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Abstract

Thrombotic complications are a leading cause of death worldwide, often triggered by inflam-
matory conditions such as sepsis and COVID-19, due to a close relationship between inflam-
mation and hemostasis known as immunothrombosis. Platelet activation and leukocyte-
platelet aggregation play key roles in microthrombotic events, yet there are no routine
diagnostic predictive biomarkers based on these factors. This work presents a novel pro-
cessing pipeline using label-free Quantitative Phase Imaging (QPI) for the detection and
quantitative analysis of blood cell aggregates without sample preparation. For evaluation,
we use different test scenarios and measure performance at different stages of the pipeline
to gain a better understanding of the critical points. We show that, among other classical
and machine learning techniques, the Mask R-CNN approach achieves the best results for
detection, segmentation, and classification of cell aggregates. The method successfully iden-
tifies aggregate levels in whole blood samples and shows elevated levels in >90% of patients
with COVID-19 or sepsis compared to healthy reference samples, indicating the potential
of platelet and leukocyte-platelet aggregates as biomarkers for thrombotic diseases.

1. Introduction

Motivation Thrombotic conditions are considered the leading cause of mortality world-
wide and the number of patients is steadily increasing, especially in developing and first
world countries (Wendelboe and Raskob, 2016). Different types of thrombosis include arte-
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rial thrombosis (e.g. in the form of coronary heart disease or ischemic stroke) and venous
thrombosis (e.g. in the form of deep vein thrombosis or pulmonary embolism). As throm-
botic events are closely related to coagulation (blood clotting) and hemostasis in general,
one of the key players are platelets (thrombocytes). Their dysfunction can have serious
consequences. Thrombocyte hyperreactivity can lead to venous or arterial thrombosis and
subsequently to pulmonary embolism, myocardial infarction, and stroke (Engelmann and
Massberg, 2013; Nicolai et al., 2020).

Until recently, hemostasis and inflammation were thought to be completely separate
physiological processes. However, recent research has shown that these two processes are
intimately linked. This close relationship between coagulation and inflammation is called
immunothrombosis (Engelmann and Massberg, 2013), which is based on the interaction
of immune cells and thrombosis-related molecules. Immunothrombosis is an important de-
fense mechanism to prevent the systemic spread of pathogens through the bloodstream by
facilitating the recognition, containment, and destruction of pathogens (Stark and Mass-
berg, 2021). However, uncontrolled immunothrombosis leads to a general risk of blood
clotting, promoting the formation of microthrombi and, in the worst case, organ failure
(Engelmann and Massberg, 2013).

The most recent and prominent example of an uncontrolled inflammatory response asso-
ciated with thrombotic risk is COVID-19. While in most cases this infection is asymptomatic
or accompanied by mild flu-like symptoms, in severe cases pulmonary complications associ-
ated with a systemic inflammatory response can occur, with potentially fatal consequences.
Many recent publications indicate the occurrence of immunothrombosis with micro- and
macrovascular thrombi (Nicolai et al., 2020; Schulte-Schrepping et al., 2020; Nishikawa
et al., 2021; Zuo et al., 2021). Another example of the emergence of immunothrombosis is
sepsis, where an initially appropriate and targeted immune response becomes generalized
and harmful hyperactivation leading to organ failure (Hotchkiss et al., 2016). The appear-
ance of activated platelets and leukocyte-platelet aggregates plays an important role in this
process (Assinger et al., 2019). Due to its acute pathology, an immediate medical response
is required, showing the necessity of early diagnosis (Rhodes et al., 2017).

Despite the emerging demand, no diagnostic predictive biomarker is available for routine
economic diagnosis due to the highly complex pre-analytics and sample preparation required
(with typically expensive antibody-based activation markers) as well as the short lifetime
of cell aggregates (Finsterbusch et al., 2018). However, with the use of QPI, label-free
analysis of blood cells and their aggregates becomes feasible, possibly even in a point-of-
care application (Nguyen et al., 2022).

Problem statement While cell detection and classification have already been demon-
strated for phase images of blood cells obtained with QPI (Ugele et al., 2018b,a; Paidi et al.,
2021), the analysis of cell aggregates has proven to be more difficult due to their complex
morphology, small details and short lifetime (Finsterbusch et al., 2018). In addition, their
rare occurrence usually requires extensive sample preparation (Nishikawa et al., 2021).

Therefore, in this work, we design and test a data processing system that allows for the
analysis of phase images of whole blood samples (obtained by QPI) for the size, number
and composition of platelet and leukocyte-platelet aggregates. In addition, we evaluate
relationships and correlations of these aggregate data with disease and infection using clin-
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ical samples from patients with COVID-19 and sepsis. The concept is the implementation
and evaluation of a three-step pipeline for the quantitative analysis of aggregates and their
components. The first step is the detection and separation of aggregates, specifically
platelet aggregates and leukocyte-platelet aggregates, in whole blood samples. The second
step is to evaluate the detected aggregates. This includes assessing the number of cells
in an aggregate and the specific type of each cell. The last step is the integration of all
the previous results and the search for correlations with immunothrombotic diseases.
Specifically, we are analyzing sepsis and COVID-19 in comparison to healthy individuals
using multiple samples from 27 subjects.

Generalizable Insights about Machine Learning in the Context of Healthcare

In our work, we present improved approaches to better understand the effects of im-
munothrombosis and to generate detailed information about the composition of volatile
microthrombotic events. This is done under more demanding conditions because, unlike
previous methods, we work label-free and with whole blood, which minimizes sample prepa-
ration. Here, we can show that our proposed machine learning pipeline is more robust to
these conditions and generalizes better than the state of the art. To this aim, we not
only evaluate the end-to-end performance, but also measure meaningful metrics at different
points within the pipeline to better assess the behavior of the algorithms. In addition, we are
introducing test scenarios to incrementally approach real-world conditions and exemplary
clinical use cases in order to identify the factors that cause problems for the algorithms.
We hope to lay the groundwork for using the QPI platform technology to analyze blood
cell aggregates as biomarkers for predictive and individual diagnostics in subsequent clinical
studies. Finally, we provide best practices for expansion into new applications that have
already been shown to be related to immunothrombosis, such as hemophilia (Riedl et al.,
2017), anticoagulation therapies (Lazaridis et al., 2022) or cardiovascular diseases in general
(Furman et al., 2001; Allen et al., 2019).

2. Background and Related Work

Before proceeding to our proposed approach, we will look at the state of the art in observing
the biomedical effects we are interested in. We will also give insights into the QPI technology
and its combination with machine learning.

2.1. Medical Relevance

While the coagulation process was first discovered more than 100 years ago, in recent years
coagulopathy, thrombocytopathy, and immunothrombosis have attracted increasing interest
in the scientific community due to the discovery of the important role that coagulation plays
in the development of cardiovascular diseases (Bhatt and Topol, 2003). Since then, a great
deal of research has been conducted in this area. The role of thrombosis as an independent
process of innate immunity was investigated by Engelmann and Massberg (2013), leading
to the introduction of the term immunothrombosis. Successively, several researchers have
shown the intricate relationship between hemostasis and inflammation (Stark and Massberg,
2021; Reyes et al., 2020; van der Poll et al., 2017).
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Due to the recent emergence of a new variant of coronaviruses causing COVID-19, which
has evolved into a worldwide pandemic, a great deal of research has been initiated targeting
the thrombotic features of this disease. Nicolai et al. (2020) provided evidence for the
involvement of immunothrombosis, while Zuo et al. (2021) discussed the process behind the
formation of microthrombi, and Schulte-Schrepping et al. (2020) provided detailed insights
into the systemic immune response. Most notable is the work of Nishikawa et al. (2021),
who were able to show a direct link between aggregates and disease severity. Unfortunately,
the analysis of the aggregates remains superficial and is limited to estimating the area of the
aggregates and a fixed conversion factor for the number of platelets. No individual analysis
of the aggregate components is performed, as proposed by Klenk et al. (2023). Moreover,
their method requires a laborious sample preparation of up to eight hours, which, as shown,
denies access to most volatile microthrombotic events (Finsterbusch et al., 2018).

Although not a new topic, sepsis has recently gained importance in scientific research.
Among others Levi et al. (2013) discussed thromboembolic disease, thrombophilia, and
coagulopathy in septic patients, and Assinger et al. (2019) examined the contribution of
platelets to sepsis severity and outcome.

2.2. Technical Background

A QPI microscope uses the principle of interference to measure not only the transmission
of light, but also its phase shift ∆ϕ, and thus to infer the optical density of cellular struc-
tures. Recently, QPI has gained relevance through its combination with machine learning,
transforming cytometry into a computer vision problem (Jo et al., 2018). As a new plat-
form technology it solves the problem of low contrast associated with typical brightfield
microscopy, caused by the transparent nature of most cells. Traditionally, this would re-
quire time-consuming sample preparation, staining or genetic fluorescent labeling of cells,
which can directly affect cell morphology (Barcia, 2007; Sahoo, 2012; Klenk et al., 2019).

For this project, we utilize an off-axis diffraction phase microscope by Ovizio Imaging
Systems as shown in Figure 1(a). In combination with a microfluidics channel, it allows
label-free cell imaging of unprocessed blood cells in suspension under near in-vivo conditions.
A 528 nm Super-LED Köhler illumination provides the light source, shining on a 50 µm ×
500 µm polymethyl methacrylate (PMMA) microfluidics channel that uses sheath flows to
focus the sample stream within the depth of field of the 40× objective. The integrated
optical setup then projects the interference patterns onto a camera sensor that captures the
cells at 105 frames per second. For more information on the setup used, see Dubois and
Yourassowsky (2008) and Ugele et al. (2018b).

The resulting interference patterns (hologram images) contain the intensity and phase
information, that can be extracted by a reconstruction algorithm (Schnars and Jüptner,
1994). In this work, we use only phase images, as shown in Figure 1(b), because they contain
most of the information about the internal structure and morphology of the observed cells.

2.3. Quantitative Phase Imaging and Machine Learning

Machine Learning methods recently entered the field of quantitative phase imaging. Be-
sides their application in the phase reconstruction process itself (Jo et al., 2018; Paine
and Fienup, 2018), the strength of these techniques, especially the Convolutional Neural
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Figure 1: Optical setup and the resulting image

Network (CNN), lies in the segmentation and enhancement of the images as well as the
differentiation of individual cells. The U-Net (Ronneberger et al., 2015; Zhang et al., 2018;
Midtvedt et al., 2021) and the Mask R-CNN (He et al., 2017; Kutscher et al., 2021) show
promising results for identifying and segmenting blood and tissue cells. The greatest op-
portunities for these technologies lie in the combination of the label-free holography and
the beyond-human classification power of current neural network architectures. Bacteria
(Jo et al., 2015) or leukocytes (Ozaki et al., 2019) are analyzed and classified based on
their sub-cellular structures. In oncology, leukemia and the detection of its sub-types can
be addressed using dimensionality reduction techniques and morphological features (Ugele
et al., 2018b; Paidi et al., 2021). Nevertheless, the automated filtering and classification
of cells in a high-throughput scenario like ours remains. As the phase representation of
most cell types is unfamiliar to biological and medical experts, the generation of a ground
truth needed for supervised learning is laborious, if not impossible (Filby, 2016; Ugele,
2019). Another obstacle is the work with whole blood samples which would provide the
most convenient and simple clinical workflow without intensive and time consuming sam-
ple preparation. Reaching for rare events demands a reliable chain of filtering and outlier
detection techniques, since otherwise feature extraction, dimensionality reduction, neural
networks as well as classical discriminators are prone to failure (Röhrl et al., 2019).

3. Methods

In this section, we introduce the algorithms used in different steps of our proposed cell
aggregate analysis pipeline. Also the metrics for their evaluation are presented.

3.1. Segmentation

The first step in the analysis of blood cell aggregates is segmentation, which allows for the
identification of aggregates and their components. Numerous methods have been developed
and evaluated for use in biomedical imaging, as segmentation is an essential practice. In
this work, we focus on three methods, one classical segmentation method, namely watershed
segmentation, and two machine learning methods, U-NET and Mask R-CNN, all of which
have previously been successfully used in biomedical segmentation tasks.
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Watershed Watershed segmentation is a classical method based on region growing (Beucher
and Lantuéjoul, 1979; Vincent and Soille, 1991). It starts from a seed point and iteratively
adds neighboring pixels in a similar way to how water floods a region. Watershed is relatively
simple and fast, especially compared to machine learning based segmentation methods, yet
provides good segmentation results for biomedical purposes (Ng et al., 2006).

U-NET The U-NET is a type of CNN specifically designed for semantic segmentation
of biomedical images (Ronneberger et al., 2015). It is a derivative of the fully convolution
network (FCN) (Shelhamer et al., 2017) designed to work with very few training images.
The U-NET takes its name from its symmetrical U-shape, which consists of a contracting
path and an expanding path. The contracting path uses a typical CNN architecture con-
sisting of convolutional, rectified linear unit (ReLU), and max-pooling layers. Each step of
the expansive path uses upsampling and convolution while concatenating higher resolution
feature maps from the contractive path with the upsampled features. While the U-NET
was originally designed for semantic segmentation only, the use of a boundary loss function
allows its adoption for instance segmentation. In this work, an Adam optimizer (Kingma
and Ba, 2015) was combined with a compound loss function of cube loss (Wang and Chung,
2018) and boundary loss (Kervadec et al., 2019).

Mask R-CNN The Mask R-CNN is designed for instance segmentation (He et al., 2017).
It performs both object detection and object mask computation simultaneously. The Mask
R-CNN is based on the Faster R-CNN (Ren et al., 2017), a region-based CNN. In this work,
a ResNet50 (He et al., 2016) is used as the backbone. For the training process, a stochastic
gradient descent optimizer with momentum was combined with a compound loss function
of classification loss, bounding-box loss, and mask loss as defined by Ren et al. (2017) and
He et al. (2017).

3.2. Classification

Unless classification has already been performed during the segmentation, the second step
in our pipeline is to classify segmented cell images. This classification task considers three
classes of cells relevant to blood analysis, the coagulation system, and possible diseases
(erythrocytes, leukocytes, and platelets), as described in Section 2.1.

Gating Gating is a popular method in biology and medicine for manually dividing a set
of cells into distinct clusters or populations (Staats et al., 2019). It typically relies on
the use of software to apply a set of manually drawn gates that select regions in a 2D
graphical representation of the data. This technique is most commonly used to analyze flow
cytometry data. The advantages are its simplicity and explainability, since the gates are
generally based on expert knowledge of the cell characteristics. This explains its widespread
use in biology and medicine. However, gating shows limited suitability for high-dimensional
data and is typically based on manual subjective decisions leading to high inter-observer
variability (Staats et al., 2019).

Morphological features In order to successfully apply manual gating techniques to im-
ages, features must first be extracted from the images. As suggested by a Ugele et al.
(2018b) or Paidi et al. (2021), a set of hand-crafted morphological features based on cell
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size, shape, and texture is calculated for each individual cell. The outer contour line forms
the basis for features describing size and shape. Texture features are computed from the
gray-level co-occurrence matrix (GLCM), which represents the distribution of co-occurring
pixel values in an image and is commonly used for texture analysis in image processing (Har-
alick et al., 1973). These features are highly intuitive and explainable, providing excellent
interpretability for expert gating. To classify the elements of cell aggregates, we only use
features that are robust to changes in the shape and contour of the cell (like homogeneity
or optical height), since others can experience shifting due to aggregation.

Random forest Random forest is an ensemble classification method based on decision
trees proposed by Breiman (2001). A decision tree is a machine learning model that com-
bines a series of decisions based on variable values. For random forest classification, a large
number of decision trees are automatically constructed based on different fractions of the
given data set. For classification of unknown samples, the average result of all trained
decision trees is used. This concept reduces overfitting very effectively and works well for
more complex classification tasks in high-dimensional feature spaces. Nguyen et al. (2017)
successfully used a combination of morphological features and random forest classification
for the grading of prostate cancer.

3.3. Evaluation Metrics

To assess the segmentation and classification quality of the proposed methods, evaluation
metrics are needed. For this purpose, the Intersection over Union (IoU) is used, as usual
for the evaluation of segmentation and object detection methods, and combined with the
metrics precision, recall, and F1-score.

Segmentation performance The IoU, or Jaccard index (Jaccard, 1912), is a popular
evaluation metric used in instance segmentation and object detection. It is a measure of the
similarity between two shapes, in the case of instance segmentation, the predicted region Â
and the ground-truth A

IoU =
area of overlap

area of union
=

A ∩ Â

A ∪ Â
∈ [0, 1] . (1)

The IoU is invariant to scale and therefore a very powerful metric for the evaluation of
segmentation algorithms.

Detection and classification performance Since the IoU alone is only partially useful
for evaluating a real-world application, a minimum IoU threshold is typically defined for
an instance (or object) to be considered as correctly recognized, and evaluation metrics
such as precision or recall are used. In this work, we use an IoU threshold of 0.4, since
overly detailed localization and masking of the cells is not necessarily needed, while correct
detection of the cell amounts and types is more important. We use the definitions given by
Powers (2011) for precision and recall

Precision =
Tp

Tp + Fp
, Recall =

Tp

Tp + Fn
with

Tp : true positives
Fp : false positives
Fn : false negatives

(2)
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and the resulting harmonic mean as the so called F1-Score

F1 = 2 · Precision · Recall
Precision + Recall

. (3)

Aggregate analysis To better evaluate the segmentation performance for the specific
task of detecting and counting single cells and cell aggregates, two custom metrics are used:
The aggregate composition score evaluates whether all parts of the analyzed aggregate
are correctly detected quantitatively as defined by

AC =
1

K

K∑
i=1

aci with aci =

{
1 if n̂class = nclass ∀class ∈ {ery, leuko, thrombo}
0 else

(4)

where nclass is the number of elements of class class in the image patch and K is the number
of images patches in the dataset. The event type score

ET =
1

K

K∑
i=1

eti with eti =

{
1 if t̂i = ti

0 else
(5)

and t as the type of aggregate or single cell t ∈ {single erythrocyte, multiple erythrocytes,
single platelet, platelet aggregate, single leukocyte, leukocyte-platelet aggregate} assesses if
the type of aggregate or cell is correctly detected (qualitatively).

Regression analysis To evaluate possible correlations in our experiments concerning
mixing ratios or activation, we employ the following models and methods: For linear
relations we use a simple linear mapping of an independent variable x on a dependent
variable y

ŷ = ax+ b minimizing L(x) =
N∑
i=1

(yi − ŷi)
2 (6)

where y is the real world observation and ŷ is the prediction of the model. For nonlinear
relations we chose an exponential model

ŷ = a log(x) + b (7)

which can be fitted by an iterative estimation algorithm. Therefore, we use the Leven-
berg–Marquardt algorithm (Levenberg, 1944). To evaluate the fit of the regression models
we apply the Normalized Root-Mean-Square Error (NRMSE)

NRMSE =

√
MSE

ymax − ymin
with MSE =

1

N

N∑
i=1

(yi − ŷi)
2 (8)

where N is the number of observations, which allows us to compare data and models of
different scales (James et al., 2013). The coefficient of determination

R2 =
Var(ŷ)

Var(y)
= 1− Var(e)

Var(y)
with e = y − ŷ (9)

provides us with a measure of the quality for the respective fit, by comparing the variance
of the observed data Var(y) to the variance explained by the model Var(ŷ) (Devore, 2015).
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3.4. Experimental Setup

In order to achieve a quantitative evaluation of aggregates and their components and to en-
able pathological analysis of clinical samples, four processing pipelines have been developed.
The first two approaches represent rather simple computer vision-based methods, consisting
of a combination of watershed segmentation and different classification algorithms, namely
expert gating and random forest. They require four processing steps: segmentation, feature
extraction, classification, and a final analysis of the results. The third approach uses a
U-NET and the fourth approach is based on a Mask R-CNN. These two approaches re-
quire only two processing steps because both U-NET and Mask R-CNN are capable of both
segmentation and classification.

Blood
Sample

Holographic
Microscope

Image Pre-

Processing
Analysis
Pipelines

Point of
Care

Watershed Feature Extr.

Expert Gating

Random Forest

Mask R-CNN

Regression
ModelU-NET

Segmentation Aggregate Analysis Correlation

I

II

III

IV

Phase Image

Segments

20µm

Figure 2: While the overall workflow is kept close to existing assays, we investigate the
performances of the aggregate analysis pipelines I-IV.

4. Data Set

For our experiments and trainings, we use several data sets to better assess the strengths
and weaknesses of the evaluated approaches and to gradually increase the level of difficulty.

4.1. BBBC038

To obtain a baseline evaluation of the segmentation methods, the publicly available BBBC038
data set (Caicedo et al., 2019) is used. It contains a variety of two-dimensional light mi-
croscopy images of stained nuclei as displayed in Figure 5 in the Appendix. For this experi-
ment, the BBBC038 data set is divided into three parts, a training, test, and validation set
(60:20:20). The training set is used to train both U-NET and Mask R-CNN, the validation
set is used for hyperparameter tuning, and all three methods are evaluated on the test set.

4.2. Expert Labeled Data Set

For our particular use case we need a more accurate assessment of the segmentation. There-
fore, we labeled a data set of 100 images of blood cells captured by our QPI microscope. It
consists of 50% single and multiple erythrocytes and 50% platelets and leukocyte-platelet
aggregates. The images were manually masked by biomedical personnel using a brush tool,
resulting in a very accurate segmentation. Respective examples are shown in Figure 7 in
the Appendix.
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4.3. Synthetic Aggregate Data Set

The performance and reliability of a neural network is highly dependent on the quality,
quantity, and selection of the training data. Acquiring ground-truth data using an unsu-
pervised or self-supervised method, as is sometimes done when no ground-truth is available,
does not solve this problem, because the trained network will never be able to outperform
the quality of the training data. Alternatively, especially for the Mask R-CNN, training
with only single cell images would produce adequate results, but the shape and contour of
the cell images and masks will change slightly when the cells are part of aggregates, which
will degrade the performance of the network, as analyzed in section 5.1. As labeling by ex-
perts is costly and time consuming we chose to generate a synthetic data set like Prastawa
et al. (2005) or Gupta et al. (2016) by stitching together multiple single cell images to form
cell aggregates. Its generation procedure and example images can be found in Appendix
C.1.

4.4. Clinical Samples

Activated platelets For this data set, platelets are extracted from whole blood using
two centrifugation steps to first extract platelet-rich plasma and then concentrate it to
a pellet, which is then resuspended in a buffer solution (Bernlochner et al., 2021). After
extraction, the platelets are artificially activated with the platelet activator thrombin recep-
tor activating peptide (TRAP). Activation causes the platelets to form volatile aggregates
that disintegrate over time. As shown experimentally by Michelson et al. (2001), based on
measurements of platelet surface P-selectin and the occurrence of monocyte-platelet and
neutrophil-platelet aggregates in whole blood, a peak of aggregation is expected after a
few minutes, followed by a decline until normal levels are restored 60-120 minutes after the
addition of TRAP (Michelson et al., 2001).

Five series of measurements are performed, to assess platelet aggregation levels at 7.5,
15, 30, 60, 90, and 120 minutes after application of 10 µM TRAP. Three measurements are
taken at each time step, each containing approximately 5,000 platelets.

Activated platelets spiked in whole blood Aiming for data more closely related to
whole blood, and to test the robust detection of aggregates as a tiny minority of events
in the sample stream, we created another data set. As before, pure platelet samples are
extracted from whole blood and then activated with TRAP. The activated platelets are
then mixed with whole blood samples at various mixing ratios [0%, 10%, 30%, 50%, 70%,
90%, 100%]. Three samples, each containing approximately 40,000 cells, are measured for
each mixing ratio. These mixing ratios should be clearly observable and the amount of
aggregates detected should be dependent on the amount of activated platelets added.

Activated whole blood samples To match the conditions of Michelson et al. (2001),
this data set consists of whole blood samples collected and activated by either adenosine
diphosphate (ADP) or TRAP. While TRAP is a synthetic peptide, ADP is a nucleotide
that binds to three specific platelet membrane receptors, triggering platelet aggregation and
shape change (Murugappa and Kunapuli, 2006). For comparison, three types of samples
were analyzed: untreated whole blood, whole blood activated by adding 10 µM ADP, and
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whole blood activated by adding 10 µM TRAP. Each sample was captured six times, with
each capture containing approximately 40,000 cells.

Healthy reference Reference samples are collected from seven healthy donors, both male
and female, between the ages of 29 and 67, with no history of disease. Blood samples are
diluted 1:100 in a measurement buffer consisting of phosphate buffered saline (PBS) and
polyethylene oxide analogous to Klenk et al. (2023) and analyzed immediately. From each
sample, we record three measurements of approximately 40,000 cells each.

Sepsis For an immunothrombotic disease associated with blood cell aggregation, we col-
lect samples from seven Intensive Care Unit (ICU) patients diagnosed with sepsis, both male
and female, between the ages of 45 and 80, at multi-day intervals, typically three samples
per patient. The time between blood draw and sample analysis is less than 30 minutes,
which is critical for accurate assessment of aggregation. Samples are carefully transported
to the nearby prototype to ensure minimal mechanical disturbance. Three measurements of
7,500 images each are taken from each sample for analysis. A single measurement typically
contains approximately 30,000 cells.

COVID-19 For COVID-19, we collect samples from thirteen ICU patients (both male
and female) diagnosed with PCR-confirmed wild-type SARS-CoV-2 infection between the
ages of 51 and 91 at multi-day intervals, typically five samples per patient. As before, less
than 30 minutes elapse between blood collection and sample analysis. From each sample,
three measurements of 7,500 images each are recorded for analysis, with each measurement
typically containing approximately 30,000 cells.

5. Results

The experimental results are organized in three sections. The first two sections will pre-
select the most appropriate aggregate analysis pipeline, which is then used to process the
clinical samples in the last section. Therefore, we employ the proposed measurement points
marked in blue in Figure 2 and the corresponding evaluation metrics from Section 3.3.

5.1. Segmentation

BBBC038 data set Testing the algorithms on the BBBC038 data set provides a first
trend for their segmentation performance. Although this data set does not contain blood
cell aggregates, it is very diverse and challenging due to its complex structures. Our obser-
vations are printed in Table 1(a). While watershed segmentation achieves only mediocre
results, U-NET and Mask R-CNN achieve reasonably good results, with the Mask R-CNN
showing the best overall recall and precision. Figure 8 in the Appendix shows the according
visualizations.

Expert labeled data set To see if these trends continue, we switch to the expert labeled
data set, which is closer related to our real-world applications. Table 1(b) demonstrates
again the superiority of the Mask R-CNN (see also Appendix Figure 9). However, the
watershed algorithm achieves very close results. Interestingly, when comparing the perfor-
mance of the differently trained Mask R-CNNs, a Mask R-CNN trained on the BBBC038
data set already shows quite good results. As expected, segmentation using the synthetic
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data set for training outperforms training using only single cell images due to the changing
morphology of cells that are part of aggregates. For this application, the U-NET achieves
the worst results, which is most likely due to the fact that it is not perfectly suited for
instance segmentation, especially of small, slightly overlapping cells.

Table 1: Segmentation quality of used methods on the test data

(a) BBBC038 data set

∅IoU Recall Precision F1

Watershed 0.594 0.747 0.641 0.690
U-NET 0.584 0.760 0.831 0.794
Mask R-CNN 0.758 0.909 0.861 0.884

(b) Expert labeled data set

∅IoU Recall Precision F1

Watershed 0.727 0.928 0.931 0.930
U-NET3 0.619 0.801 0.914 0.854
Mask R-CNN1 0.716 0.878 0.821 0.849
Mask R-CNN2 0.583 0.831 0.852 0.841
Mask R-CNN3 0.741 0.931 0.956 0.943

1trained on BBBC038, 2trained on single cell images,
3trained on synthetic aggregate data set

5.2. Classification

As before, the expert labeled data set of 100 images of blood cells, here including the cell la-
bels, is used to evaluate the performance of aggregate detection combining segmentation and
classification. Again, the segmentation quality is evaluated based on the metrics described
in Section 3.3, adding the correctness of the predicted classes as a requirement for accepted
detected instances. The evaluation results are shown in Table 2. Similar to the previous
results, Mask R-CNN shows the best performance with a slight decrease in both precision
and recall due to classification inaccuracies. For watershed-based methods, random forest
classification shows significantly better results than expert gating. The U-NET achieves
slightly better results, but worse than the Mask R-CNN. This also shows in the scores for
aggregate composition (AC) and event type (ET). The Mask R-CNN qualifies as an ex-
cellent aggregate detector having an ET score of 0.970. The U-Net is also quite suitable,
while the watershed-based pipelines are too coarse to detect all aggregates or mix up the
contained classes. Therefore, we will use the Mask R-CNN for the following experiments.

Table 2: Segmentation and classification performance on the expert labeled dataset

∅IoU Recall Precision F1 AC ET

Watershed + Gating 0.539 0.672 0.658 0.665 0.510 0.650
Watershed + Random Forest 0.630 0.790 0.773 0.782 0.580 0.730
U-NET 0.596 0.810 0.826 0.818 0.660 0.930
Mask R-CNN 0.676 0.917 0.912 0.915 0.780 0.970

5.3. Clinical Samples

Activated platelets Analysis of the five time-series measurements of activated platelets
using our Mask R-CNN pipeline results in slightly different curves, as drawn in 3(a). How-
ever, there is a clear trend that shows a sharp increase in platelet aggregation from the
beginning, peaking between 15 and 30 minutes. Thereafter, the aggregates begin to break
down. These observations are roughly in line with expectations based on previous research.
Only the activation seems to be a bit slower, reaching a maximum activation of only 3%-7%.
This is probably caused by the fact that these experiments were performed with extracted
platelets as opposed to whole blood in the case of Michelson et al. (2001). Platelet activation
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and aggregation is a complex process based on the coagulation cascade, and platelet-only
samples lack many of the coagulants that normally promote platelet aggregation in whole
blood.

Activated platelets spiked in whole blood To evaluate the detected platelet concen-
trations in the samples with different mixing ratios, we use linear regression. The fitted
model y = 0.0288 + 0.932x gives an almost perfect fit with a high coefficient of determi-
nation of R2 = 0.997 and a NRMSE = 0.018, as shown in Figure 10 in the Appendix.
These observations fit the expectation, as evidenced by the intercept, suggesting about 3%
platelets in the whole blood sample, which is reasonable since it is in the typical range of
2.5%-8% (Bain, 2017). For the aggregation analysis, we also use linear regression. The
fitted model can be seen in Figure 3(b) and features R2 = 0.552 and NRMSE = 0.18.

Activated whole blood samples Analysis of the levels of platelet aggregates detected,
as depicted in Figure 3(c), shows a clearly visible effect. In untreated whole blood samples
almost no aggregates are observed, whereas in ADP activated samples 2% to 4% and
TRAP activated samples 5.5% to 8% platelet aggregates are detected. Similarly, almost
no leukocyte-platelet aggregates are observed in untreated blood samples. ADP activated
samples showed 0.15% to 0.25% and TRAP activated samples 0.25% to 0.35% leukocyte-
platelet aggregates. This difference between ADP- and TRAP-induced platelet aggregation
is consistent with previous research by Olivier et al. (2016), where application of TRAP
showed approximately 2.5 times higher aggregation than application of ADP.
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Figure 3: Detection of platelet aggregation induced by ADP or TRAP activation

Healthy reference For the reference samples, platelet aggregates are in the range 0.5%
to 2.5% and leukocyte-platelet aggregates are in the range 0.01% to 0.08%, as shown in
Figure 11 in the Appendix. These results are generally consistent with previous studies by
Leytin et al. (2000) and Gerrits et al. (2016), which reported (1.02 ± 0.49)% and 0.001%
to 0.03% respectively. For platelet aggregates, mostly 2-cell aggregates are observed and
very few 3-cell or 4-cell aggregates, similar to the previous activation experiments. Almost
all leukocyte-platelet aggregates contain only one leukocyte and mostly one (or sometimes
two) platelets. This behavior is in line with expectations, as only minimal and very small
aggregates are expected in healthy whole blood samples, since larger aggregates already
pose a significant health risk, as described in Section 2.1.

Sepsis In our exemplary sepsis cohort, we observe both elevated platelet aggregation
levels, as shown in Figure 4(a), and elevated leukocyte-platelet aggregation levels, as shown
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in Figure 4(b). Three out of seven patients (01, 02, and 04) have severely elevated levels of
platelet aggregates, while only one is completely within the healthy reference range, as
shown in Figure 12(a) in the Appendix. For leukocyte-platelet aggregates, all but one
patient feature increased levels at least once, as plotted in Figure 12(b) in the Appendix. In
addition, patients with higher aggregate levels also show a shift in aggregate size distribution
with comparatively more larger aggregates, as shown in Appendix G.

COVID-19 For the COVID-19 patients, we record a similar picture with both elevated
platelet aggregation levels and elevated leukocyte platelet aggregation levels, as shown in
Figure 4(a) and 4(b). The effect is even more remarkable as 12 out of 13 patients have
increased levels of platelet aggregates compared to the healthy donors. On closer in-
spection of Figure 4(c), some patients show extremely elevated levels, specifically patients
08, 09, 10, 11, and 13. Consistent with these observations, three of these four patients
had a collapse of their clinical condition during observation (e.g., lung failure). In contrast,
patient 04, who was transferred to the general ward during observation, shows very low
platelet aggregation levels that remain within the reference range.

Looking at leukocyte-platelet aggregates, 11 of the 13 patients demonstrate ele-
vated levels at least once, as shown in Figure 13(b) in the Appendix. For more severe
cases (especially patients 08-11 and 13) this effect is clearly an indicator, but in milder
cases leukocyte-platelet aggregate levels do not show a substantial shift. Similar to the
sepsis experiments, samples with higher levels of aggregation also show comparatively more
larger aggregates, both platelet aggregates and leukocyte-platelet aggregates, as shown in
Appendix G.
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Figure 4: Platelet (P) and leukocyte-platelet (LP) aggregates for COVID-19 and sepsis

6. Discussion and Conclusion

In this work, we present a novel processing pipeline for the detection and quantitative
analysis of blood cell aggregates and their components. Using QPI, this approach allows the
assessment of platelet aggregation and microthrombus formation in label-free whole blood
samples without the need for sample preparation. Specific detection of each component of
an aggregate allows evaluation of the size and number of platelet and leukocyte-platelet
aggregates.

In various test scenarios, we compared four different approaches using established and
custom metrics at different stages of the pipelines. The first approach is a non-machine
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learning method consisting of a combination of watershed segmentation and two differ-
ent classification methods. Watershed segmentation showed great potential for segmenting
blood cell aggregates, but the evaluated classification method was not able to reliably dis-
tinguish leukocytes from erythrocytes. The extension with a data-driven random forest
classifier as a second approach did not lead to the desired improvements. The third ap-
proach uses a U-NET, which we adapted for instance segmentation by using a boundary
loss function, which showed decent results. The fourth approach is based on a Mask R-CNN
trained on an artificially created synthetic aggregate data set. This approach showed the
best results, with a precision of 0.956 and a recall of 0.931 on an expert-labeled test set,
and most importantly, it yielded the correct category of cell or cell aggregate in 97% of the
cases.

The Mask R-CNN processing pipeline was then evaluated on defined medical samples
comprising activated platelets, activated platelets spiked in whole blood, and activated
whole blood. These experiments demonstrated very reliable detection of platelet aggregates,
but showed some limitations for leukocyte-platelet aggregates due to low statistical power.

Finally, we evaluated the quality of this method as a diagnostic predictive biomarker for
immunothrombotic diseases by analyzing samples from patients with COVID-19 and sepsis.
In both diseases, 90% of patients had aggregate levels above the healthy reference interval,
with all severe patients having substantially higher aggregate levels (5-10 times higher than
reference samples). In addition, these samples with particularly high aggregate levels also
had consistently higher amounts of larger aggregates. In conclusion, the analysis of these
clinical samples demonstrated the effectiveness of the proposed method and the potential
of using the occurrence of platelet and leukocyte-platelet aggregates as biomarkers for the
presence and severity of immunothrombotic diseases.

Limitations Due to the difficulty in obtaining blood samples from COVID-19 and sepsis
patients during the pandemic, only a limited number of clinical patients were analyzed
in this work, which does not allow a concrete diagnostic and therapeutic assessment of
the occurrence of aggregates in the studied diseases. For a higher statistical power and a
more precise assertion of the severity of both sepsis and COVID-19 (Rampotas and Pavord,
2021), a larger clinical study needs to be performed. We also need to collect more medical
parameters as described by Poudel et al. (2021) or Gorog et al. (2022) to correlate our new
biomarker with established biomarkers to prove advantages or discrepancies. In addition,
we observed a significant decrease in aggregate levels between multiple acquisitions of the
same sample, demonstrating the short lifespan of blood cell aggregates and confirming the
need for immediate sample analysis, ideally in a point-of-care environment. The choice
of anticoagulant also plays an important role and needs to be evaluated in future studies
(Klenk et al., 2023). Finally, the new methodology needs to be proven in clinical applications
before this platform technology can add value at the point of care. This is not least due to
the acceptance of black box models that still needs to be built up, which can be achieved
through long-term successful use. However, we hope that our methodology will open the way
for further applications that can benefit from the detailed analysis of immunothrombosis
(Engelmann and Massberg, 2013; Wendelboe and Raskob, 2016; Nicolai et al., 2020; Stark
and Massberg, 2021).
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Christian Klenk, David Fresacher, Stefan Röhrl, Dominik Heim, Manuel Lengl, Simon Schu-
mann, Martin Knopp, Klaus Diepold, Stefan Holdenrieder, and Oliver Hayden. Measure-
ment of platelet aggregation in ageing samples and after in-vitro activation. In Proceed-
ings of the 16th International Joint Conference on Biomedical Engineering Systems and
Technologies - Volume 2: BIOIMAGING, pages 57–65. INSTICC, SciTePress, 2023.

Sotiris B. Kotsiantis, Dimitris Kanellopoulos, and Panagiotis E. Pintelas. Data preprocess-
ing for supervised leaning. International Journal of Computer and Information Engineer-
ing, 1(12):4104–4109, 2007.
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Appendix A. Preprocessing

Preprocessing is an essential requirement in achieving good segmentation and classification
results. The QPI setup provides 512 px by 384 px phase images containing multiple cells as
displayed in Figure 1(b). These must be prepared to obtain usable images containing only
a single cell or cell aggregate, while keeping cell aggregates intact. The operations required
to achieve this are discussed below.

A.1. Background Subtraction

Disturbing artifacts and background noise can be removed by calculating the median of 100
images and subtracting it from each frame. This can be done as the imaging setup and the
channel is assumed static.

A.2. Cell Detection

The detection of cells in the acquired images is done by thresholding and contour finding.
First, binary thresholding is applied to the phase images. From the resulting binary images,
contours are extracted based on the algorithm of Suzuki and Abe (1985). The extracted
contours are filtered according to a minimum contour area and each cell or cell aggregate
(represented by a contour) was then saved as an image snippet of 100 px by 100 px for
further processing.

A.3. Masking

Individual cell masking is used to remove unwanted noise from fluid, particles, and other
cells. This is done by first thresholding to remove any residual noise caused by the mi-
crofluidics channel. To improve the resulting mask, other cells or particles in the image are
removed from the mask using the previously calculated contour, and any holes in the mask
are filled using morphological dilation and erosion (Burger and Burge, 2016).

A.4. Normalization

Normalization is an essential preprocessing step in any machine learning application, espe-
cially when using neural networks. It transforms the feature or image values into a common
range. Typical methods are either mean and standard deviation based (like z-score nor-
malization) or minimum-maximum based (Singh and Singh, 2020) (Kotsiantis et al., 2007).
For this work, the images were first clipped to limit the value range, as the images resulting
from the holographic microscope (theoretically) have an unlimited value range. A minimum
clipping value of 0.2 (due to the background) and a maximum clipping value of 4 were used,
which showed good results for a combination of platelets, erythrocytes, and leukocytes (with
a fully used value range and minimal clipping of cells). Min-Max normalization was then
applied to transform the image values into the [0, 1] interval suitable for neural networks.
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Appendix B. Hyperparameter Optimization and Training

Hyperparameters are all configuration parameters of a neural network that can be set by
the user. They directly control the behavior of the network during training and have a
dominant impact on model performance. Hyperparameters control the network’s architec-
ture, regularization, and most importantly optimization. Tuning of hyperparameters, called
hyperparameter optimization, is therefore needed to be able to exploit the full potential of
a neural network. Since manual tuning is tedious and inefficient, automatic optimization is
widely used.

The simplest optimization methods are grid search, which traverses the search space
on a grid in an ordered fashion, and random search, which tries random combinations of
hyperparameters. More advanced methods use Gaussian processes and early stopping.

In this work, a combination of the tree-structured parzen estimator (TPE) and the asyn-
chronous successive halving approach (ASHA) is used. TPE is a sequential model based
optimization approach. By describing the search space with a graph-structured generative
process, a model of the relation between hyperparameters and measured performance of the
neural network can be created. This model is then successively optimized by sequentially
constructing models to approximate the performance of hyperparameters based on previ-
ous measurements and subsequently proposing new hyperparameter combinations. ASHA
uses aggressive early stopping of bad performing training steps to allocate more time and
computing power to more promising configurations. The combination of these two methods
makes very efficient hyperparameter optimization possible.

U-Net For the U-NET, the parameters α, β1, β2 and ϵ were optimized based on the search
space defined in Table 3. The best choices were α = 3 × 10−4, β1 = 0.81, β2 = 0.994, and
ϵ = 4× 10−8.

Parameter Search space Choice

learning rate α loguniform(1× 10−5, 1× 10−2) 3× 10−4

exp decay rate β1 uniform(0, 0.9) 0.81
exp decay rate β2 uniform(0.9, 0.999) 0.994
numerical stability parameter ϵ loguniform(1× 10−8, 1) 4× 10−8

Table 3: Search space and chosen value of the hyperparameter optimization of the U-NET

Mask R-CNN For the Mask R-CNN, the parameters learning rate, momentum and
weight decay were optimized using the search space defined in Table 4. A learning rate of
1× 10−3, a momentum of 0.97, and a weight decay of 5× 10−4 yielded the best results.
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Parameter Search space Choice

learning rate lr loguniform(1× 10−5, 1× 10−2) 1× 10−3

momentum γ uniform(0.9, 0.999) 0.97
weight decay wd loguniform(1× 10−4, 1× 10−1) 5× 10−4

Table 4: Search space and chosen value of the hyperparameter optimization of the Mask
R-CNN

Appendix C. Visualizations

Since our work is very visual, we do not want to deprive readers of the corresponding images
and segmentations.

C.1. Data Sets

This section contains exemplary images for the employed data sets.

BBBC038 The BBBC038 data set contains a variety of two-dimensional light microscopy
images of stained nuclei. Two examplariy images are displayed in Figure 5.

(a) Example image 1 (b) Example image 2

Figure 5: BBBC038 by Caicedo et al. (2019)

Synthetic data set To control the composition of Aggregates, we created a synthetic data
set of aggregates, by stitching together multiple single cell images to form cell aggregates.
This is based on pure blood cell populations (platelets, erythrocytes, leukocytes) extracted
from whole blood by differential centrifugation and density gradient centrifugation. Sin-
gle cell images and corresponding masks were extracted using threshold segmentation and
manual filtering to remove cell duplicates, out-of-focus cells, and flow channel artifacts.
The synthetic aggregate images are then iteratively assembled by randomly placing them
side by side based on their contour. Since this is done simultaneously for the mask of the
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cell images, the ground truth label mask needed for training is created. The results are
extremely close to real blood cell aggregates, as visualized in Figure 6.
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Figure 6: Synthetic platelet (P) and leukocyte-platelet (LP) aggregates

Expert labeled data set We asked a team of biomedical researchers and experts on
QPI blood cell analysis to label a data set of 100 images. It consists of 50% single and
multiple erythrocytes and 50% platelets and leukocyte-platelet aggregates. The images
were manually masked by using a brush tool, resulting in a very accurate segmentation.
The according examples are shown in Figure 7.
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Figure 7: Expert labeled data set
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C.2. Segmentation

This section contains sample images generated by our analysis pipeline. Here, the segmen-
tation performance of the Mask R-CNN approach can be observed on the retrieved images
patches.

BBBC038 The complexity of the BBBC038 data set is a good benchmark to test the
segmentation capabilities of the examined approaches. The Mask R-CNN does an excellent
job of detecting a wide range of small and large cells while achieving a high IoU. The
contours of the recognized cells are drawn red in Figure 8.

(a) Example 1 (b) Example 2 (c) Example 3

Figure 8: Segmentation examples of the Mask R-CNN on the BBBC038 data set

Expert labeled data set Closer to our actual use case, the segmentation of the expert
labeled data set puts the focus on the detection of the individual aggregate components.
Also for this challenging task, the Mask R-CNN shows a good performance in all quality
measures (see Section 5.1). The according visualizations using red and green contours for
each detected component can be seen in Figure 9.

(a) LP Aggregate (b) LP Aggregate (c) P Aggregate (d) P Aggregate

Figure 9: Segmentation examples of Mask R-CNN on the expert labeled data set: The color
of the contour represents the predicted type. Leukocytes (L) are drawn in red
and platelets (P) in green.
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Appendix D. Activated platelets spiked in whole blood
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(a) Detected platelet percentage
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(b) Detected erythrocyte percentage

Figure 10: Activated platelets spiked in whole blood: The dots show the observations and
the curve represents the fitted function.

Appendix E. Healthy Reference
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Figure 11: Aggregates in samples from healthy donors

Appendix F. Sepsis and COVID-19 in Detail
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Figure 12: Aggregate occurrence in samples from patients with sepsis
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Figure 13: Aggregate occurrence in samples from patients with COVID-19

Appendix G. Aggregate Composition

In order to gain a better understanding of the characteristics of aggregates, we analyzed the
size distribution of aggregates of both the sepsis and COVID-19 samples. For the assessment
of platelet aggregate size, the samples are divided into two categories, samples with lower
platelet aggregate levels and samples with higher platelet aggregate levels, separated by a
threshold of 10%. For the sepsis cohort, patients with sepsis with fewer observed aggregates
show a similar distribution of aggregate size to healthy donors, while samples with higher
aggregate levels also show comparatively more larger aggregates, as shown in Figure 14(a).
The same is observable for COVID-19 patients, as shown in Figure 14(b).

To analyze the amount of platelets in leukocyte-platelet aggregates a threshold of 0.2%
was chosen to divide the samples into two categories of lower and higher observed leukocyte-
platelet aggregates. Analysis of the amount of platelets in leukocyte-platelet aggregates
shows similar results to those of platelet aggregates for sepsis patients, as shown in Figure
14(a), as well as COVID-19 patients, as shown in Figure 14(b). Patients with more ob-
served aggregates also showed comparatively more larger aggregates. However, the analysis
of leukocyte amounts in leukocyte-platelet aggregates showed slightly different results, as
shown in Figure 14(a) and 14(b). Both in healthy donors, in patients with fewer observed
leukocyte-platelet aggregates, and in patients with more leukocyte-platelet aggregates al-
most only aggregates containing a single leukocyte are observed, all of these featuring a
similar distribution, just with different levels in general.
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(a) In sepsis samples
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Figure 14: Aggregate composition of platelet (P) and leukocyte-platelet (LP) aggregates
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