Antifreeze Update
March 11, 2015
Kenneth E. Isman, P.E., F.S.F.P.E.
Clinical Professor

Antifreeze

• Propylene Glycol and Glycerin have been used for at least 60 years as antifreeze solutions for fire protection systems
• Pure Propylene Glycol and Glycerin are combustible liquids
 – Propylene Glycol – flash point: 210°F
 – Glycerin – flash point: 350°F
 – Canola Oil – flash point: 620°F

Antifreeze Tests

• SP Labs in Sweden (2000) – using fine spray nozzles, the lab reports that antifreeze can add to heat release rate of a fire
• Viking (2000) – achieves ESFR listing with 50% propylene glycol
• Viking (2001) – passes UL 1626 residential sprinkler fire test with 50% propylene glycol

Antifreeze Incidents

• New Jersey Restaurant (2001) – heater on a patio causes a sprinkler to open, what is believed to be 100% antifreeze discharges on heater and starts a fire
• Truckee, CA (2009) – fire in a kitchen, food on the stove (oil)
 – Sprinkler opens and there are reports of a flash fire
 – Design of sprinkler system was 50-50 (Glycerin), but tests of systems in the same complex (installed at the same time) reveal 70-30
Antifreeze Incidents

- Herriman, UT (June 2010) – apartment
 - Fire starts on a couch, sprinkler opens
 - Apparently, some kind of flash fire occurred
 - Design of system was reported to be 60-40 (Glycerin)

Antifreeze Tests

- UL (Spring 2010) – tries to duplicate Truckee flash fire (high pressure and small orifice sprinkler)
 - 70% glycerin can cause a flash fire
 - 60% propylene glycol can cause a flash fire
 - 50% (propylene glycol and glycerin) does NOT cause a flash fire and reacts similar to water
- These tests are known as the “Phase 1 Tests”
Antifreeze Tests

- FPRF (CCI) – Performed tests in July 2010
 - A variety of antifreeze solutions
 - A variety of orifice residential sprinklers
 - A variety of pressures
 - A variety of fire sources
- Preliminary report finished early August 2010
- These tests are known as the “Phase 2 Tests”

FPRF (CCI) Phase 2 Tests

- 1.4 MW burner fire was considered best
- Propylene glycol at 50% can (in some circumstances) contribute to the heat release rate of a fire
- Propylene glycol at 40% acts much like water
- Glycerine at 55% can (in some circumstances) contribute to the heat release rate of a fire
- Glycerine at 50% acts much like water

FPRF (CCI) Phase 2 Tests

- Test report is available for download off the NFPA website
- Antifreeze Solutions in Home Fire Sprinkler Systems-Phase II Final Report

Scope A Comparison of Sprinklers at 8' Above Floor
50% Propylene Glycol

<table>
<thead>
<tr>
<th>k3.1</th>
<th>k4.9</th>
<th>k4.9 Concealed</th>
<th>k7.4</th>
<th>k4.2 Sidewall</th>
<th>k5.5 Sidewall</th>
</tr>
</thead>
</table>

- Increase in Heat Release Rate (kW)
- Sprinkler Flow Rate (gpm)
Phase 3 Antifreeze Tests

- Sponsored by NFPA
- 50% glycerine
- Standard spray sprinklers (k-2.8 to k-8)
- 8 ft, 15 ft and 20 ft high ceiling areas
- 1.4 and 3 MW fires

Results

- No increase in heat release in 1.4 MW fires
- Increase in heat release in 3.0 MW fires in certain conditions (up to 700%)
Phase 3 Tests

Latest Position of the NFPA

• Third Round of TIA’s acted on by NFPA Standards Council on August 8, 2012
 – NFPA 13 (new systems only)
 – NFPA 13R (new systems only)
 – NFPA 13D (new and existing systems)
 – NFPA 25 (existing systems designed per NFPA 13 and NFPA 13R)

• These TIA’s have been upheld by committees in processing the next edition of these standards
NFPA 13 and NFPA 13R

- No propylene glycol unless a sprinkler is specifically listed with it (Viking ESFR)
- No glycerine
- Antifreeze product must be listed (at this time there are no listed products)

Listed Antifreeze

- UL has developed a testing protocol
 - Combustibility of product
 - Compatibility of product with materials typically found in sprinkler systems

NFPA 13D

- New Systems
 - 48% glycerine
 - 38% propylene glycol
 - Allowed in specific areas of the dwelling unit, but only where the AHJ approves
 - Documentation will need to be provided to the AHJ to justify the use of the antifreeze.
- Existing Systems
 - 50% glycerine
 - 40% propylene glycol
- Must use premixed solution
- Listed products when they become available

48% gives you freeze protection to about -8°F
NFPA 25

- Assumes that systems installed after September 30, 2012 will be in accordance with the antifreeze rules of NFPA 13 as discussed previously
- Propylene glycol (premixed) will still be permitted to be used with ESFR sprinklers when the ESFR sprinklers are listed for use with the antifreeze

NFPA 25 Systems installed prior to 9/30/12 can remain if all of the following are met

- Replaced by September 30, 2022
 - A listed antifreeze solution
 - Another kind of sprinkler system
- Glycerine
 - Limited to 50%
 - Solutions over 38% need to be justified with “approved deterministic risk assessment”
- Propylene glycol
 - Limited to 40%
 - Solutions over 30% need to be justified with “approved deterministic risk assessment”
- All newly introduced solutions that are not listed will be required to be premixed

Additional TIA Issued 10/30/12

- NFPA 25 – Clarify the “Deterministic Risk Assessment”
 - Prepared by individual(s)
 - Demonstrate an ability to prepare a risk assessment by education and experience
 - Demonstrate an understanding of the issues associated with antifreeze sprinkler systems
 - AHJ’s
 - NFPA 551, Guide for the Evaluation of Fire Risk Assessments
 - SFPE Engineering Guide: Fire Risk Assessment

Risk assessment should consider:

1. Occupancy use group per NFPA 13 and size of structure
2. Ceiling height
3. Antifreeze solution concentration and type
4. Maximum system pressure (normal static pressures)
5. Sprinkler type, including k-Factor
6. Potential and actual fuel load (Christmas trees)
Risk assessment should consider:

7. Type of structure (construction types)
8. Ability of the sprinkler system to control the fire
9. Occupied spaces - vs - unoccupied space
 a) Adjacent occupancies and Separation
 b) Ventilation of areas protected with an antifreeze
 c) Duration of antifreeze discharge

Additional TIA Issued 10/30/12

- Large-scale ignition of the sprinkler spray did not occur in tests with 50% glycerine and 40% propylene glycol antifreeze solutions discharging onto a fire having a nominal Heat Release Rate of 1.4 MW
- An assessment that shows that the heat release rate for reasonable fire scenarios will be less than 1.4 MW at the time of sprinkler activation should be acceptable

Additional TIA Issued 10/30/12

- Assessment should address management of change
 – Change in occupancy
 – Temporary fuel loads (Christmas tree can cause a fire over 1.4 MW at the time of sprinkler activation)
- Assessment should include the overall impact on life safety and potential increase in heat release rate

Alternatives to Antifreeze

- Heating the space with water-filled pipe
- Using dry-type sprinklers from a heated space
- Tenting insulation over pipe (where there is a heated space below)
- Heat tracing
 – Permitted on mains and risers if listed
 – Permitted on branch lines if specially listed for branch lines
- Dry or preaction systems
Thank You!