model’s parameters for a specific class. This is an adjunct formulation of the embeddings
described in Ash et al. (2020).

3.2.2. Semantic-level Gradient Embeddings

We want to consider the contribution of pixels to the gradients to incorporate local semantic
information in these embeddings, so we propose a different approach in using the gradients
G. We stress that a 1 × 1 convolution over pixels is fundamentally multiple multi-class
classification problems. This means we can view rows of G as gradient embeddings for each
pixel. Precisely, for one pixel xij:

(gxij ) = Gij =

((
∂L

∂w1

)
ij

, · · · ,
(

∂L

∂wK

)
ij

)⊤

= ((pij1 − I(1 = ŷij))zij , · · · , (pijK − I(K = ŷij))zij) ∈ RK×d

(5)

The Frobenius norm of these embeddings conservatively estimate the pixel’s point in-
fluence on the current model. Consequently, these norms are good estimators of model
uncertainty. We can then imagine a heat map as in Figure 2. Aggregating norms for pixels
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of the same semantic class predicted by the current model yields elements of a semantic
embedding.

(gX)k :=
∑
ij

ŷij=k

Gijk ∈ Rd

(6)

This is equivalent to calculating the Frobenius norm of the embedding for an individual
pixel (Eq. 6), and summing these norms for pixels of the same predicted class (e.g. gall-
bladder). The elements of the resulting K dimensional vector (gX) contain rich semantic
difficulty information per semantic class.

3.2.3. Selection by k-MEANS++ initialization

Once we’ve compute gradient embeddings for each image in the unlabeled pool using one
of the aforementioned methods, we wish to select a batch of data points so as to maximize
diversity of the batch, while also maximizing the total uncertainty of that batch. A way of
choosing data points (centers) that would approximately cluster the data set in the most
representative manner is the k-MEANS++ initialization scheme (Arthur and Vassilvitskii,
2007). A seeding for the popular k-MEANS clustering algorithm, the k-MEANS++ initial-
ization, tends to select data embeddings that are diverse and of high-magnitude, as noted in
Ash et al. (2020). We use this initialization as a way of selecting diverse and high-magnitude
gradient embeddings, which correspond to diverse images that the model has low predictive
confidence.

4. Experiments on Laparoscopic Surgical Data

In this work, we demonstrate the effectiveness of ALGES on a real-world, publicly available
laparoscopic surgical data set called CholecSeg8k (Hong et al., 2020). CholecSeg8k was
developed for training better computer vision models in the laparoscopic surgery space for
various downstream tasks, including computer-assisted surgery, operative skill assessment,
and the enhancement of surgical safety. It is derived from the Cholec80 data set, a collection
of 80 videos of full laparoscopic cholecystectomy surgeries performed by 13 different surgeons
recorded at 25 fps. 8080 image frames were extracted from 17 videos in Cholec80 to form
CholecSeg8k. There are 13 semantic classes that delineate relevant instruments and anatomy
in cholecystectomies: abdominal wall, liver, gastrointestinal tract, fat, grasper, connective
tissue, blood, cystic duct, L-hook electrocautery, gallbladder, hepatic vein, liver ligament,
and a black background class. Each image frame is 854× 480 pixels.

As noted by Hong et al. (2020), there is a severe class imbalance of semantic areas in the
images present in CholecSeg8k, making this a difficult data set to segment, but representative
of real-world surgical video data. We note that since the frames are extracted from only 17
videos, many of the images in the data set are highly similar due to their shared origin. To
ensure that our trained models do not see test data similar to the data they were trained
on, we enforce constraints in our train, validation, and test splits. We divide CholecSeg8k
into 4640 frames for training, 1600 frames for use in validation, and 1640 frames for final
testing. This split was chosen with the constraint that frames from a single video could
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Figure 3: Label distribution of data split for CholecSeg8k. Severe class imbalance and dif-
ference in distribution implicate semantic segmentation difficulty, but reflect real-
world surgical video data.

only be present in one split. This amounts to having 8 videos in the training split, 4 videos
in validation, and 5 videos in the test split. We perform a simple resizing transformation
to the data so that all frames have square dimensions 224 × 224. Figure 2 illustrates the
pixel label distribution of each split after the aforementioned data processing.

4.1. Main Results

In our experiments, we use a U-Net (Ronneberger et al., 2015) with a ResNet-18 backbone
(He et al., 2016), where the last convolution was modified for 13 output classes. For every
round of active learning, we train the model for 50 epochs with a learning rate of 5e−5 and
using the Adam optimizer with β1 = 0.9 and β2 = 0.999 parameters. We use an initial
batch of 10 images, and then query 10 images per round of AL to observe differences in AL
algorithms in the small batch, low data setting. We perform 30 iterations of AL, and we
use the mean of 3 experiments with different random seeds to report mean test Dice score
(Milletari et al., 2016). We compare our algorithm with several other AL algorithms in the
literature modified for semantic segmentation (see Figure 3):

• Random: The baseline AL algorithm which randomly acquires a select number of
images from the unlabeled data pool for annotation.

• Uncertainty based methods: AL algorithms that select unlabeled data for annotation
based on some measure of model uncertainty (see Appendix B). Max Entropy : A
method that computes the predictive entropy of a sample as a measure of model
uncertainty and selects the unlabeled data points with the highest value. Margin
sampling : An approach that computes the difference in the two largest predicted
class probabilities for a data point and that selects points with the smallest margins.
Least confidence: Selects points that have the smallest max predicted class probability.

• Core-set : A diversity based approach aimed at the batch setting of active learning.
We implement the greedy approach outlined in Sener and Savarese (2018) that approx-
imates the k -Center problem by iteratively selecting new data points such that the
largest distance from them to the nearest centers in the existing data are minimized.
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The method has been shown to be effective for active learning for convolutional neural
networks in the batch setting.

• DEAL: A recent approach proposing an AL method for segmentation based on a
probability attention module that generates a semantic difficulty map for an image
(Xie et al., 2020). We compare against the difficulty entropy version of their algorithm.

• ALGES-img, ALGES-sem: Our algorithm using Eq. 4 or Eq. 6 to compute gradient
embeddings, respectively.

Figure 4: Left : Active learning curves for different algorithms. ME stands for Max Entropy,
LC is Least confidence sampling. Full refers to training the model under full su-
pervision with the entire available training data. Our method using image-level
gradient embeddings (ALGES-img) outperforms other algorithms in selecting in-
formative images for annotation by a clinical expert.

Our methods using gradient embeddings derived from both Eq. 4 and Eq. 6 outperform
other strategies in nearly all iterations of AL up to 6.5% of our total data pool being
labeled. Methods relying on uncertainty alone (i.e. Max Entropy, Margin sampling, Least
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Table 1: Segmentation performance of U-Net model with various percentages of all data
labeled (trained with). The relevant metric is mean Dice score. ALGES-img
performs better than all methods in small batch, low data settings.

Method 0.43% labeled 1.94% labeled 3.02% labeled 4.96% labeled

Random 0.448 0.480 0.516 0.522
Coreset 0.431 0.484 0.496 0.519
DEAL 0.389 0.476 0.496 0.517

ALGES-img 0.419 0.498 0.526 0.537
ALGES-sem 0.458 0.522 0.531 0.532

confidence) perform poorly especially in low data regions (less than 5% of total images
labeled). We hypothesize this is due to the fact that these methods neglect optimizing
diversity in the batch setting, and so they select redundant data points that although the
model has difficulty making predictions with, are highly similar. This can even lead to
performance decreases as the model attempts to fit redundant data. The recently proposed
DEAL algorithm performs similarly to random acquisition, indicating the ineffectiveness
of the probability attention module in capturing segmentation difficulty for surgical data.
Coreset also doesn’t perform up to par with our method even though it considers data
diversity and at its core tries to solve a similar maximum data cover by centers problem.
This may be due to the way embeddings are generated for the Coreset algorithm, which
lack semantic information. We tabulate specific Dice score values in Table 1.

We also note the difference between using the image-level and semantic-level gradient
embeddings. Figure 4 also demonstrates the relative performance of these methods. Al-
though AL using image-level embeddings consistently outperforms AL using the semantic-
level embeddings and in later rounds of AL, there is not a significant difference between the
two methods in earlier rounds on average (low data region).

5. Discussion

Interpreting gradient embeddings. Our primary inspiration for the use of gradient
embeddings is how they encapsulate uncertainty information while providing a way to ensure
diversity in acquired batches during AL. Deep learning models are trained via gradient
updates, and data points that bring about large gradient updates are data points that
the model should learn. Thus, uncertainty for an image can be captured by computing
gradients of the weights for segmentation models, and representing these gradients as an
image-level embedding. We have also shown that at the semantic level, considering pixels
of a particular semantic class that induce large updates to the model parameters gives us
insight into model uncertainty for particular regions of an image. We substantiate this
intuition with empirical studies, but we recognize that this frame of reference can provide
meaningful insight in understanding uncertainty for deep learning models.
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The AL approaches that completely depend on model uncertainty as a criterion for
selecting images to be labeled are poor AL algorithms since multiple semantically similar
images can have the same predictive uncertainty from a model. Diversity based approaches
better ensure the value of acquired data in improving model performance. However, addi-
tionally summarizing semantic information in embeddings in a deliberate manner like with
our semantic-level gradient embeddings ensures morphological diversity in acquired batches
that is critical for developing segmentation models for biomedical datasets.

The uniqueness of the semantic segmentation problem adds another dimension to this
investigation. Although pixel-wise segmentation is a group of classification problems, re-
lationships between these classifications at the semantic level are the key components of
producing effective algorithms with superior segmentation quality. The use of gradient em-
beddings in the manner outlined in this work incorporates these semantic relationships in
a resourceful way, since the gradients are derived from convolutional filters that inherently
aggregate information from receptive fields of penultimate layer activations. In addition,
by summarizing gradients at the semantic-level into a gradient embedding, we also provide
an avenue for ensuring diversity between acquired data points.

Clinical value. In this work, we explore our AL framework in the context of deep
segmentation models for laparoscopic surgery. High quality segmentation of the surgical
scene can offer significant utility for AI-assisted surgery. For example, segmentation of
instruments can be used to track tools and prevent certain tool movements that could cause
adverse events (i.e. aiding surgeons by reducing physiologic tremor) in robotic assisted
minimally invasive surgery (Azqueta-Gavaldon et al., 2020). Segmentation of tissue and
organ boundaries can also be used to identify dangerous zones of dissection in order to
guide clinician decisions during operation (Madani et al., 2020). Recent studies such as one
by Hasan et al. (2020) particularly emphasize how segmentation is imperative for intra-
operative clinical decision support. Intra-operative segmentation of tools, for example, can
be used as a preprocessing step for inpainting instrumentation through the view of the
laparoscope (i.e. making instruments appear transparent through the camera view). This
allows clinicians to easily see tissue structures obscured by instruments for better execution
of surgical procedures. However, deep segmentation models need to be trained on biomedical
data sets particular to the clinical setting in which they are deployed.

Biomedical datasets in general are highly diversified and usually contain less samples
than other datasets used for training deep learning models. Laparoscopic surgical datasets
in particular, like those developed for studies by Madani et al. (2020); Maqbool et al. (2020),
are difficult to construct, necessitating annotators with years of clinical expertise. Images
extracted from laparoscopic videos from differing institutions have different lighting, instru-
mentation, modes of video capture, and various differences in quality. Non-laparoscopic
surgeries are even more varied, underlining the need for larger datasets from a wide variety
of sources to develop more generalizable models that can capture pathology or anatomy
that are not seen during train time (Madani et al., 2020).

AL frameworks significantly reduce annotation efforts in assembling biomedical datasets
for deep learning models. The best AL algorithms select a diverse batch of data points that
are most informative to the current model, ensuring the quality of data being labeled by
annotators. This is paramount when attempting to build larger biomedical datasets so that
annotation resources are efficiently used to obtain maximum data value. Table 1 highlights
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how our method results in the best model performance when only a small percentage of
available unlabeled data is labeled. In addition, our method is effective in the low batch
setting, making our approach suitable for situations where data is limited and there is a
low annotation budget or high annotation cost. This is the primary setting of biomedical
computer vision datasets not only in surgery, but in pathology, radiology, and other domains.

It would be remiss to ignore limitations of our approach. Although not explored in
the scope of this work, an AL framework that allows for selecting areas of images for an-
notation as opposed to entire images could further reduce annotation efforts for training
accurate computer vision models. We hypothesize that only selecting regions of an image
where gradient embedding magnitudes are large would still an effective AL strategy and
may even enable the use of more unlabeled data, albeit at the expense of computational
cost. Additionally, we could more explicitly target model performance on rarer segmenta-
tion classes, which could help mitigate the imbalance problem present in many biomedical
datasets, especially in those domains where abnormalities are pervasive.

6. Conclusions

In this manuscript, we propose a novel active learning algorithm for semantic segmentation
using gradient embeddings (ALGES). We present a derivation of pixel-level contributions
to gradients for the segmentation setting, treating segmentation as multiple multi-class
sub-problems. We also provide insight into gradient norms and their function as measures
of model uncertainty, and we introduce two approaches to building gradient embeddings.
We demonstrate the effectiveness of our algorithm compared to other AL algorithms on
a dataset of laparoscopic cholecystectomy images and highlight its efficacy in low data
regimes, making it a prime candidate for domains where annotation cost is high. For future
work, we plan to explore AL frameworks that allow for region selection that utilize gradient
embeddings in an effective way. Our works suggests that investigating intrinsic elements
of deep learning models such as gradient embeddings is a fruitful direction for research in
developing algorithms for maximizing data utility.
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Appendix A.

Simulation details: In this work, we used the CholecSeg8k dataset as a training bed for
our method. Figure 5 illustrates samples from the CholecSeg8k dataset. All frames in this
dataset have already been labeled, but we treated some initial pool of these images as the
“labeled training data pool DL” and considered the rest as “unlabeled data pool DU”. To
simulate an external oracle or human annotator labeling the selected data by active learning,
we simply included the labels of the selected images in the training data pool for that round
of active learning. In practice, this is the equivalent of an expert clinician segmenting images
given by the chosen active learning framework at each round of evaluation.

Appendix B.

Uncertainty based methods: We detail a few established active learning algorithms ini-
tially intended for the classification setting modified for the semantic segmentation setting.
These methods select the top B images from the unlabeled data pool DU ordered by various
measures of total uncertainty UX:
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For Max Entropy, batches are selected by measuring predictive entropy of each sample:
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For Margins sampling, uncertainty is measured by the difference between the top two
predicted classes for a sample. A smaller margin indicates higher predictive uncertainty:
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For Least confidence, uncertainty is inversely correlated with the magnitude of the
highest predicted class for a sample. If the maximum predicted class probability is high,
then the model is highly certain that the sample is of that class:
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Figure 5: Qualitative examples of laparoscopic surgery video data with ground truths.
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