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Abstract

Survival analysis is a general framework for predicting the time until a specific event occurs,
often in the presence of censoring. Although this framework is widely used in practice,
few studies to date have considered fairness for time-to-event outcomes, despite recent
significant advances in the algorithmic fairness literature more broadly. In this paper,
we propose a framework to achieve demographic parity in survival analysis models by
minimizing the mutual information between predicted time-to-event and sensitive attributes.
We show that our approach effectively minimizes mutual information to encourage statistical
independence of time-to-event predictions and sensitive attributes. Furthermore, we propose
four types of disparity assessment metrics based on common survival analysis metrics.
Through experiments on multiple benchmark datasets, we demonstrate that by minimizing
the dependence between the prediction and the sensitive attributes, our method can
systematically improve the fairness of survival predictions and is robust to censoring.

1. Introduction

Though machine learning is increasingly being used to support and perform crucial decision-
making tasks, recent research has clearly demonstrated that data-driven predictive models
can often retain systematic biases that are present in the underlying data and can propagate
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these inequalities to their predictions. To address these issues, there has recently been a
significant body of work in the machine learning community on algorithmic fairness in the
context of predictive modeling, with the majority of this work focuses on classification and
regression problems.

However, beyond classification and regression, there are problems in a broad range of
areas, such as survival analysis, where the primary goal is to predict the time to an event
of interest. Standard regression or classification models are typically inappropriate in such
contexts due to censoring, where we have incomplete information about an individual’s
survival time when constructing a survival analysis model. This is particularly common in
medical applications for example, where individuals are followed up for different lengths
of time and some individuals have not had the event of interest occur at the end of the
follow-up time.

Given the broad application of survival analysis in medical applications, we briefly
discuss below a number of specific motivating examples (and related issues) from the medical
field. Common medical applications of survival analysis include analyzing time to death or
disease recurrence in clinical trials or predicting time to re-hospitalization using Electronic
Health Records (EHRs). Unbalanced representations of subpopulation groups have been
frequently reported in both contexts. For example, clinical trials are often biased and
are not representative of racial/ethnic minority groups (Gianfrancesco et al., 2018). In
addition, most EHRs of academic hospitals, minorities, and individuals with public insurance
are under-represented with smaller sample sizes, shorter follow-up time, less encounters,
and fewer lab measurements (Seyyed-Kalantari et al., 2020; Chen et al., 2021). There is
an emerging recognition that such biases in data often lead to the unfair performance of
predictive models (Paulus and Kent, 2020; Mhasawade et al., 2021; Gervasi et al., 2022)
for life-saving decisions. As another example, when model-based predictions are used to
prioritize patients for rationed services (e.g., organ transplantation, specialist referrals, or
intensive care unit (ICU) services), prediction disparity can lead to systematically unfair
treatments for the under-represented patients (Paulus and Kent, 2020). Most of these
decision-making models rank candidates by their predicted survival time, such as ranking
algorithms for organ transplantation (Nilsson et al., 2015) and ICU admission triage (Iwase
et al., 2022). Therefore, the problem of ensuring fairness in healthcare-related predictive
models is of vital importance, as these models are already being utilized to make highly
sensitive and life-changing decisions.

However, there is a critical gap between the practical use of survival analysis and the
development of fairness-aware methodologies in the research literature to achieve fair survival
time prediction, because survival models often output the hazard function rather than the
predicted survival time. Additionally, there has been limited discussion on effective fairness
measurements for survival time predictions. This paper addresses these gaps by:

• Developing a general framework for Fair Survival Time Prediction (FAST) that directly
achieves Demographic Parity (DP), between the predicted survival time Tθ and sensitive
attributes, rather than DP on model outputs, f(X). This is critical in survival analysis
because Tθ takes inputs from f(X) and others, including baseline survival probabilities
affected by censoring C;
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Figure 1: Comparison of observed (Kaplan-Meier) and predicted survival curves for the
FLChain and Framingham datasets by a non-fairness-aware model, separated
by sensitive attributes. The predicted survival curves were generated using the
DeepCox model, and both DNNSurv and DeepHit models showed similar patterns
(see Appendix A). For both datasets, the non-fairness-aware model consistently
overestimated the event risk for females, highlighting the presence of systematic
bias and disparities in survival analysis. These results suggest that non-fairness-
aware models may systematically produce unfair and biased outcomes across
sensitive attributes in survival analysis.

• Proposing a series of comprehensive and interpretable fairness assessment metrics for
survival time predictions, including concordance and calibration;

• Illustrating via empirical studies on multiple survival analysis datasets1 that the pro-
posed FAST method can systematically improve prediction parities while maintaining
reasonable degrees of overall performances;

• Demonstrating two unique advantages of FAST methodology: (1) compatibility with a
broad range of existing survival analysis models, and (2) robustness when the disparity
originates from censoring, which is a specific (and common) issue in survival analysis.

Motivating Example: Presence of Prediction Disparity

To assess the presence of prediction disparities, we implemented a non-fairness-aware model,
the Deep Cox proportional hazard model (DeepCox), on the FLChain and Framingham
datasets, where the sensitive attribute considered was “sex” (female and male). Sex was not
included as a covariate in the prediction model. We compared the observed survival curves

1. Code available at https://github.com/nyumed-judy-lab/fair-survival
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obtained from the Kaplan-Meier method with the predicted survival curves obtained from
DeepCox for each group in each dataset.

For FLChain, the prediction for the male group closely followed its observed curve, while
the predicted curve for the female group was below the observed curve (Figure 1-(a)). These
findings indicate that DeepCox systematically overestimates the event risk for females but
performs relatively well for males. Similar results were observed for Framingham (Figure
1-(b)). We also tried other non-fairness-aware models, including DNNSurv and DeepHit
models, and they both showed similar patterns (see Appendix A). Overall, these results
highlight the presence of prediction disparities, which can lead to systematic bias and
unfairness in the prediction outcomes for sensitive attributes in survival analysis.

Generalizable Insights about Machine Learning in the Context of Healthcare

Our experience in assessing prediction disparities of survival analysis models and develop-
ing fair survival analysis models based on deep neural networks has led to a number of
generalizable insights we discuss below. The primary insights are:

• In healthcare, it is important for evaluation metrics of machine learning methods
to reflect their practical use if they were to be deployed. While it is common for
researchers to use metrics from previous studies, it is also crucial to examine whether
these metrics are realistic and clinically relevant.

• When assessing prediction disparity in a survival time prediction model, it is essential
to consider various factors. For example, different forms of systematic prediction
disparity, including concordance, calibration, and Brier score, may exist in a survival
analysis model, as can be seen in our motivating example. It is important to note
that the presence of prediction disparity in one type may not necessarily indicate its
presence in other types.

• Researchers tend to overlook the importance of the baseline hazard function in the Cox
proportional hazard model because of the proportional hazard assumption. However,
when evaluating prediction disparity in survival analysis, it is crucial to take the
baseline hazard function into account for calibration performance, such as expected ℓ1
calibration error, and the Brier score.

2. Related Work

Broadly speaking, there are three main strategies that are pursued in the algorithmic fairness
research literature: (i) data pre-processing (Calmon et al., 2017; Li and Liu, 2022), (ii)
in-process approaches which enforce fairness during model training (Zafar et al., 2017; Donini
et al., 2018; Agarwal et al., 2019; Kleindessner et al., 2022; Shah et al., 2022; Do et al.,
2022), and (iii) post-processing to adjust a model’s predictions to achieve fairness after the
model training (Hardt et al., 2016; Wei et al., 2020; Chzhen et al., 2020; Soen et al., 2022).
Our work fits in the in-processing approach. Early examples of this approach include fair
representation learning (FRL), e.g., the work of Zemel et al. (2013) reduces DP for binary
classification, with significant follow-up work for a variety of other fairness criteria and
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various downstream tasks (Madras et al., 2018; Roy and Boddeti, 2019; Gupta et al., 2021;
Kim et al., 2022; Shui et al., 2022).

Nonetheless, although there has been considerable prior work on FRL and other ap-
proaches for fair prediction in contexts such as classification and regression, there has been
relatively little work focusing on fair survival analysis specifically. In particular, because the
output of a survival analysis model is typically a hazard function (namely the instantaneous
rate of risk of an event at some time t), common definitions of fairness using DP are not
straightforwardly applicable because they cannot be defined directly on the output of a
survival model. A number of recent papers have attempted to address this issue in different
ways. Zhang and Weiss (2021, 2022) proposed the fair survival random forest model (FSRF),
using a fair splitting criterion based on the log-rank test statistic. However, their approach
is limited to tree-based models and requires discretization of real-valued sensitive attributes.
Keya et al. (2021) developed the fair Cox proportional hazard models and associated fair-
ness metrics by equalizing the proportional hazards and ignoring the baseline hazards, but
requiring restrictive parametric assumptions of the Cox proportional hazard model. Rahman
and Purushotham (2022) proposed pseudo value-based survival models by adding a fairness
penalty term defined on predicted survival probability at time t. A significant limitation
of this approach is that it only applies to models with a pseudo value-based loss function.
Finally, Hu and Chen (2022) applied distributionally robust optimization (DRO), originally
developed for binary classification (Hashimoto et al., 2018), to Cox proportional hazard
model to achieve fairness. Besides, Curth et al. (2021) studied learning heterogeneous
treatment effects for survival analysis, which is closely related to fairness problems.

In summary, general techniques to impose fairness in classification and regression tasks
are not directly applicable to survival analysis. In addition, the (limited) prior work
on fair survival analysis requires strong model assumptions and/or the use of ad-hoc
fairness assessment metrics that lack clear interpretation. Our framework overcomes these
limitations by using interpretable assessment metrics and being flexible and general so
it can be compatible with any survival model that has a differentiable likelihood. Our
approach also bridges the gap between fairness definitions and the predicted survival time;
we demonstrate the utility of this via a novel set of comprehensive evaluation metrics derived
from widely-used metrics for survival analysis.

3. Problem Formulation

Survival analysis involves the estimation of the probability distribution of time-to-event
in the presence of censoring. In a typical survival analysis setting, for each individual, we
have realizations of covariates X, a follow-up time O, and an event indicator ∆, which takes
value 1 if the event precedes the censoring and 0 otherwise. In addition, we have K groups
corresponding to K possible values in A = {α1, · · · , αK} of a sensitive attribute A such as
race/ethnicity or gender A. Thus, we have a dataset D = {(xi, ai, oi, δi) ∈ X ×A×R+ ×B :
i = 1, · · · , n} where xi, ai, oi, and δi are realizations of X, A, O, and ∆ for individual i.

In this paper, we adopt the usual independent censoring assumption in the survival
analysis. Let T and C be the event and censoring time, respectively, so that O = min{T,C}
and ∆ = I(T ≤ C).
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Under the independent censoring assumption, we learn a model, parameterized by θ, by
minimizing the negative log-likelihood: θ̂MLE = argminθ − ℓ(θ;D), where

ℓ(θ;D) = 1

n

n∑
i=1

[
δi log λθ(oi|xi)− Λθ(oi|xi)

]
, (1)

and Λθ(·|x) is the cumulative hazard function such that Λθ(t|x) = − logSθ(t|x), for all t ≥ 0.
Sθ(t|x) = P (T > t|x) is the survival function given x, and λθ(t|x) is the conditional hazard
function defined as d

dtΛθ(t|x). The actual form of the hazard function depends on the choice
of model.

This conventional MLE approach for survival analysis often results in dependence
between the prediction and the sensitive attributes, which may lead to disparity of prediction
performance among the sensitive groups. To mitigate the prediction disparity, we can add a
penalty term P(θ;D), yielding the following penalized negative log-likelihood problem:

θ̂FAST = argmin
θ
− ℓ(θ;D) + γP(θ;D), (2)

where γ > 0 is a hyperparameter. By jointly minimizing the negative log-likelihood for
prediction as well as the fairness penalty term, we can obtain a survival model that has less
prediction disparity compared to the conventional MLE approach. In the following section,
we introduce how to formulate the fairness penalty term.

3.1. DP for Survival Analysis

One difference between the survival analysis and other prediction tasks is that a survival
model produces the conditional hazard value conditioned on x, while models for other tasks
typically output the conditional expected outcome value given x. We denote the predicted
survival time as a random variable Tθ, distributed over R+, from a survival analysis model
parameterized by θ. The cumulative probability distribution function of Tθ is defined by the
cumulative hazard function as P (Tθ(x) ≤ t) = 1− exp(−Λθ(t|x)).

Definition 1 (Demographic Parity (Kamiran and Calders, 2009)) We say the sur-
vival analysis model, parameterized by θ, satisfies demographic parity if Tθ is statistically
independent of the sensitive attribute A, i.e., A ⊥⊥ Tθ. In other words, Ŝθ(t|A = αj) =
Ŝθ(t|A = αk) for any t ∈ [0,∞) and αj , αk ∈ A.

To achieve DP, we need to minimize the dependence between the sensitive attribute A
and the predicted survival time Tθ. The dependence between two random variables can
be quantified in several ways. For example, mutual information (MI), which quantifies
the amount of information obtained about one random variable by observing the other
one, captures non-linear statistical dependencies between random variables and is often
considered as a measure of true statistical dependence (Kinney and Atwal, 2014). Some
alternative choices for the dependence measure are discussed in Appendix B.1.

Definition 2 (Mutual Information of A and Tθ) Mutual information that quantifies
the dependence of the sensitive attribute A and the predicted survival time Tθ is defined as

I(A, Tθ) =
∫
A×R

log
dPATθ

dPA ⊗ dPTθ
dPATθ , (3)
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where PATθ is the joint CDF, PA and PTθ are the marginal CDFs of A and Tθ respectively.
MI is nonnegative, and a smaller value implies a weaker dependence between A and Tθ.
Moreover, I(A, Tθ) = 0 if and only if A ⊥⊥ Tθ.

We propose a FAir Survival Time (FAST) prediction framework, as the minimizer of
the weighted sum of the negative log-likelihood and the MI between A and Tθ:

θ̂FAST = argmin
θ
− ℓ(θ;D) + γI(A, Tθ). (4)

We note that formulating the fair learning problem as MI minimization is prevalent in
the literature (Creager et al., 2019; Song et al., 2019; Zhu et al., 2021; Grari et al., 2021;
Zheng and Li, 2022), however, none of them can be applied to the survival analysis directly.

3.2. Mutual Information Estimation

Since the mutual information of A and Tθ will often not have a closed form, we adopt a
non-parametric approach, in particular, the Mutual Information Neural Estimation (MINE)
proposed by Belghazi et al. (2018). This allows us to estimate the mutual information from
data samples without assuming a distributional form of A or Tθ.

The main idea of MINE is to maximize the lower bound of the mutual information
utilizing its dual representation (Belghazi et al., 2018). Let {ai ∈ A : i = 1, · · · , n} be a set
of sensitive attributes and {τi ∼ Tθ(xi) : i = 1, · · · , n} be a set of samples drawn from Tθ(xi),
respectively. Let {a′i ∈ A : i = 1, · · · , n} be another set of sensitive attributes obtained
by randomly rearranging the elements of {ai ∈ A : i = 1, · · · , n}. The estimate of mutual
information Î(A, Tθ;D) of A and Tθ can be obtained through maximizing its lower bound
Ĩω(A, Tθ;D)

Î(A, Tθ;D) = sup
ω
Ĩω(A, Tθ;D) = sup

ω

1

n

n∑
i=1

ψω

(
ai, τi

)
− log

[
1

n

n∑
i=1

expψω

(
a′i, τi

)]
, (5)

where ψω : (ai, τi) 7→ R is a function parameterized by a neural network with parameters ω.
Note (ai, τi) is a sample drawn from the joint distribution PATθ and (a′i, τi) is drawn from the
product of the marginals PA ⊗ PTθ . Belghazi et al. (2018) proved that MINE is a strongly
consistent estimator of mutual information and linearly scalable in both dimensionality and
sample size. Moreover, it is trainable through backpropagation, so that we can plug it into
Equation (7).

3.3. Log-likelihood

FAST does not require a specific form of log-likelihood and is compatible with any survival
analysis model with a differentiable log-likelihood. If one chooses to use the Cox proportional
hazard (PH) model, the log-likelihood is

ℓ(θ;D) = 1

n

n∑
i=1

[
δi(log λ0(oi) + fθ(xi)− Λ0(oi) exp fθ(xi)

]
, (6)

where λ0 and Λ0 are the baseline hazard function and the cumulative baseline hazard
functions respectively, and fθ : X → R is the log proportional hazard function which is
parameterized by parameters θ. We present several alternative choices for the log-likelihood
function in Appendix C.

7



Fair Survival Time Prediction via Mutual Information Minimization

Algorithm 1 SGD for FAST

1: Input: Data D = {(xi, ai, oi, δi}ni=1, hyperparameter γ, learning rates ηθ, ηω, batch size
b.

2: Output: θ̂FAST solving (7).
3: θ(0), ω(0) ← initialize
4: while not converged do
5: Draw a minibatch of samples from D: B = {(xi, ai, oi, δi)}bi=1

6: Draw time-to-event from Tθ(t)(xi): {τi}bi=1

7: Draw another minibatch of samples from A: {a′i}bi=1

8: Prepare a minibatch for Ĩ: C = {(ai, τi, a′i)}bi=1

9: Update θ by descending its stochastic gradient.
θ(t+1) ← θ(t) − ηθ(∇ℓ(θ(t);B)− γ∇Ĩω(A, Tθ(t) ;C))

10: Update ω by ascending its stochastic gradient.
ω(t+1) ← ω(t) + ηω∇Ĩω(A, Tθ(t) ;C)

11: end while
12: θ̂FAST = θ(t)

3.4. Estimation of FAST

With Equation (5), the estimation of FAST becomes:

min
θ

max
ω
− ℓ(θ;D) + γĨω(A, Tθ;D). (7)

We solve the minimax problem using minibatch stochastic gradient descent (SGD) optimiza-
tion. Given each batch, we simultaneously update θ and ω by ascending and descending
their gradients, as illustrated in Algorithm 1. At each iteration, the algorithm randomly
draws minibatches of size b from PXAO∆ and PA. Then, it generates random samples from
Tθ(xi) for each i. The exact method to sample τi differs by choice of model, but in most
cases, we can draw samples using inverse transform sampling (see Appendix C for details).
Then, we take random samples drawn from the joint distribution PATθ and the product of
marginal distributions PA ⊗ PTθ and plug them into (5). This allows us to calculate the
gradient of Ĩω(A, Tθ;D) with respect to ω and θ, respectively. As studied in Belghazi et al.
(2018), the naive minibatch SGD gradients for Ĩω(A, Tθ;D) are biased, so we adopt the
moving average technique to reduce the bias.

The gradient of ℓ with respect to θ can be straightforwardly computed. For the CoxPH
log-likelihood function (6) with fθ parameterized by a neural network, we first estimate the
baseline hazard functions λ̂0 and Λ̂0. We then take the full log-likelihood approach to solve
ℓ(θ;D, λ̂0, Λ̂0).

3.5. Choice of the Hyperparameters

We take a general strategy to select the hyperparameter, namely to minimize the disparity
while placing constraints on the overall predictive performance. Specifically, we evaluate the
performances and disparities of models trained with different γ values on a held-out validation
set, and choose the γ with the smallest disparity while maintaining the overall performance
within a pre-determined acceptable margin, such as ±5%, of that under the vanilla model
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Figure 2: (Left) The case that a model discriminates the risks well within each group,
however, significantly underestimates the risks for Group 2. Here, Cis1 = Cis2 = 1.0.
However, Cip1 = 0.93 and Cip2 = 0.64. That is, ∆Cis does not capture the
disparity. (Right) The case that a model performs well on over-represented Group
1, however, provides poor risk estimations on under-represented Group 2. In this
case, Cis1 = 0.95 and Cis2 = 0.53, while Cip1 = 0.89 and Cip = 0.82. That is, ∆Cis

reflects the disparity better.

with γ = 0. In order to investigate the sensitivity of metrics for hyperparameter-tuning
purposes, we propose a series of evaluation metrics in Section 4, and compare their empirical
performances in Section 5. We note that Keya et al. (2021) considered a similar strategy for
selecting the fairness hyperparameter.

4. Fairness Assessment for Survival Analysis

The prediction performance of a survival model is usually assessed by concordance, dis-
crimination, and calibration. There has been limited discussion to date in the survival
analysis literature on what metrics are recommended to assess the disparity of prediction
performances among sensitive attribute groups. One straightforward assessment is to calcu-
late the average (absolute) differences of any metric between the sensitive attribute groups.
In this section, we discuss that this is often insufficient, especially for concordance and
discrimination metrics.

We will denote the results from a survival analysis model as {(oi, ri, δi) : i = 1, · · · , n},
where oi = min{ci, ti} is the observed follow-up time, ri = P (T

θ̂
(xi) < t) is the predicted

risk at time t provided by a survival analysis model parameterized by θ̂, and δi = I(ti ≤ ci)
is the observed event indicator.

4.1. Concordance

The concordance index (C-index) is a widely used metric for evaluating survival analysis
models (Harrell et al., 1982, 1984, 1996). It captures the rank correlation between the
survival time and predicted risks – a survival model tends to assign high-risk individuals who
have shorter survival times with greater C-index. C-index is calculated as the proportion
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of the number of concordant pairs out of the number of valid pairs Ci = |Sc|/|Sv|, where
Sv = {(i, j) : oi ≤ oj , δi = 1} is the set of valid pairs, and Sc = {(i, j) ∈ Sv : ri > rj} is the
set of concordant pairs.

However, to evaluate prediction concordance for subjects in a subgroup, there are two
versions of the C-index, differing in how the valid and concordant pairs are defined. If
one considers only the subjects in a sensitive attribute group k, the sets of valid pairs
and concordant pairs are defined as Ssvk = {(i, j) : oi ≤ oj , δi = 1, ai = aj = αk} and
Ssck = {(i, j) ∈ Ssvk : ri > rj} respectively. We refer to this as the stratified group
C-index, Cisk = |Ssck |/|Ssvk |.

The stratified group C-index measures how a model correctly arranges the risks and
times-to-event within the group. However, it cannot capture the disparity of group k relative
to other groups. For instance, considering a model that underestimates one group’s risk
compared to another (Figure 2-(a)), its stratified C-indices for all groups can be good, even
if the rank correlation between the observed survival time and predicted risks are relatively
worse for the group.

This encourages us to consider another group-level C-index to reflect the macro-level
assessment. We define the set of valid pairs and concordant pairs by Spvk = {(i, j) : oi ≤
oj , δi = 1, ai = αk} and Spck = {(i, j) ∈ Spv : ri > rj}. Note that this definition pairs
instances of a specific group with pooled candidates from the entire dataset. Thus, we refer
to this as the pooled group C-index, Cipk = |Spck |/|S

pv
k |.

In Figure 2-(a), Cip2 is significantly worse than that of Group 1. However, in another
situation when a model predicts like Figure 2-(b), Cipk cannot capture the within-group
concordance, while the stratified group C-index can. Therefore, we argue that disparities of
both versions of C-indices are needed to comprehensively measure the concordance disparity.
We define the stratified group C-index disparity ∆Cis, as the maximum of pairwise absolute
differences of stratified group C-indices from all possible groups, and similarly for the pooled
group C-index disparity ∆Cip. Note that, ∆Cip has also been considered in Zhang and Weiss
(2021) as the “concordance imparity.” Also, a similar comparison between the stratified
and pooled group AUCs, in the context of binary classification, was discussed in Yang et al.
(2023).

4.2. Calibration

Calibration is an important component for assessing survival time prediction models, which
measures the agreement between predicted probabilities and observed event rates within a
given duration of time. Different methods have been proposed to evaluate the calibration
of survival models. They typically involve constructing a calibration curve by dividing
individuals into subsets based on predicted event probabilities and comparing the mean
predicted event probabilities with the observed event prevalence for each subset. Graphical
representations are often used to compare the results with a diagonal line that represents
perfect calibration. For more detailed information on constructing and summarizing calibra-
tion curves for survival analysis, refer to Austin et al. (2020); Haider et al. (2020); Goldstein
et al. (2020) and references therein. In our study, we quantify the calibration performance
of survival models using the expected ℓ1 calibration error (ECE). The ECE is a popular
metric for classification problems using deep neural networks (Guo et al., 2017), and it is
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Table 1: Benchmark datasets and their statistics. p is the number of covariates, n is the
number of instances, A is the sensitive attribute, and C is the percentage of
censoring.

Datasets Outcome p A n(C)
FLChain

Time to Death 17
Female 4,347 (73.3)

(Kyle et al., 2006) Male 3,524 (72.5)

Framingham
Time to Death 5

Female 2,650 (75.5)

(Mahmood et al., 2014) Male 2,049 (59.8)

Time to Death 66

White 7,191 (31.2)

SUPPORT Black 1,391 (34.7)

(Knaus et al., 1995) Hispanic 290 (40.3)

Other 191 (27.2)

also used to evaluate the calibration performance of deep survival models (Nagpal et al.,
2021). The ECE calculates the average absolute difference between the mean predicted event
probabilities and observed event rates conditional on the predicted event probability. The
ECE at time t is defined as:

Ece =

q∑
j=1

|Qj |
n

∣∣∣(1−KMj(t))− r̄j
∣∣∣, (8)

Here, we divide the predicted risk scores into q quantiles (bins) Qj = [rj , rj+1) for
j = 1, · · · , q, estimate the Kaplan-Meier survival probabilities KMj , and calculate the
average risk score r̄j =

1
|Qj |

∑
i ∈ Qjri for each bin Qj . We define the disparity of the ECE,

∆Ece, as the maximum pairwise absolute difference of ECEs across all possible groups.
Note that Zhang and Weiss (2022) considered hypothesis testing for fair calibration as a
series of Hosmer-Lemeshow goodness-of-fit tests for each group.

4.3. Brier Score

The Brier score (Byers et al., 1951) is the most widely used metric to evaluate survival
models’ concordance and calibration performances (Murphy, 1972; DeGroot and Fienberg,
1983; Haider et al., 2020). It is defined as the average squared distance between the observed
survival status and the predicted survival probability.

Brier =
1

n

n∑
i=1

[(1− ri)2I(oi ≤ t)δi + (0− ri)2I(oi > t)].

Unlike the C-index, the Brier score does not depend on the relative rank of the subjects.
Therefore, we can define the disparity of the Brier score, ∆Brier, as the maximum of the
pairwise absolute difference of Brier scores across all possible pairs of groups.
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5. Experiments

We performed comprehensive experiments to evaluate FAST on the four proposed disparity
metrics using three real-world medical datasets: FLChain, Framingham, and SUPPORT.
We followed the SurvSet repository (Drysdale, 2022) protocols to preprocess the datasets.
Table 1 shows a summary of these datasets; details are in Appendix D.1.

We implemented FAST on three baselines (fairness-unaware) neural survival models
(DeepCox, DNNSurv, and DeepHit), all of which have been shown to achieve competitive
overall predictive performance in the survival analysis literature. We also compared our
method with existing fair survival analysis models: GFDeepCox and IFDeepCox (Keya et al.,
2021), GFDNNSurv, and IFDNNSurv (Rahman and Purushotham, 2022), and DRODeepCox
(Hu and Chen, 2022). Details for all of the implementations can be found in Appendix D.2
and D.3.

5.1. Comparative Experiments

We split each dataset into three mutually exclusive sets, 60% for training, 20% for validation,
and 20% as testing sets. We used the training set to estimate the models and selected
hyperparameters using the validation set. We then evaluated the models’ performances
and the disparities in the testing set. We calculated each metric for time points ranging
from the 1st to the 99th percentile and then reported the average of those values. Detailed
information, including neural network structures and optimization settings, is in Appendix
D.3.

We implemented our hyperparameter selection strategy, which we introduced in Section
3.5, by setting an acceptance margin of ±5%. In particular, we selected the hyperparameter
that achieves the smallest ∆Brier while ensuring that overall Brier scores do not increase
by more than 5%. We choose to use the Brier score as it is a commonly used metric that
measures both calibration and concordance (Haider et al., 2020).

In Table 2, all group fairness-encouraging methods, except for individual fairness models,
effectively decreased the group fairness metric Gf (defined as the maximum difference of
expected per-group survival functions) as expected. We present trade-off curves between
the Gf and performance metrics in Figures A5, A6, and A7 to show the effectiveness of
each method in decreasing Gf. Moreover, FAST not only improved parity measured in Gf
but also effectively decreased disparities in most of the metrics while maintaining the Brier
score within the pre-defined acceptance margin. Similar levels of (or even better) efficacy
of FAST were observed for the baselines, demonstrating that FAST can be flexibly used
for all three types of baseline survival models. In contrast, GFDeepCox, IFDeepCox, and
DRODeepCox achieved comparable performance in reducing disparities in FLChain but
did not decrease ∆Brier. Moreover, they showed substantially worse overall predictive
performance in terms of the Brier score (marked orange when outside the acceptable margin).
This may be due to GFDeepCox, IFDeepCox, and DRODeepCox placing emphasis on equity
in proportional hazards but not taking the baseline hazards into account. GFDNNSurv and
IFDNNSurv worked almost as efficiently as ours in both encouraging predictive parity while
not losing their efficacy because they encourage parity of the pseudo-survival probabilities,
unlike GFDeepCox, IFDeepCox, and DRODeepCox.
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Dataset Model
Disparity(↓) Performance

Gf ∆Brier ∆Ece ∆Cis ∆Cip Brier(↓) Ece(↓) Ci(↑)

FLChain

Vanilla DeepCox 1.49 1.20 1.16 2.03 1.30 8.81 2.69 80.07

FASTDeepCox (Ours) -70.8% -29.5% 22.7% -18.4% -10.1% 1.2% 29.2% -0.4%

GFDeepCox -51.3% -15.0% 104.2% -12.0% -19.8% 13.9% 148.0% -2.9%

IFDeepCox -50.9% -15.2% 118.2% -12.5% -19.9% 13.8% 150.6% -2.9%

DRODeepCox -50.7% -15.2% 106.4% -11.9% -20.4% 13.6% 149.8% -2.9%

Vanilla DNNSurv 1.20 1.19 1.26 2.61 0.75 8.66 3.55 79.55

FASTDNNSurv (Ours) -68.6% -31.3% -19.0% 8.4% 16.7% -0.9% 146.9% -0.3%

GFDNNSurv -50.0% -8.9% -16.5% 17.1% 37.8% -0.4% 4.3% 0.1%

IFDNNSurv -2.2% -0.4% 7.6% -0.2% 8.8% 0.7% 3.3% -0.2%

Vanilla DeepHit 1.12 0.93 1.15 2.86 0.56 8.19 5.83 79.08

FASTDeepHit (Ours) -63.5% -20.2% 39.6% 20.9% 5.6% 5.4% 137.3% -1.2%

Framingham

Vanilla DeepCox 0.47 4.01 2.19 4.81 1.69 10.38 4.05 68.48

FASTDeepCox (Ours) -3.6% -1.5% 24.1% -6.2% 0.0% -0.2% -2.9% -0.2%

GFDeepCox -25.4% 7.0% 84.5% -18.8% 36.5% 36.5% 12.7% -9.1%

IFDeepCox -45.0% 3.6% 65.1% -15.8% 105.1% 13.2% 48.4% -15.5%

DRODeepCox -50.1% 3.8% 84.5% -12.8% 103.7% 14.1% 58.7% -15.7%

Vanilla DNNSurv 0.51 3.40 5.69 4.78 1.19 8.48 16.84 63.93

FASTDNNSurv (Ours) -8.7% -24.7% 25.0% -37.0% 98.1% 4.6% 19.0% -2.7%

GFDNNSurv -22.8% 0.2% 5.6% -1.5% 87.3% 0.2% 0.5% -0.2%

IFDNNSurv 0.1% 0.0% -0.3% -2.7% -0.1% 0.0% -0.1% 0.0%

Vanilla DeepHit 0.67 2.15 7.48 3.01 3.02 8.84 21.32 63.07

FASTDeepHit (Ours) -1.4% -4.1% 4.3% 0.8% -6.3% 2.0% 4.8% -0.1%

SUPPORT

Vanilla DeepCox 0.60 3.78 7.99 3.42 2.80 8.99 7.10 84.46

FASTDeepCox (Ours) -22.8% -2.2% 5.4% 1.2% -2.4% 1.0% 1.4% -0.3%

GFDeepCox -29.3% 7.3% 18.9% 44.0% 86.4% 38.6% 22.2% -7.4%

IFDeepCox -27.5% 9.3% 24.9% 44.0% 86.3% 37.7% 20.9% -7.4%

DRODeepCox -26.5% 6.4% 38.0% 45.1% 86.1% 37.8% 19.3% -7.4%

Vanilla DNNSurv 0.55 3.34 8.33 4.65 3.18 7.86 4.73 83.10

FASTDNNSurv (Ours) -19.3% -1.6% 2.5% -17.3% -9.4% 1.2% 20.0% 0.5%

GFDNNSurv -31.0% -2.9% 5.3% -7.8% 2.6% 1.5% 8.6% 0.5%

IFDNNSurv -7.7% -1.3% 1.8% 3.9% 4.2% -0.4% 10.2% -0.4%

Vanilla DeepHit 0.53 2.79 8.29 7.62 3.89 7.42 4.07 82.03

FASTDeepHit (Ours) -24.7% -5.6% 4.3% 3.5% 5.6% 2.0% 36.7% 0.4%

Table 2: Experimental results in performance and disparity metrics from three benchmark
datasets. We report actual performances as percentages for the plain baseline
methods (Vanilla DeepCox, DNNSurv, and DeepHit). In contrast, for the fairness-
aware methods, we show the relative change of each metric compared to its baseline
method. Each number represents the average performance across 10 repeated runs.
The ↓ symbol indicates that lower values are better, while the ↑ symbol implies
that higher values are better. The best results for each baseline method in each
dataset are highlighted in Green . Orange highlights (in the performance columns)
mean each fair method’s performance is outside the 5% margin.
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Figure 3: Improved Survival Predictions from FAST. The figure compares the observed
survival curves (by Kaplan-Meier), predicted survival curves by DeepCox (blue
and red dash lines), and predicted survival curves by FAST-DeepCox (purple
and brown solid lines) for each sensitive attribute group in the FLChain and
Framingham datasets. FAST improves the model’s predictions for females and
males in FLChain, resulting in predicted survival curves that are closer to their
observed counterparts. In Framingham, FAST reduces the bias in the DeepCox
prediction, moving the predicted curve towards the middle of the two observed
curves. The prediction improvements by FAST from other methods (DNNSurv
and DeepHit) are shown in Figures A3 and A4.

For FAST, γ selected by each metric generally achieved the desired performance for that
metric and other metrics in the test set. Although the best performances of a specific metric
in the test data are usually achieved by the γ selected by the same metric, γBrier empirically
achieved satisfactory performances on calibration and concordance.

5.2. FAST Robustness against Disparity in Censoring

In survival analysis, a unique but common source of disparity is the difference in proportions
of censored subjects between the sensitive attribute groups. If one group has a shorter
survival time and/or shorter follow-up time, it will lead to a higher proportion of censoring,
which may result in worse prediction performance for that group. To study the robustness
of FAST, we designed an experiment on FLChain and Framingham datasets to simulate
this scenario. In FLChain, both females and males were followed up to 15 years from the
study entry. We truncated the maximum follow-up years for males to Cmax = 15, 13, 11,
9, and 7 years in the training and validation datasets. In the truncated dataset, we set a
male subject i to censored status (oi, δi) = (Cmax, 0) if oi > Cmax. Thus, the proportion of
censoring in males increased and became more disparate from females with decreasing Cmax.
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Figure 4: Model performances and disparities (relative changes in percentage compared to
the corresponding baselines) versus max follow-up years for males for the FLChain
and Framingham datasets averaged over 5 test sets. The green shades represent
the 5% acceptance margin of the Brier score.
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We present the follow-up distribution for the event and censored individuals in Figure A11.
We implemented the various methods on the truncated dataset and selected the optimal
γBrier by setting a 5% acceptance margin. In Framingham, both females and males were
followed up to 35 years from the study entry. We truncated the maximum follow-up years for
males (minority group) to Cmax = 35, 30, 25, 20, and 15 years in the training and validation
datasets, as same as the previous. Follow-up time distributions are presented in Figure A12.

Figure 4 confirms our hypothesis, in both datasets, that disparate follow-up time directly
results in disparate Brier scores from the fairness-unaware survival models. However, FAST
methods achieve consistent and robust improvements in Brier score disparities across the
range of truncated follow-up times while maintaining acceptable overall Brier scores (marked
green margins). In contrast, the fairness-aware competitors are not as effective in decreasing
disparities or maintaining overall Brier scores. We also noticed that the disparate follow-up
time has relatively less impact on concordance metrics (Figures A13 and A15 in Appendix)
but worsens the calibration (Figures A14 and A16 in Appendix). We conjecture that this
is because disparate follow-up time impacts disparity in baseline survival functions and
hazard ratio estimates. Therefore, fairness approaches that impose parity on the hazard
parameters (such as GFDeepCox, IFDeepCox, and DRODeepCox) are less effective in this
setting. This empirically demonstrates the advantage of directly achieving parity on the
predicted survival time via a nonparametric MI estimation, which makes FAST robust
against a range of possible disparities, including disparities in baseline survival probabilities
and hazard functions.

6. Conclusion and Discussion

We developed a Fair Survival Time Prediction (FAST) method, via a mutual information
penalty term to learn survival time predictions, which is compatible with survival analysis for-
mulations with differentiable log-likelihood functions, including recent deep survival analysis
models. We also proposed a series of metrics to evaluate parity in survival time predictions.
FAST shows empirical consistency in improving prediction parity while maintaining overall
prediction performance. Furthermore, we demonstrate that FAST is robust to the presence
of disparity in censoring and follow-up times, which is common and essential for survival
analysis applications.

Future Directions An interesting extension of work would be to consider other fairness
notions such as Equalized Odds (Hardt et al., 2016). This will relax the assumption requiring
independence between true survival time and A, which has the implications of considering
diseases that have different impacts on different gender/races due to genetic reasons. However,
such extensions are not trivial as the true survival time T is not observed because of C.
Another potential future direction is to investigate the impact of the informative censoring
(Lagakos, 1979) on the disparity in survival analysis and to develop a method to mitigate it.

Limitations As our method relies on MINE (Belghazi et al., 2018), which utilizes the
deep neural network to estimate mutual information, it cannot be as simplified as penalized
linear models. Even if our approach can be combined with a linear survival model, it still
requires a nonlinear neural network to estimate MI. Another limitation of our framework
is that we did not impose fairness on an individual level, so some individuals might get
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disadvantaged by considering the fairness between groups. We encourage future work in this
field to take this into account.

Societal Impact In areas such as healthcare, ensuring fairness in predictive models is
essential given that these models are utilized to make highly sensitive, life-changing, and even
life-saving decisions. Most of these models make decisions based on predicted survival time.
Our methodology and proposed parity metrics provide a new perspective and framework to
systematically improve fairness for survival predictions.
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Appendix A. Comparison of the Observed and Predicted Survival Curves
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Figure A1: This figure compares observed survival curves (generated using Kaplan-Meier
analysis) with predicted curves (generated using DNNSurv and DeepHit models)
for two datasets: FLChain and Framingham. The results indicate that for
FLChain, both DNNSurv and DeepHit models tend to underestimate the survival
probability (or overestimate the risk of the event) for females. Similarly, for
Framingham, both models tend to overestimate the survival probability for
females. These findings suggest that the prediction disparity is not specific to
the Cox proportional hazard model but rather a systematic issue that is inherent
to the data.

23



Fair Survival Time Prediction via Mutual Information Minimization

Appendix B. Further Discussions

B.1. Alternative Statistical Dependence Metrics (Supplement for Section 3.1)

Here, we give a brief discussion on metrics to quantify statistical dependence other than
mutual information. DP requires the predicted survival time Tθ to be statistically independent
of the sensitive attributes A. Given the set of possible sensitive attributes A = {α1, · · · , αK},
the independence of Tθ and A translates into Tθ = (Tθ|A = αk) for all k = 1, · · · ,K.
Therefore, Tθ is independent of A if and only if D(Tθ, Tθ|A = αk) = 0 for all k = 1, · · · ,K,
where D is a distance or divergence between two probability distributions, such as Kullback-
Leibler divergence, Jensen-Shannon divergence, total variation distance, Wasserstein distance,
and maximum mean discrepancy (Gretton et al., 2012). Therefore, we can include one of
the following terms as a DP encouraging penalty:

K∑
k=1

D̂(Tθ, Tθ|A = αk), or max
k

D̂(Tθ, Tθ|A = αk). (A1)

The penalty term equals zero means Tθ and A are statistically independent, the same as
when mutual information is zero. Therefore, the distances and divergences introduced above
can be used as an alternative to achieve DP. However, even if minimizing them toward zero
implies the statistical independence of Tθ and A, each divergence or distance may generate
a different trajectory of solutions obtained by changing the hyperparameter that controls
the trade-off between the negative log-likelihood and the penalty term. We leave this as a
future direction.

B.2. Comparison Against Fair Representation Learning

In the fairness literature, a line of work encourages the model output to satisfy some fairness
criteria by learning a fair representation that can be transferred to fair performances for
various downstream tasks. Zemel et al. (2013) proposed the first FRL method to achieve
DP for binary classification. Further extensive work has been done recently for sophisticated
fairness criteria other than DP, as well as for various downstream tasks (Madras et al., 2018;
Roy and Boddeti, 2019; Gupta et al., 2021; Kim et al., 2022; Shui et al., 2022). The fair
representation learning to achieve the DP aims to learn a function ψ : X → Z such that
Z ⊥⊥ A, and build a model ϕ : Z → Y for the downstream task (usually prediction model) on
top of ψ. This approach may look similar to our approach as encouraging the independence
of Z = ψ(X) and A transfers to encouraging the independence of (ϕ ◦ ψ)(X) = Ŷ and A.

However, in the survival analysis setting, the predicted survival time Tθ is not exactly
the outcome of a model (or a network). In general, the model output is the hazard function,
event probability, or survival probability. Therefore, the model outcome is independent of
the sensitive attribute is totally different from the predicted survival time is independent
of the sensitive attribute. Moreover, some survival models (e.g., Cox proportional hazard
model or accelerated failure time model) have the baseline hazard function, which is totally
separated from the model output. For such models, encouraging any kind of fairness,
including independence, of the model output will not result in the fairness of the predicted
survival time because it does not account for the baseline hazard.
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B.3. Comparison Against Group Fair DeepCox

Group Fair DeepCox (Keya et al., 2021) encourages the expected proportional hazard to be
the same across the sensitive groups, that is,

E[exp fθ(X|A = αk)] = E[exp fθ(X)], (A2)

for all k = 1, · · · ,K. We note that this criterion is different from DP, which requires
the predicted survival time to be independent of the sensitive attribute. Equalizing the
expectation of the group-conditional hazard functions across all groups does not necessarily
result in the same distributions of group-conditional predicted survival times (but the reverse
is true). Furthermore, (A2) is the equivalence in proportional hazard without considering
the baseline hazard, so the criterion does not imply the expected hazard functions being
the same. Thus, (A2) is a much weaker condition than DP, and it cannot account for the
disparity involving the baseline hazard function.

Appendix C. FAST Formulations (Supplement for Sections 3.3 and 3.4)

We introduce complete formulations of our FAST approaches by specifying the log-likelihood
functions for some representative survival analysis models.

C.1. Notations

Dataset {(xi, ai, oi, δi) : i = 1, · · · , n}, where xi is the covariate vector, ai is the sensitive
attribute, oi is the observed time (minimum of time to event or censoring), and δi is the
event indicator which takes 1 if the event precedes the censoring and 0 otherwise.

Model fθ : X → R, parameterized by θ. Either linear model or neural network.

Log-likelihood

ℓ(θ;D) = 1

n

n∑
i=1

[
δi log λθ(oi|xi)− Λθ(oi|xi)

]
. (A3)

In the case of discrete-time models (such as DeepHit), the negative log-likelihood becomes

ℓ(θ;D) = 1

n

n∑
i=1

[
δi logP (Tθ(xi) = oi)− (1− δi)P (Tθ(xi) > oi)

]
. (A4)

C.2. Cox Proportional Hazard Model (CPH)

Log-likelihood Cox proportional hazard model (Cox, 1972) is based on the proportional
hazard assumption, which is λθ(t|x) = λ0(t)λθ(x), where λ0 is the baseline function and
λθ is the proportional hazard function. We introduce a neural network fθ : x 7→ log λθ(x)
which outputs a log-hazard value given an input x.

The most widely used loss function to learn Cox proportional hazard models, for both
linear (Cox, 1972) and deep neural network (Katzman et al., 2018) models, is the negative
partial log-likelihood, which is defined as follows:

−ℓp(θ;D) = −
1

n

n∑
i=1

δi

[
fθ(xi)− log

( ∑
j∈Ri

exp fθ(xj)
)]
, (A5)
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where Ri = {j : δj = 1, oi < oj} is the at-risk set at the individual i event time oi. However,
the stochastic gradient approach for negative partial log-likelihood leads to a biased estimate
of the full batch gradient. Hence, instead, we take the approach that first estimates the
baseline hazard function, then plugs it into the full log-likelihood, and minimizes the negative
log-likelihood. Let λ̂0 and Λ̂0 be the estimated baseline hazard and cumulative baseline
hazard functions, respectively, which are estimated solely with {(oi, δi) : i = 1, · · · , n}. Then,
we have the following negative log-likelihood minimization problem:

min
θ
− 1

n

n∑
i=1

[
δi
(
log λ̂0(oi) + fθ(xi)

)
− Λ̂0(oi) exp fθ(xi)

]
, (A6)

whose stochastic gradient with respect to θ is unbiased. The quality of the full log-likelihood
depends on the choice and estimation of baseline hazard functions, but we found that the
results are fairly consistent with respect to the choice of baseline hazard function using
neural networks with sufficiently large capacity. In this paper, we used the Weibull baseline
hazard function, however, any popular baseline hazard function, including nonparametric
ones such as Kaplan-Meier (Kaplan and Meier, 1958) can be used as well.

Sampling From Tθ(x) In the case of the Cox PH model, the inverse CDF has a closed
form if we use a parametric baseline hazard function. Thus, we use inverse transformation
sampling. As CDF of Tθ(x) is given as Fθ(t|x) = P (Tθ(x) ≤ t) = 1− exp(−Λ̂0(t) exp fθ(x)),
we can easily find the inverse CDF. If we use the exponential baseline hazard function
λ0(t) =

1
λ , then Tθ(x) ∼ Exponential(λ/exp fθ(x)),

Fθ(F
−1
θ (u|x)|x) = 1− exp(−Λ̂0(t) exp fθ(x)) = 1− exp

(
− t
λ̂
exp fθ(x)

)
,

and therefore,

F−1
θ (u|x) = − λ̂ log(1− u)

exp fθ(x)
= −λ̂ log(1− u) exp(−fθ(x)).

To get sample τi drawn from Tθ(xi), we first draw ui ∼ Uniform(0, 1), and compute
F−1
θ (ui|xi).

If we use the Weibull baseline hazard function λ0(t) =
ρ
λ

(
t
λ

)ρ−1
, Tθ(x) ∼ Webuill

(
λexp(−1

ρfθ(x)), ρ
)
.

Even for nonparameteric baseline hazard functions, for example, the Kaplan-Meier estimator,
we can easily obtain the inverse function from the step function that defines the Kaplan-Meier
estimator, as described in A2.

C.3. DeepHit

Log-likelihood DeepHit (Lee et al., 2018) directly models the event probability at each
discretized time using a neural network fθ : x 7→ P (Tθ(x) = t). This leads to the following
negative log-likelihood minimization problem:

min
θ
− 1

n

n∑
i=1

[
δi logP (Tθ(xi) = oi)− (1− δi)P (Tθ(xi) > oi)

]
. (A7)
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Sampling From Tθ(x) DeepHit defines event probability by a categorical distribution, so
we can easily draw the time interval of an event from the distribution. However, sampling
from a discrete probability distribution is not a differentiable operation. Thus, we used the
Gumbel-Softmax trick (Huijben et al., 2022) in our implementation that allows differentiable
sampling operation.

C.4. DNNSurv

Log-likelihood DNNSurv (Zhao and Feng, 2020) is a pseudo value (Andersen and Po-
har Perme, 2010)-based deep survival model. It first estimates pseudo survival function for
each individual using the Jackknife method with the Kaplan-Meier estimator. It is known that
such pseudo value estimators are asymptotically unbiased for both censored and uncensored
observations. Subsequently, they build a neural network model fθ : x 7→ P (Tθ(x) > t) ∈ [0, 1]
to predict the pseudo survival functions correctly. In Zhao and Feng (2020), the mean
square error (MSE) is used as the loss function, but the MSE for pseudo value-based survival
analysis can have convergence issues in heavily censored settings (Rahman and Purushotham,
2022). We used the modified loss function in Rahman and Purushotham (2022) and defined
the problem as

min
θ
− 1

n

n∑
i=1

J∑
j=1

[
Ŝi(tj)(1− 2P (Tθ(xi) > tj)) + P (Tθ(xi) > tj)

2
]
, (A8)

where {t1, · · · , tJ} is a set of discrete time points that we define before performing Jackknife.

Sampling From Tθ(x) Unlike CoxPH and DeepHit, sampling predicted survival times
is not straightforward. Thus, we propose a differentiable sampling from the empirical
cumulative distribution function. Given an individual, we first evaluate the empirical CDF
on a grid of time points. The grid should cover the range from 0 to a sufficiently large value
(e.g., the max follow-up time of the dataset). Then, we draw u ∼ Uniform(0, 1) as in the
inverse CDF sampling, find the closest empirical CDF value, then find the corresponding
input value. We illustrate this procedure in Figure A2. To make the operation differentiable,
we use the Gumbel-Softmin trick when we find the closest empirical CDF value. This
technique not only applies to FAST-DNNSurv, but can be applied to any of the existing
survival models.

C.5. Cox-Time

Log-likelihood We also consider the Cox-time model that assumes the relative risk is not
only a function of covariates x but also a function of t, that is, λθ(t|x) = λ0(t) exp fθ(t,x).
Thus, for the Cox-time model, a neural network takes both covariate vector xi and time t
as inputs and outputs the log-proportional hazard, that is, fθ : (x, t) 7→ log λθ(t,x). Again,
as in CoxPH model, we first estimate the baseline hazard function and plug it into the full
log-likelihood (so that it is different from that of Kvamme et al. (2019)), leading to the
following optimization problem:

min
θ
− 1

n

n∑
i=1

[
δi
(
log λ0(oi) + fθ(oi,xi)

)
− Λ0(oi) exp fθ(oi,xi)

]
. (A9)
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Figure A2: Sampling From Empirical Cumulative Distribution Function. We (1) sample
u ∼ Uniform(0, 1); (2) find the closest empirical CDF value; (3) find the
corresponding t. In step (2), we substitute the Gumbel-Softmin trick for argmin
to make the operation differentiable.

Unlike the CoxPH model, Cox-time does not allow closed forms for relative hazard or
cumulative relative hazard functions. Thus, we use the Riemann sum to approximate the
cumulative hazard function as follows:

Λθ(oi|xi) =

∫ oi

0
λθ(t|xi)dt =

∫ oi

0
λ0(t) exp fθ(t,xi)dt ≈

m∑
j=1

λ0(sj) exp fθ(sj ,xi)(sj − sj−1),

(A10)
where {sj : 0, · · · ,m} is a properly defined grid such that s0 = 0 and sm = oi.

Sampling From Tθ(x) No closed form CDF is available for Cox-Time. We can do this as
same as in the DNNSurv case, as described in Figure A2.

C.6. Accelerated Failure Time Model

Log-likelihood We use the approach of Zhong et al. (2021) for the deep accelerated
failure time model, which assumes λθ(t|x) = λ0(t exp fθ(x)) exp fθ(x). The minimization of
pseudo-likelihood of Zhong et al. (2021) is defined as:

min
θ
− 1

n

n∑
i=1

δi

[
− log oi + log

[ 1

nν

n∑
j=1

δjϕ
( log oi + fθ(xi)− log oj − fθ(xj)

ν

)]
(A11)

− log
[ 1
n

n∑
j=1

Φ
( log oi + fθ(xi)− log oj − fθ(xj)

ν

)]]
,

where ϕ and Φ are density function and cumulative distribution function of the standard
normal distribution, and ν is the bandwidth of the Gaussian kernel (typical choice is
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ν = 1.3n−0.2). Moreover, its baseline hazard function is given as

λ̂0(t) =
1
t

∑n
i=1 δi

1
tϕ(

log oi+fθ(xi)−log t
ν )∑n

i=1

∫ log oi+fθ(xi)−log t
−∞

1
νϕ(

s
ν )ds

, (A12)

and the cumulative baseline hazard function is given as

Λ̂0(t) =

∫ t

0
λ̂0(s)ds. (A13)

Finally, the survival function is given as

Ŝ(t|x) = exp
(
− Λ̂0(t exp fθ(xi)

)
. (A14)

Sampling From Tθ(x) We cannot find a closed-form CDF for the deep AFT. We can do
this as same as in the DNNSurv case, as described in Figure A2.

We further note that our approach can be applied to deep extended hazard model (Zhong
et al., 2021), piecewise constant hazard model (Kvamme and Borgan, 2021), and SODEN
(Tang et al., 2022).

Appendix D. Experiments (Supplement for Section 5)

D.1. Datasets

For all datasets, as presented in the main text, we followed the protocol of SurvSet repository
(Drysdale, 2022). We imputed the missing values to the median and mode values for numerical
and categorical variables, respectively. We then performed one-hot encoding for categorical
variables. All covariates taking continuous values were standardized to have zero-mean and
unit variance.

FLChain The free light chain (FLChain) dataset resulted from a study about the rela-
tionship between serum FLC and mortality. Of the 7,874 patients, 2,169 patients (27.5%)
died, and the remaining 5,705 patients (72.5%) were censored. It includes covariates such
as age, serum creatinine, the presence of monoclonal gammopathy, etc. For this dataset,
gender is the sensitive attribute.

SUPPORT The Study to Understand Prognoses Preferences Outcomes and Risks of
Treatment (SUPPORT) dataset was obtained from a study to understand survival over 180
days for seriously ill hospitalized patients. Of the 9,105 patients, 6,201 patients (68.1%)
patients died, with a median survival time of 58 days, and the other 2,904 patients (31.9%)
were censored. It contains covariates, including age, gender, education, income, physiological
measurements, and co-morbidity information, etc. For this dataset, race (White, Black,
Hispanic, and Asian/Other) is the sensitive attribute.

Framingham The Framingham dataset collected from Framingham Heart Study (FHS)
was performed to characterize major risk factors that contribute to cardiovascular disease.
Of the 4,699 patients, 1,473 patients (31.3%) died, and the remaining 3,226 patients (68.7%)
were censored. The dataset includes covariates such as systolic and diastolic blood pressure,
age, body mass index (BMI), etc., where gender is the sensitive attribute.
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D.2. Competitive Methods (Supplement for Section 5)

GFDeepCox GFDeepCox stands for Group Fairness DeepCox, proposed by Keya et al.
(2021), which aims to achieve group fairness for the CoxPH model. It encourages the average
proportional hazard of each sensitive group to be similar. The problem is defined as:

min
θ
−

n∑
i=1

δi

[
fθ(xi)−log

( ∑
j∈R(oi)

exp fθ(xj)
)]

+γmax
k

∣∣∣∣∣E[exp fθ(Xk)]−E[exp fθ(X)]

∣∣∣∣∣, (A15)
where R(t) is the at-risk set at time t.

IFDeepCox IFDeepCox stands for Individual Fairness DeepCox, proposed by Keya et al.
(2021), which aims to achieve individual fairness for the CoxPH model. It encourages the
proportional hazard to be similar for individuals who have similar inputs. The problem is
defined as:

min
θ
−

n∑
i=1

δi

[
fθ(xi)−log

( ∑
j∈R(oi)

exp fθ(xj)
)]

+γ
∑
i,j

max{0, | exp fθ(xi)−exp fθ(xj)|−D(xi,xj)},

(A16)
where D(xi,xj) is a distance function.

For GFDeepCox and IFDeepCox, we worked on top of the author’s implementation
(https://github.com/kkeya1/FairSurv/).

GFDNNSurv GFDNNSurv stands for Group Fairness DNNSurv, proposed by Rahman
and Purushotham (2022), which aims to achieve group fairness for the DNNSurv (deep
pseudo value-based survival model). In the original paper, the model is referred to as FGDP.
The formulation to learn the model is:

min
θ
− 1

n

n∑
i=1

J∑
j=1

[
Ŝi(tj)(1− 2P (Tθ(xi) > tj)) + P (Tθ(xi) > tj)

2
]

(A17)

+ γ

J∑
j=1

∣∣∣E[P (Tθ(Xk) > tj)]− E[P (Tθ(X) > tj)]
∣∣∣,

where {t1, · · · , tJ} is a set of discrete time points that we define before performing Jackknife.

IFDNNSurv GFDNNSurv stands for Individual Fairness DNNSurv, proposed by Rahman
and Purushotham (2022), which aims to achieve individual fairness for the DNNSurv (deep
pseudo value-based survival model). In the original paper, the model is referred to as FIDP.
The formulation to learn the model is:

min
θ
− 1

n

n∑
i=1

J∑
j=1

[
Ŝi(tj)(1− 2P (Tθ(xi) > tj)) + P (Tθ(xi) > tj)

2
]

(A18)

+ γ

L∑
l=1

∑
i,j

max{0, |P (Tθ(xi) > tl)− P (Tθ(xj) > tl)| − αD(xi,xj)},
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where {t1, · · · , tL} is a set of discrete time points that we define before performing Jackknife,
and D(xi,xj) is a distance function.

Since there is no publicly available code for GFDNNSurv and IFDNNSurv, we imple-
mented the model in our own way.

DRODeepCox DRO for deep Cox proportional hazard model has been proposed by Hu
and Chen (2022). We followed the authors’ implementation given in https://github.com/

discovershu/DRO_COX.

D.3. Network Structures and Optimization Details (Supplement for Section 5.1)

Survival Model Network For all three datasets and for all models, we use multilayer
perceptrons that have the structure: Input – Dense(64) – Dense(64) – Dense(64) – Output,
where input differs by the dataset and output depends on the choice of the survival model.
For instance, for the case of DeepCox Output = 1, while for DeepHit and DNNSurv, Output
is the number of discretized time bins. Each dense layer is followed by batch normalization
(Ioffe and Szegedy, 2015) and the ReLU activation function (Nair and Hinton, 2010), except
for the output layer. For DeepHit and DNNSurv, we discretized the follow-up time into 50
bins with equal percentiles of the dataset.

FAST Methods For our FAST approach, we need an additional network to estimate
the mutual information of Tθ and A. For all datasets, we used multilayer perceptrons that
consist of Input – Dense(32) – Dense(32) – Dense(32) – Dense(1), where the input has
the shape of K + 1 because we used one-hot encoded sensitive attributes as input (where K
is the number of sensitive groups). Each dense layer is followed by an ELU activation.

Optimization We use Adam (Kingma and Ba, 2014) with weight decay (L2 penalty)
of 0.0001 for all methods and datasets to train the networks. For all datasets, we trained
the networks using batch size 256 (except for GFDeepCox, IFDeepCox, and DRODeepCox,
which have to be trained with full-batch) for 200 epochs. The initial learning rate is set to
0.001, and we decreased it to 0.0001 after the first 100 epochs. Finally, we evaluated the
loss function value on the held-out validation set and selected the network parameters that
provided the best validation loss.
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Methods Hyperparameter Values

FASTDeepCox
γ [1, 2, 3, 5, 10, 15, 20]FASTDNNSurv

FASTDeepHit

GFDNNSurv

γ [0.01, 0.1, 1, 2, 3, 5, 10, 20]
IFDNNSurv
GFDeepCox
IFDeepCox

DRODeepCox η [1.0, 0.4, 0.3, 0.2, 0.1]

Table A1: The range of the hyperparameters of the fairness-aware models used in the
experiment. Note that the grids are not wide enough to make the penalty terms
dominant because the main purpose of our experiment is to encourage predictive
parity as much as possible while not losing the prediction performance.
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Appendix E. Additional Experimental Results
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Figure A3: The predicted survival curves generated by DeepCox-based and DNNSurv-based
fairness encouraging methods for the FLChain dataset.
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Figure A4: The predicted survival curves generated by DeepCox-based and DNNSurv-based
fairness encouraging methods for the Framingham dataset.

34



Fair Survival Time Prediction via Mutual Information Minimization

FASTDeepCox
DeepCox
DRODeepCox
GFDeepCox
IFDeepCox

0.000 0.005 0.010
GF

0.4

0.5

0.6

0.7

0.8

CI

0.000 0.005 0.010
GF

0.10

0.12

0.14

Br
ie

r

0.000 0.005 0.010
GF

0.04

0.06

0.08

0.10

0.12

EC
E

FASTDNNSurv
DNNSurv
GFDNNSurv
IFDNNSurv

0.00250.00500.00750.01000.0125
GF

0.72

0.74

0.76

0.78

CI

0.00250.00500.00750.01000.0125
GF

0.09

0.10

0.11

0.12

Br
ie

r

0.00250.00500.00750.01000.0125
GF

0.06

0.08

0.10

0.12

0.14

EC
E

FASTDeepHit
DeepHit

0.0025 0.0050 0.0075 0.0100
GF

0.60

0.65

0.70

0.75

CI

0.0025 0.0050 0.0075 0.0100
GF

0.08

0.09

0.10

0.11

0.12

0.13

Br
ie

r
0.0025 0.0050 0.0075 0.0100

GF

0.10

0.15

0.20

0.25

0.30

EC
E

Figure A5: Three performance metrics (Ci, Brier, and Ece) vs. Gf trade-off curves from
FLChain dataset.
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Figure A6: Three performance metrics (Ci, Brier, and Ece) vs. Gf trade-off curves from
Framingham dataset.
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Figure A7: Three performance metrics (Ci, Brier, and Ece) vs. Gf trade-off curves from
SUPPORT dataset.
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Figure A8: Results of FLChain dataset where the sensitive attribute is gender.
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Figure A9: Results of Framingham dataset where the sensitive attribute is gender.
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Figure A10: Results of SUPPORT dataset where the sensitive attribute is race/ethnicity.
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Figure A11: Follow-up time distributions for different max follow-up times for male partici-
pants (FLChain).
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Figure A12: Follow-up time distributions for different max follow-up times for male partici-
pants (Framingham).
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Figure A13: Model performances and disparities versus max follow-up years for males on
the Framingham dataset averaged over 5 test sets. The green shades represent
the 5% margin of the C-index.

35 30 25 20 15
Max Follow-up Years

0

20

40

60

EC
E

DeepCox
FASTDeepCox
GFDeepCox

IFDeepCox
DRODeepCox

35 30 25 20 15
Max Follow-up Years

0
20
40
60
80

EC
E

35 30 25 20 15
Max Follow-up Years

0
5

10
15
20

EC
E

DNNSurv
FASTDNNSurv

GFDNNSurv
IFDNNSurv

35 30 25 20 15
Max Follow-up Years

0

10

20

EC
E

35 30 25 20 15
Max Follow-up Years

0

2

4

EC
E

DeepHit FASTDeepHit

35 30 25 20 15
Max Follow-up Years

0

2

4

EC
E

Figure A14: Model performances and disparities versus max follow-up years for males on
the Framingham dataset averaged over 5 test sets. The green shades represent
the 5% margin of the ECE.
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Figure A15: Model performances and disparities versus max follow-up years for males on
the FLChain dataset averaged over 5 test sets. The green shades represent the
5% margin of the C-index.
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Figure A16: Model performances and disparities versus max follow-up years for males on
the FLChain dataset averaged over 5 test sets. The green shades represent the
5% margin of the ECE.
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