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Abstract

Cervical cancer is a life-threatening disease and one of the most prevalent types of can-
cer affecting women worldwide. Being able to adequately identify and assess factors that
elevate risk of cervical cancer is crucial for early detection and treatment. Advances in
machine learning have produced new methods for predicting cervical cancer risk, however
their complex black-box behaviour remains a key barrier to their adoption in clinical prac-
tice. Recently, there has been substantial rise in the development of local explainability
techniques aimed at breaking down a model’s predictions for particular instances in terms
of, for example, meaningful concepts, important features, decision tree or rule-based logic,
among others. While these techniques can help users better understand key factors driving
a model’s decisions in some situations, they may not always be consistent or provide faithful
predictions, particularly in applications with heterogeneous outcomes. In this paper, we
present a critical analysis of several existing local interpretability methods for explaining
risk factors associated with cervical cancer. Our goal is to help clinicians who use AI to
better understand which types of explanations to use in particular contexts. We present
a framework for studying the quality of different explanations for cervical cancer risk and
contextualise how different explanations might be appropriate for different patient scenar-
ios through an empirical analysis. Finally, we provide practical advice for practitioners
as to how to use different types of explanations for assessing and determining key factors
driving cervical cancer risk.

1. Introduction

Cervical cancer is a dangerous cancer of the uterus affecting women’s health worldwide.
It is the fourth most prevalent type of cancer in women, with an estimated 604 000 new
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cases and 342 000 deaths in 2020 alone (Sung et al., 2021). Left undetected and untreated,
cervical cancer can result in damage to the tissue of the cervix and can gradually reach
other areas of the human body, such as the lungs, liver, and vagina. A few risk factors such
as prior exposure to Human Papillovirus (HPV), smoking, weakened immunity and starting
sexual activity at a young age, are known to increase the likelihood of developing cervical
cancer (Kashyap et al., 2019). Yet there may be many other unknown driving factors that
increase a patient’s chances of developing cervical cancer. Being able to accurately identify
these factors is crucial for early detection and treatment.

Recent advances in AI have contributed to a growing body of research aimed at using
machine learning (ML) algorithms for early assessment of cervical cancer risk. Among these,
Ratul et al. (2022); Kruczkowski et al. (2022) compare the performances of random forests,
deep learning and Naive Bayes for predicting cervical cancer risk, while Mehmood et al.
(2021) present an algorithm known as CervDetect for feature selection and subsequently use
a deep neural network to determine those variables, such as history of STDs and age, most
correlated with elevated risk of cervical cancer. These methods, though predictive, exhibit
high variance, particularly when applied to heterogeneous patients. Prior research has also
proposed several methods (Chadaga et al., 2022; Lee et al., 2021; Curia, 2021; Conceição
et al., 2019; Chekin et al., 2022) using ensembles of decision trees and neural networks
applied to tabular and image data to predict cervical cancer risk. Though performant,
these methods are not interpretable making them difficult to use in practice.

To overcome these issues, Mohanty and Mishra (2022) survey explainability methods to
better understand the risk factors that are responsible for the development of certain types
of cancer. Unfortunately however, these methods often provide competing explanations and
there is little agreement as to which explanation makes sense for a particular context, nor
are these accompanied by any uncertainty metric or objectively compared to one another
(Krishna et al., 2022; Attanasio et al., 2022; Camburu et al., 2019; Bodria et al., 2021; Neely
et al., 2021).

In our work, we review and synthesize properties, desiderata and definitions in the
interpretable machine learning literature relevant for assessing cervical cancer risk. We
provide a framework for assessing the quality of different explanations for cervical cancer
risk and compute different metrics for determining which explanation makes the most sense
for cervical cancer risk assessment. In our experiments, we provide, to the best of our
knowledge, the first empirical study analysing the performances of different methods for
explaining cervical cancer risk factors. For each method, we contextualise how different
formulations of these explanations might be appropriate for different patient contexts and
when an explainability technique may not be suitable for use. Finally, we provide advice
for practitioners as to how to use different types of explanations in practice for assessing
and determining key factors driving cervical cancer risk.

Generalizable Insights about Machine Learning in the Context of Healthcare

Explanations and our ability to interpret these explanations is highly dependent on their
downstream application task (Doshi-Velez and Kim, 2017; Lage et al., 2018). However while
our core focus in this paper is assessing cervical cancer risk using various interpretability
methods, some of our contributions will certainly be valuable in other contexts. Specifically:
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• Algorithm: We introduce an algorithm for comparing the performances of various
interpretability tools, which could be used to assess how explanations may differ across
patients, diseases or applications.

• Metrics: We provide an empirical comparison of how explanations may differ in terms
of their accuracy, compactness, consistency and robustness using different metrics for
each. These metrics may be applicable in other contexts, beyond our cervical cancer
risk assessment task.

• Demonstration: We show that our method for analyzing and assessing the perfor-
mances of various explanations for cervical cancer risk assessment provides a gener-
alizable set of guidelines for clinicians to use to more easily audit a machine learning
model’s predictions in high-stake settings, while maintaining predictive accuracy.

2. Related Work

A number of ML approaches for assessing cervical cancer risk have been developed. These
works are either not interpretable or do not always produce consistent or faithful predictions,
particularly in applications with heterogeneous outcomes. Several works on interpretable
and explainable ML have also focused on reviewing and characterizing what makes a good
explanation in terms of properties and evaluation metrics. However, to the best of our
knowledge, there has not been prior work that critically evaluates the quality of these
explanations for assessing cervical cancer risk.

Cervical Cancer Risk Assessment Methods Prior research has proposed several ap-
proaches (Chadaga et al., 2022; Lee et al., 2021; Curia, 2021; Conceição et al., 2019; Chekin
et al., 2022) to train highly performing models in order to accurately predict the cervical
cancer disease, using different categories of models and types of data. Unfortunately, not all
of these methods are interpretable. Other propositions include simple models such as deci-
sion trees and complex black-box models like neural networks and ensemble methods (Wang
et al., 2021) which are applied on tabular and image datasets to predict cervical cancer risk.
Similarly, Mohanty and Mishra (2022) used explainability methods to better understand
the risk factors responsible for development of certain types of cancer. Unfortunately how-
ever, these methods often provide competing explanations and there is little agreement as
to which explanation makes sense for a particular context. Unlike these, our work provides
an empirical analysis comparing different types of local explanations for assessing cervical
cancer risk. We provide guidance to clinicians who use AI to better understand which types
of explanations are more suitable for cervical cancer risk assessment.

Local Explanations Local explanations provide explanation for a specific input. Ribeiro
et al. (2016) show that using the weights of a sparse linear model, one can explain the
decisions of a black box model in a small area near a fixed data point. Similarly, Singh
et al. (2016) and Koh and Liang (2017) output a simple program or an influence function,
respectively. Other approaches have used input gradients to characterize local logic (Maaten
and Hinton, 2008; Selvaraju et al., 2016). However, such local explanations often do not
match with human notions of contexts (Miller, 2018): a user may have difficulty knowing if
and when explanations generated locally for input x translate to new inputs x′ and research

3



Which Explanation Makes Sense For Cervical Cancer Risk Assessment?

on which local explanations to use in different contexts remains limited. In our work, we
empirically assess the properties of local explanations for use when applied to the task of
assessing cervical cancer risk, and provide guidance as to which of these explanations may
be suitable in different contexts.

Reviews of Explanation Types and Metrics Several review papers e.g. Agarwal
et al. (2022); Chen et al. (2022); Zhou et al. (2021) have identified and described important
properties and desiderata for explanations. Among these, Zhou et al. (2021) provide an
overview of various metrics for evaluating explanation types. Liao et al. (2022) conduct
a user survey to build a taxonomony of desired properties of explanations; Vitali (2022)
provide a review of evaluation metrics based on how compliant they are with existing laws.
Some of these papers focus on characterizing different types of explanations (Marcinkevičs
and Vogt, 2020). Others such as Chen et al. (2022) provide a survey of explanation quality in
terms of properties defined in interpretable machine learning papers, synthesizes them based
on what they measure, and describe the theoretical trade-offs between different formulations
of these properties. Our work is complementary to these works and provides an empirical
evaluation of these explanations, specifically applying some of the metrics described in Chen
et al. (2022) in the context of cervical cancer risk assessment. Unlike Agarwal et al. (2022),
we do not use the faithfulness metric to compare explanations produced to ground truth
feature importances, since in reality it is implausible to have access to these and we choose
not to compute the unfairness metric, since there is increasing evidence that fairness metrics
can in fact preserve or even perpetuate bias (e.g. Wachter et al. (2021)) which we want
to avoid. Instead, we compute the ROAR metric to measure the impact of removing top
features on the model performance.

3. Method: A Local Feature Contribution Assessment Framework

Our goal in this work is to provide a framework for assessing the quality of different expla-
nations for cervical cancer risk and compute different metrics for determining which expla-
nation makes the most sense for cervical cancer risk assessment. We propose a systematic
approach for interpreting the predictions of a black-box model using multiple interpretabil-
ity methods, and compare the explanations based on desired criteria. Our approach consists
of three key phases: a) first we train a series of models for cervical cancer risk assessment
and choose the best among these models; b) next, we interpret the models from a) using
a series of local explainability techniques; c) we compute a series of metrics to assess the
plausibility and coherency of each of the explainability methods considered. An overview
of this framework is provided in Figure 1. Overall, our framework provides domain experts
with a means of understanding not only which factors contribute to patient risk of cervical
cancer, but also contextualises when certain types of explanations may be preferrable to
others for cervical cancer risk assessment.

3.1. Problem Setup

Given a cohort X ∈ RN×D of N patients with D features, we propose a multistage analysis
pipeline. First, we test the performances of supervised learning models f : RN×D → {0, 1}
for predicting cervical cancer risk. From these models, we find the model f∗ that best
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Figure 1: Ilustration of the two stages pipeline. (1) choosing the best model and (2) select-
ing the best explanation for individual patients.

predicts a patient’s risk of cervical cancer based on their data. Assume L denotes the loss
function used to train f , x represent an instance of interest and ψ represent a regularization
term added to L to prevent overfitting.

L(y, f(x)) := − 1

N

N∑
i=1

yi log f(xi) + (1− yi) log(1− f(xi)) + ψ(xi), (1)

where yi is the actual label (0 or 1) for the ith data point, and f(xi) is the predicted prob-
ability of the positive class for the ith data point. In our work, we consider five different
model architectures for f that widely been used in prior literature for cervical cancer risk
assessment, namely Logistic Regression (LR), Random Forest (RF), Support Vector Ma-
chine (SVM), k-Nearest Neighbors (KNN), and Multilayer Perceptron (MLP). The model
that best predicts a patient’s risk of cervical cancer is given by:

f∗(xi) = min
f
L(yi, f(xi)). (2)

3.2. Generating Local Explanations

Next, we use the predictions of the chosen model to generate explanations for each patient
using existing local explainability techniques. Our objective is to assess the quality of
explanations for the predictions made by f∗. Let g represent an interpretable model used
to produce local explanations of the predictions of f∗. The types of local explanations we
consider in this paper are detailed in the subsections below. We focus on these methods as
they are most widely used across several healthcare applications.

Local Interpretable Model-Agnostic Explanations. LIME is a model-agnostic tech-
nique (Ribeiro et al., 2016) for explaining the predictions of machine learning models on a
local, instance-specific basis. LIME approximates the predictions of f∗(x) by with a sim-
pler g(x) for an instance of interest x. The approximation is done using weighted linear
regression, where the weights are determined based on the proximity of training samples to
x, by minimizing:

arg min
g
Lπx(f∗, g) + Ω(g) (3)

where Lπx(f∗, g) measures the discrepancy between the predictions of f∗(x) and the inter-
pretable model g(x) on a local neighborhood of x, π determines the weights for the training
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samples, and Ω(g) promotes simpler and more interpretable models. The explanation con-
sists of the feature importance values derived from the model coefficients of g. In our work
g is a linear regression.

SHAP. SHAP (Lundberg and Lee, 2017) values explain the output of any machine learn-
ing model by attributing a value to each feature for a prediction based on their contributions
towards that prediction. This is done by considering all possible feature combinations. The
general formula for computing SHAP values is based on the Shapley value concept and can
be expressed as:

ϕi =
∑

S⊆D\{i}

|S|! (|D| − |S| − 1)!

|D|!
f∗x∈RD(x) − f∗x∈RS (x)

where S is a subset of features D excluding feature d, and f∗
x∈RS and f∗

x∈RD are the pre-
dictions of the black-box model for subsets S and S with feature d included, respectively.
Variants of SHAP include kernel SHAP, tree and deep SHAP, depending on the model f∗

being explained.

Diverse Counterfactual Explanations. DICE (Mothilal et al., 2019) is a model-agnostic
method for generating diverse and interpretable counterfactual explanations for individual
predictions. DICE finds instances similar to original instance x, but with different predicted
outcomes. Optimization requires minimizing a distance metric between the counterfactuals
and x, subject to constraints that ensure dissimilarity among generated counterfactuals.
Counterfactuals are generated by perturbing the features of x while staying within the
feasible range of feature values. The optimization problem can be formulated as:

min
xci∈X

δ(xci , xi) ∈ C(xci) = ci, xci ̸= xi

where xci is a counterfactual instance, X is the feasible range of feature values, δ(xci , xi) is a
distance metric between the counterfactual and the original instance, C(xci) is a constraint
function that enforces the counterfactual to have a desired predicted outcome ci, and xci ̸=
xi ensures that the counterfactual is different from the original instance.

Tree Interpreter. Tree Interpreter (Li et al., 2019) is a model-specific method for in-
terpreting predictions of tree-based models, such as random forests. It provides a way to
attribute feature importance values for predictions made by tree-based models, by tracing
the decision path of an instance through the tree and measuring the contribution of each
feature towards the prediction. This is done by summing the changes in prediction associ-
ated with each decision node along the path, weighted by the proportion of instances that
pass through each decision node. The contribution of feature i for a specific instance x can
be computed as:

Contributioni =
M∑
d=1

wd · I(x ∈ Rd) ·∆pd,

where Rd corresponds to the region associated with decision node d, ∆pd denotes the change
in predicted probability associated with d, M is the number of decision nodes in the tree
or ensemble, wd denotes the weight associated with decision node d in the tree or ensemble
and I represents the indicator function.
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Local Surrogates. Local Surrogates (Molnar, 2022) are model-specific methods for in-
terpreting predictions of machine learning models that aim to provide insights into the
decision-making process of the black-box model for a specific prediction, by fitting a sim-
pler model, such as linear regression or decision tree, using the training data in the local
neighborhood of the instance of interest. Local surrogates generate explanations in the form
of interpretable models or feature importance values, depending on the specific method used.

3.3. Evaluation Metrics

Our objective is to assess the quality of each of the explanation techniques described earlier
for the task of cervical cancer risk prediction. The quality of an explanation is determined
by several desiderata quantified using the following metrics, based on those in Chen et al.
(2022). Note that although these metrics are not necessarily specific to cervical cancer,
there are several works from medicine which demonstrate these properties of explanations
may be effective for AI in healthcare (see for instance, Jung et al. (2023); Amann et al.
(2020)).

The Consistency Metric compares the explanation attributed to the same instance or
set of instances by different feature importance-based explainability methods. This is done
through computing an L2 distance between pairs of explanations (Slack et al., 2021). If
two different methods attribute similar feature importance to the same instance or set of
instances, the user’s confidence and trust in the model’s predictions increases.

The Stability Metric compares the explanation given to an instance in its neighborhood,
meaning that if two instances have similar feature values and predictions, they should be
attributed similar explanations (Petsiuk et al., 2018). Two instances having similar feature
spaces and different predictions (those are in the boundary of the decision) will not necessary
have the same explanation, especially that most of the explainability methods compute
feature explanations from the model’s predictions. In order to perform the stability analysis,
we use the local Lipschitz metric for explanation stability (Alvarez-Melis and Jaakkola,
2018).

L̂(xi) = argmax
xj∈Bϵ(xi)

∥ϕ(xi)− ϕ(xj)∥2
∥xi − xj∥2

(4)

where xi refers to an instance, Bϵ(xi) is the ϵ-sphere centered at xi, and ϕ(xi) and ϕ(xj) are
the explanation parameters for xi and xj . Lower values indicate more stable explanations.

The Compactness metric measures how many features are needed to reach a certain
percentage of the prediction. This can be obtained by fixing the percentage we want to
reach and compute the number of features needed to explain that fixed percentage of the
prediction.

The Faithfulness Metric: RemOve And Retrain (ROAR) (Hooker et al., 2018)
is a machine learning interpretability metric that involves iteratively removing a subset of
features from a dataset, retraining the model on the reduced dataset, and then evaluating
the changes in model accuracy or feature importance. Agarwal et al. (2022) employ a similar
faithfulness metric but assume access to the ground truth feature importances. In practice,
it may be difficult to have access to these. Instead, we consider faithfulness in terms of
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feature and rank agreement to measure the similarity between each pair of methods in
terms of rank and sign. Other measures of faithfulness from Agarwal et al. (2022) can be
viewed as variants of these.

A number of works deem stability, consistency, compactness and faithfulness as impor-
tant facets of interpretability for healthcare domains overall. These include Amann et al.
(2020) and Jung et al. (2023). Note that these quality metrics and explanations are not
meant as a replacement for clinical expertise. We believe combining domain expertise and
these explanations and performing external validation on another dataset is necessary to
deduce context-specific explanations that are grounded in clinical utility, which is the focus
of future work.

3.4. Algorithm for Assessing Local Feature Contribution

We summarize our approach for assessing the quality of different explanations in Algorithm
1. We start by cleaning and balancing the dataset, then we test existing supervised machine
learning models and select Random Forest as it is the most performing one in terms of
AUC. Next, we use the selected explainability methods in order to explain the predictions
attributed to each patient in the dataset. Finally, we choose the method that satisfies the
desired properties that are fixed by the clinician. Code is available at 1.

Algorithm 1 A Local Feature Contribution Assessment Framework

Data: D = {(X,Y )}, X ∈ RNxD, Y ∈ {0, 1}, f ∈ F, g ∈ G,m ∈M,w ∈W
Result: θ∗

θ ← ∅
D← ADASY N(D) ▷ Balance the dataset.
Xtrain, Ytrain, Xtest, Ytest ← split(D)
while f in F do
f(x) = minL(y, f(x)) ▷ Learn the best model.

end
f∗ ← minf L(y, f(x)) ▷ Generate plausible local explanations.
while g ∈ G do
θ ← +feature importance(g,Xtest)

end
while m ∈M do

scores← evaluate(θ,m) ▷ Evaluate each explainability method with each metric.
end

θ∗ ← argmax(
∑M

i=1 scorei ∗ wi) ▷ W are defined by the clinician for the desired
explanation properties.

1. https://github.com/cwayad/Local-Explanations-for-Cervical-Cancer

8



Which Explanation Makes Sense For Cervical Cancer Risk Assessment?

4. Cervical Cancer Risk Assessment

The following section provides details of our cohort selection and data processing for pre-
dicting and assessing the quality of explanations for cervical cancer risk.

Cohort Selection. We use Cervical cancer risk factors dataset X from the UCI repository
(Fernandes et al., 2017). This data contains 858 female patients characterized by D = 35
features including demographic information such as age and number of pregnancies, clinical
tests such as Hinselmann, Schiller and Citology, many Sexually Transmitted Diseases such
as HPV and AIDS, and diagnosis taken by the patients such as HPV and CIN. A summary
of cohort characteristics and demographics can be found in Table 1.

Age No. of sexual partners First sexual intercourse No. of Pregnancies Smokes Cancer Diagnosis Contraceptives Total STDs No. of Tests

20’s 2.54 17.01 2.10 0.14 0.03 0.72 0.14 0.24
30’s 2.67 18.09 2.83 0.17 0.04 0.75 0.15 0.26
40’s 2.50 18.59 3.29 0.07 0.05 0.68 0.23 0.27
50’s 2.80 16.40 4.80 0.40 0.20 0.40 0.00 1.00
70+ 2.50 19.75 7.25 0.50 0.00 0.00 0.00 0.25
Teen 2.25 15.08 1.40 0.11 0.01 0.56 0.18 0.20

Table 1: A summary of cohort characteristics and demographics based on age.

We also contextualise the results we obtain by examining different patient instances
from the cohort. The summary statistics of these patients relative to the population mean
are provided in Table 3 in Appendix B.

Data Processing. To conduct our experiments, we impute missing values and generate
synthetic additional samples for class 1 (presence of cancer) using the ADASYN (Adaptive
Synthetic Sampling) technique in order to balance balanced the dataset by oversampling
the minority class. After preprocessing with ADASYN, the new dataset contains 1677
patients. We split the balanced dataset into 80% for training and 20% for testing, ensuring
an unbiased evaluation of our models.

Model selection for f∗. f is trained to predict risk of cervical cancer y from X. For
our experiments, we trained five different models for f namely LR, RF, SVM, KNN and
MLP. Specifically, each of the models was trained using 10-fold cross validation and the
parameters for each were selected by conducting a grid search over parameters and choosing
those values that produce the best accuracy. f∗ was subsequently obtained by selecting the
model minimizing the loss in Eqn 1. For our experiments this was a RF model. These
results are consistent with prior studies that showed RFs as one of the top-performing ML
models used for predicting cervical cancer risk.

Local Explanation Generation. We generated feature importance explanations us-
ing LIME, three variants of SHAP (Tree-SHAP (TSHAP), Kernel-SHAP (KSHAP) and
Sampling-SHAP (SSHAP)), Tree Interpreter, DICE and Local Surrogates. These provide
local explanations for individual instances, highlighting the contribution of each feature
towards the model’s prediction. We apply these methods to the test set.

9



Which Explanation Makes Sense For Cervical Cancer Risk Assessment?

(a) (b)

Figure 2: (a) The decrease in model’s accuracy after removing a % from the top features
and model retraining on the new feature set using ROAR. The feature rankings
are taken from the mean feature contributions that have been computed locally.
Removing the top 30% most important features given by Tree SHAP decreases
the accuracy of the RF by 50%. On the other hand, removing between 30%
and 50% of the feature ranking provided by LIME doesn’t affect the model’s
accuracy, making it the model with the most faithful explanations across the
cohort.(b) For each pair of methods, Consistency calculates the distance between
the contributions for all instances using L2 norm. Tree SHAP and Sampling
SHAP is the most consistent pair, while Local Surrogate and DiCE is the least
consistent pair.

5. Results

We first compared the quality of each of the local explanation techniques when applied to
f∗ and examined the top features produced by each of these techniques. This gives us those
features that best explain the optimal model f∗. Next, we measure the decrease in accuracy
of f∗ when we successively removed a fraction of the top features for each explanation. A
summary of these results across the test set can be found in Figure 2. Overall, we see
that LIME is the most robust to removal of features, while the model accuracy of all other
explanations drops significantly after removing the top features.

The top 30% important feature given by TreeSHAP have the most impact on
model learning. We observe very different accuracy drop after removing 30% of the fea-
tures and model retraining. Indeed, training the model without the top 30% of features
given by TreeSHAP drops the model’s accuracy to 53%, meaning that those features have
the most significant impact on the model learning. Similar accuracy drops can be seen
for other variants of SHAP. This is because models trained with SHAP predominantly rely
on one feature for predicting cervical cancer risk namely prior HPV infection. Dropping
the same percentage of top features given by LIME will only decrease the accuracy by
15%, making LIME the model that produces the most faithful explanations. Unlike SHAP
methods, DICE and Surrogates, LIME makes use of multiple features to produce a model
explanation. Here, dropping the top features do not drastically decrease the model’s accu-
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racy as other features may still be predictive. Table 2 further describes how many features
each explanation uses to produce a model with 90% accuracy, as well as the mean stability
and coherency of these explanations.

Methods # Features for 90% Accuracy Accuracy with 5 features(%) Mean Stability Mean Consistency

SSHAP 1 12 0.87 0.34
TSHAP 1 12 0.36 0.34
KSHAP 1 12 1.44 0.34
LIME 1 45 0.66 0.46
TI 1 19 0.59 0.42
DiCE 9 100 1.66 1.11
Local Surrogates 3 100 0.22 0.54

Table 2: Compactness, stability and consistency of local explainability methods for predict-
ing cervical cancer risk. Some methods predominantly require only one feature to
achieve 90% prediction accuracy. Local surrogates have the highest mean stability,
while SHAP variants have the highest mean consistency.

All explainers agree on HPV being the most important risk factor for cervical
cancer. Next, we examined the feature contributions produced by each explanation tech-
nique for each of the patients from Table 3 in Appendix B. The results for Patient 0 and 1
are shown in Figure 3. We see that for Patient 1, all explainers identify prior incidence of
HPV as a predominant determinant of cervical cancer. In contrast, all explainers identify
use of hormonal contraception and IUD as the third driving risk factors in determining
cervical cancer. Local surrogates on the other hand, uses smoking, and age as key risk
factors.
These explanations, though different in terms of the risk factors used, are all plausible
explanations for cervical cancer assessment and are consistent with existing literature. We
compared these results to those of Patient 0 from Table 3 in Appendix B, who is diagnosed as
not having cancer. These results are shown in the right sub-figures in Figure 3. Notably the
first two driving factors in both cases are similar. Interestingly, except for Local surrogates,
all explainers show that starting sex intercourse after 18-years old may help prevent from
being diagnosed with cervical cancer. Finally, SHAP explainers indentify contraceptives
(hormonal and IUD) may lead cervical cancer. In contrast, LIME and Tree Interpreter are
unsure of its positive or negative impact on cervical cancer.

SHAP explainers have exactly the same top 10 most important features for
Patient 1. Next we examined the explanations produced by each technique in terms of
feature and rank agreements for the same patients: (a) Patient 0 and (b) Patient 1. These
results are shown in Figure 4. We observe similar top features given by SHAP explainers for
Patient 1, and comparable feature ranking between TSHAP, KSHAP and Tree Interpreter
for Patient 0. On the other hand, DiCE is have the most distinct feature and rankings
among the explainers, which can be justified by the unsigned nature of feature importance
identified by DiCE.

The most unstable explainers are those that depend on creating local neighbor-
hoods. We also compared each explanation in terms of its local stability and compactness.
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(a) (b)

(c) (d)

(e) (f )

Figure 3: Comparison of feature importance for two similar patients (Patient 0 and Patient
1). On the left, Patient 0 diagnosed as not having cancer (Dx:Cancer=0) and
on the right, Patient 1 diagnosed with cancer (Dx:Cancer=1). The key driving
factors for this patient are similar to those of a patient with cancer.

(a) (b)

Figure 4: Feature and rank agreements for the Patients 0 and 1. For each patient in sub-
figures, (a) Feature agreement measures the fraction of common features between
the sets of top-10 features of each pair of the rankings, and (b) Rank agreement
checks that the feature order is comparable between each pair of the rankings.
Tree SHAP and Kernel SHAP have the highest feature and rank agreements for
the first patient, while DiCE and Local surrogates have the least feature and rank
agreements.

These results are shown in Figure 7 in Appendix A and Figure 5 respectively. Figure 7 in
Appendix A. shows the stability in the neighborhood of five features, namely: age, smokes,
HPV, first sexual intercourse, and IUD. We observe that LIME, KSHAP and Local surro-
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(a) (b)

(c) (d)

(e) (f )

Figure 5: Compactness of the explanations generated by (a) Kernel SHAP, (b) Sampling
SHAP, (c) Tree SHAP, (d) LIME,(e) Tree Interpreter, (f) Local surrogates.

gates are the least stable explainers as their feature importance for the given features vary
between negative and positive values. LIME is the less varying compared to the other two
surrogates.

Local surrogates and DiCE approximate 100% model’s output with 5 features.
Figure 5 shows the complexity of the selected local methods in terms of how many features
are needed in order to explain 90% of the accuracy of the model and how much accuracy
achieved with fewer features, here 5. Local surrogates and DiCE need respectively 3 and 9
features in order to achieve 90% of model accuracy, while the other explainers can approxi-
mate it with only 1 feature on average. While Local surrogates and DiCE are the only two
features that can approximate full model accuracy with 5 features, Tree Interpreter achieves
only 12 % of the model accuracy with 5 features.
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No single explanation performs optimally across patients and metrics. Local
explanation methods perform differently across different patients. Eg, for high risk patients
(Cohen et al., 2019; international collaboration of Epidemiological Studies of Cervical Can-
cer, 2007). Counterfactuals and Local Surrogates give more compact explanations compared
to other methods. LIME is the most stable and SHAP the most consistent in terms of fea-
ture and rank agreements. Notably, local explanations are not meant to replace insights
from aggregation. Aggregation enables showing the tendencies and average importance of
the features for a global understanding of cervical cancer, but for personalized treatment,
using a local approach is preferable to find those risk factors most likely to affect patients
individually. E.g. some global risk factors for cervical cancer include exposure to herpes
and immune system deficiency (international collaboration of Epidemiological Studies of
Cervical Cancer, 2007) . Yet for Patient 1, we see contraception may play a role, which is
not always the case for other patients in the cohort (see appendix for details)

6. Discussion

In this paper, we presented a framework to compare local feature attribution methods
in order to identify key risk factors causing cervical cancer for individual patients and
demonstrated on two patients having very similar characteristic but different predictions
(cancer and no cancer). Overall we observe that though the explainers may agree on the
importance of some features, there is no single explanation or technique that performs
optimally across all metrics of consistency, compactness, stability, faithfulness and accuracy.
Rather, a clinician may choose an explanation method based on the context or choose to
compute a weighted sum of these metrics. The best explanation would then correspond to
the method producing the highest cumulative score overall, but the weights of each metric
in the combination should be left to clinical experts to choose. Local explanations are also
not meant to replace insights from aggregation, but may be preferable to determine those
risk factors most likely to affect patients individually.

Regardless of the nature of the SHAP used, one obtains very similar feature importance.
However, SHAP values are all largely determined by one predominant driving risk factor
namely prior HPV infection and explanation quality significantly drops if this feature is
not available. Methods such as Local surrogates, LIME and Kernel SHAP learn local
interpretable models in the neighborhood of the instance we desire to explain, however can
be sensitive to the choice of neighbourhood for two instances with the same characteristics
and predictions. Clinicians should exercise caution with these methods unless they have
experience in identifying which groups a patient may be most similar to. If global stability
is desirable, local surrogates may be the most suitable method to use.

Yet, if a clinician is treating an older patient at higher risk of developing cervical cancer,
they may desire explanations that are more compact and stable to isolate factors chiefly
responsible for risk to develop a more focused treatment plan. If however, a clinician is
treating a patient with many other comorbidities, it might be more useful to have a less
compact explanation to be able to view the impact all comorbidities may have on overall
risk. Counterfactual generation may be suitable when a patient has a genetic predisposition
to a cervical cancer and wants to reason about possibilities under which they may be at
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higher risk of getting the disease by isolating the most important features from an initial
set, or reason about alternative ways to reduce this risk.

Limitations Firstly, the manner in which local explanations are aggregated to draw con-
clusions on the decrease in model accuracy after removing top features needs careful con-
sideration. Currently, using the mean of local explanations may inadvertently assign higher
importance to irrelevant features, resulting in issues with feature ranking during each step
of feature removal. To mitigate this, a new aggregation method can be developed that does
not adversely affect the aggregation of explanations from each method used in the evalua-
tion of explanations. Additionally, the use of generated additional patients to balance the
dataset raises concerns about whether these generated patients deviate from the original
distribution, which could impact the correctness of the explanations. Future research can
explore the use of additional data or take precautions when generating new instances to
ensure they align with the original distribution. Moreover, the inclusion of only seven local
methods that are compatible with random forest may limit the comprehensiveness of the
approach. Future work can expand the set of methods used to include as many relevant
methods as possible, thereby enhancing the robustness and applicability of the framework.

7. Conclusion

While cervical cancer remains a devastating disease for women’s health worldwide, machine
learning shows promise as an effective tool for early detection and treatment. This is
especially crucial as clinicians strive to accurately identify the root causes of the disease
and prevent its onset, rather than simply treating it after it has occurred. In this article,
we presented a framework and demonstrated its application on a cervical cancer dataset.
Our approach allows selecting the suitable explanations to reason about each patient’s
risk of developing cervical cancer, while satisfying several desired explanatory properties.
There are many potential avenues for future research, such as extending our framework
to other healthcare applications and areas where explanation is needed. This could open
up new possibilities for leveraging machine learning in general and explainability methods
in particular to understand patient outcomes and address critical healthcare challenges.
Finally, future work could perform a user study with clinicians to assess how different
weighted sums may lead to context-specific explanations.
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Appendix A. Contribution of the Data Points to the Prediction Making.

Figure 6: Contribution of the Age of all patients to the class 1 (diagnosed with Cancer).
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Figure 7: Local variability of the feature importance for Patient 1. We compute the fea-
ture importance of 30 nearest neighbors to this patient, among these we keep the
patients having the same explanations and predictions and compute the distance
between each data point and Patient 1. Small distances mean more stable ex-
planations. For example, Local surrogates is the most stable method for feature
Dx:HPV of the Patient 1.

Appendix B. Comparing Different Patient Explanations

Feature Patient 0 Patient 1 Patient 2 Patient 3 Mean in population

Age 27.00 27.00 14.00 70.00 26.82
Number of sexual partners 2.00 2.00 2.00 1.00 2.51
First sexual intercourse 19.00 14.00 14.00 16.00 17.00
Num of pregnancies 2.00 3.00 1.00 10.00 2.26
Hormonal Contraceptives (years) 7.00 0.86 0.00 0.00 2.04
STDs: Time since first diagnosis 4.00 4.00 4.00 4.00 4.18
STDs: Time since last diagnosis 3.00 3.00 3.00 3.00 3.23
HPV 0.00 1.00 0.00 0.00 0.02
IUD 0.00 0.00 0.00 1.00 0.10

Table 3: Summary statistics of four different patients diagnosed with cervical cancer relative
to the mean of the population.
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B.1. Patient 2 with Age =14 and Dx:Cancer= 0

B.1.1. Feature importance attributions

Figure 8: Feature importance attribution for Patient 2, with Age =14 and Dx:Cancer= 0.
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B.1.2. Stability of the features in the neighborhood

Figure 9: Local variability of the feature importance for Patient with id=2. We compute
the feature importance of 30 nearest neighbors to this patient, among these we
keep the patients having the same explanations and predictions and compute the
distance between each data point and Patient with id=2. Small distances mean
more stable explanations. For example, LIME is the most stable method for
feature Dx of the Patient with id=2.

B.1.3. Rank and feature agreements

Figure 10: Feature agreement for patient 2 (Age=14).
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B.2. Patient 3 with Age =70 and Dx:Cancer= 0

B.2.1. Feature importance attributions

Figure 11: Feature importance attributions for Patient 3, with Age =70 and Dx:Cancer=
0.

24



Which Explanation Makes Sense For Cervical Cancer Risk Assessment?

B.2.2. Stability of the features in the neighborhood

Figure 12: Local variability of the feature importance for Patient with id=3. We compute
the feature importance of 30 nearest neighbors to this patient, among these we
keep the patients having the same explanations and predictions and compute
the distance between each data point and Patient with id=3. Small distances
mean more stable explanations. For example, LIME is the most stable method
for feature Dx:HPV of the Patient with id=3.

B.2.3. Rank and feature agreements

Figure 13: Feature agreement for patient 3 (Age=70).
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Appendix C. Fooling Explanations with Random Variables

Figure 14: Adding a binary, a continuous random variables and noise to the features (ϵ ∈
N (0, .1)).
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Appendix D. Effect of Changing a Feature Value on the Explanations for
Patient 1.

D.1. Changing Age from 27 to 80

Figure 15: Feature importance attributions for Patient with id=291 and Age = 80.
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D.2. Changing Number of pregnancies from 3 to 0

Figure 16: Feature importance attributions for Patient with id=291 and Number of preg-
nancies = 0.
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D.3. Changing Smokes from 0 to 1

Figure 17: Feature importance attributions for Patient with id=291 and Smokes = 1.
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D.4. Changing Number of sexual partners from 2 to 60

Figure 18: Feature importance attributions for Patient with id=291 and Number of sexual
partners = 60.
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D.5. Changing First sexual intercourse from 14 to 40

Figure 19: Feature importance attributions for Patient with id=291 and First sexual inter-
course = 40.
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Appendix E. Difference in the Explanations for Different Age Categories

E.1. Patients with Age 14 and 19

Figure 20: Feature importance attributions for Patient with id=29.
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Figure 21: Feature importance attributions for Patient with id=19.
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E.2. Patients with Age=24

Figure 22: Feature importance attributions for Patient with id=11.
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Figure 23: Feature importance attributions for Patient with id=136.
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E.3. Patients with Age=34

Figure 24: Feature importance attributions for Patient with id=6.

36



Which Explanation Makes Sense For Cervical Cancer Risk Assessment?

Figure 25: Feature importance attributions for Patient with id=307.
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E.4. Patients with Age=44 and 45

Figure 26: Feature importance attributions for Patient with id=45.
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Figure 27: Feature importance attributions for Patient with id=158.

39



Which Explanation Makes Sense For Cervical Cancer Risk Assessment?

E.5. Patients with Age=54

Figure 28: Feature importance attributions for Patient with id=222.
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Figure 29: Feature importance attributions for Patient with id=141.
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E.6. Patient with Age=74

Figure 30: Feature importance attributions for Patient with id=57.
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Appendix F. Explanation Difference between Smoking and Non Smoking
Patients

F.1. Patients with Smokes=1

Figure 31: Feature importance attributions for Patient with id=30.
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Figure 32: Feature importance attributions for Patient with id=4.
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F.2. Patients with Smokes=0

Figure 33: Feature importance attributions for Patient with id=0.
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Figure 34: Feature importance attributions for Patient with id=1.

Appendix G. Second Best Model: MLP

We tested the second best model (MLP) in terms of AUROC and accuracy. Results of the
feature importance show small changes in feature ranking and sign. For example, kernel
SHAP for an MLP shows that for Patient 1, the age of first sexual activity is positively
correlated with the prediction, while for a random forest this is negative. Sampling SHAP
ranks age in the top 4 features for the random forest for Patient 1 while age is not in the
top 10 features of the MLP. Similar insights can be found on other patients.
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G.1. Feature importance for Patient 1

Figure 35: Feature importance attributions for Patient 1. The predictions are made by the
MLP model.
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G.2. ROAR and Consistency of the explanations

Figure 36: (a) RAOR. (b). Consistency

G.3. Faithfulness: Rank and feature agreements

Figure 37: Feature agreement for Patient 1.
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G.4. Compactness, global stability and consistency

Methods # Features for 90% Accuracy Accuracy with 5 features(%) Mean Stability Mean Consistency

Surrogates 2 100 0.22 0.62
KSHAP 1 18 1.05 0.54
SSHAP 1 16 1.66 0.54
LIME 1 100 0.52 0.72
DICE 8 100 2.04 1.23

Table 4: Compactness, stability and consistency of the explanation for Patient 1 for the
prediction made by the MLP.

Appendix H. Comparing Different Patients with Different Risk Factors

Methods # Features for 90% Accuracy Accuracy with 5 features(%) Stability Mean Feature Agree Mean Rank Agree

Surrogates 3 23 0.02 0.80 0.10
KSHAP 1 02 0.03 1.00 1.00
TSHAP 1 00 0.03 1.00 0.50
SSHAP 1 20 0.03 1.00 0.70
LIME 1 23 0.01 0.60 0.20

TI 1 03 0.02 0.80 0.40
DICE 2 50 0.03 0.10 0.00

Table 5: Patient with ID: 29, Age: 14, First Sexual Intercourse: 14, Number of Sexual
Partners: 2, Number of pregnancies : 1, and Smokes: 1.

Methods # Features for 90% Accuracy Accuracy with 5 features(%) Stability Mean Feature Agree Mean Rank Agree

Surrogates 3 64 0.02 0.80 0.40
KSHAP 1 06 0.03 1.00 1.00
TSHAP 1 04 0.03 1.00 0.80
SSHAP 1 05 0.03 1.00 1.00
LIME 1 23 0.01 0.60 0.20

TI 1 07 0.02 0.90 0.40
DICE 4 70 0.03 0.30 0.10

Table 6: Patient with ID: 285, Age: 26, First Sexual Intercourse: 16, Number of Sexual
Partners: 10, Number of pregnancies : 1 and Smokes: 0.
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Methods # Features for 90% Accuracy Accuracy with 5 features(%) Stability Mean Feature Agree Mean Rank Agree

Surrogates 4 100 0.02 0.6 0.20
KSHAP 1 06 0.03 1.00 1.00
TSHAP 1 05 0.02 1.00 1.00
SSHAP 1 07 0.02 1.00 0.80
LIME 1 03 0.01 0.60 0.30

TI 1 10 0.02 0.90 0.40
DICE 4 60 0.03 0.40 0.00

Table 7: Patient with ID: 263, Age: 29, First Sexual Intercourse: 10, Number of Sexual
Partners: 4, Number of pregnancies: 5 and Smokes: 0.
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