According to the properties determined for the ternary end-members, MAX phases in the quaternary Cr–Ti–Al–C system could be of interest as protective coatings for nuclear fuel cladding in the case of severe accident conditions. In this study, syntheses of 211 and 312 MAX phase compositions were attempted using pressureless reactions starting from Cr, TiH₂, Al, and C (graphite) powders. It was observed that both the Ti substitution by Cr in Ti₃AlC₂ and the mutual solubility of Ti₂AlC and Cr₂AlC are limited to a few atomic percent. In addition, the remarkable stability of the (Cr₂/₃Ti₁/₃)₃AlC₂ MAX phase composition was confirmed. Due to the low miscibility of MAX phases in the Cr–Ti–Al–C system, most samples contained substantial amounts of TiC₆ and Al–Cr alloys as secondary phases, thus forming composite materials. After sinstering, all samples were submitted to a single oxidation test (12 h at 1400°C in air) to identify compositions potentially offering high-temperature oxidation resistance and so warranting further investigation. In addition to (Cr₀.₉₅Ti₀.₀₅)₂AlC, composite samples containing substantial quantities of Al₄Cr₅ and Al₃C₇ formed a stable and passivating Al₂O₃ scale, whereas the other samples were fully oxidized.

I. Introduction

Cr₂AlC, Ti₂AlC, and Ti₃AlC₂ are ternary layered carbides belonging to the MAX phase family. These compounds crystallize with the hexagonal P6₃/mmc structure and respecting the formula M₃AX₄, with n = 1, 2, or 3, where M is an early transition metal, A is a group 13–16 element and X is carbon and/or nitrogen. When n = 1, the MAX phase is a 211-type, for n = 2, 312-type and for n = 3, 413-type. In the past 20 years, after Barsoum and El-Raghy reported the remarkable properties of Ti₃SiC₂ and the subsequent confirmation that most of Ti₃SiC₂ properties are shared by all the other MAX phases, there has been a growing research interest in them. The main characteristic of the MAX phases, which also explains their remarkable properties, is their structure, composed of the stacking of n “ceramic” M–X planes interposed with a “metallic” A layer. Thanks to this, the MAX phases exhibit, like most ceramics, high decomposition temperature and elastic stiffness, but they also possess, like metals, a high thermal shock resistance, high thermal and electrical conductivities, and good machinability.

Kinetics and regimes of oxidation of MAX phases in air at high-temperature are sensitive to chemical composition, including levels of impurities. This is because MAX phases are easily oxidized and their operational oxidation resistance is experimentally driven by the nature and properties of the oxide(s) outer scale(s) formed during the first stages of oxidation. Among the known MAX phases, Cr₂AlC and Ti₂AlC followed by Ti₃AlC₂ have been reported to have the best oxidation resistance in air due to the formation of a passivating Al₂O₃ outer scale. Their operational temperature limit in air for prolonged times (few months) is at least 1300°C. The oxidation mechanisms of Ti₂AlC and of Ti₃AlC₂ have been extensively studied. Usually, a thin (1–3 μm) TiO₂ outer layer is formed onto a dense, adherent and therefore protective Al₂O₃ scale (10–40 μm). Tallman et al. demonstrated by re-plotting various published results of Ti₂AlC and Ti₃AlC₂ high-temperature oxidation that oxidation kinetics and thereby Al₂O₃ scale thickening obey cubic laws. Moreover, it is worth mentioning the well-matched thermal expansion coefficients (CTE) between Al₂O₃ and Ti₂AlC which minimizes the thermal residual stresses. As a result, Ti₂AlC is not susceptible to spallation during thermal cycling and its upper continuous use temperature is about 1450°C, above such temperature Al₂TiO₅ formation induces cracking in the Al₂O₃ scale. On the other hand, Cr₂AlC has a more peculiar oxidation behavior, due to the formation of an alumina layer over a chromium carbide (Cr₃C₂) underlayer. The formed carbide is thought to be a consequence of the higher difference of Al and Cr outward diffusion kinetics in Cr₂AlC compared to the other carbide MAX phases. Unlike Ti₂AlC, Cr₂AlC possesses a high thermal expansion coefficient that provokes cracks and spallation of the outer scales over 1200°C after prolonged times.

Because of the above mentioned properties, some of the MAX phases have potential to be used as passive safety protection of nuclear fuel cladding in the eventuality of a severe accident (for accidental scenarios such as that which occurred at Fukushima in 2011). Specifically, the industrial need for the Accident-Tolerant Fuel (ATF) concept is, at minimum, to provide protection against oxidation of the fuel cladding material (a Zr-based alloy) for a few tens of hours at temperatures over 1200°C. Cr₂AlC, Ti₃AlC₂, and Ti₂AlC are therefore considered excellent candidates regarding the first major requirement (oxidation resistance) but they also comply with the second major requirement, having a low neutron...
absorption cross section. This parameter is of great importance because a highly neutron-absorbing material would lower the reactor performance in normal operating conditions and therefore lower its cost-effectiveness. Also, a lower neutron cross section is usually accompanied by limited activation, simplifying and reducing the cost of waste management. Hoffmann et al. have proven by calculations Ti₂AlC has reasonable performance regarding neutron absorption and material activation. Given the low neutron cross sections of natural Cr isotopes and of their different activation products, the use of Cr would not be problematic either.

To the best of our knowledge, only a few works exist on the synthesis of Cr–Ti–Al–C MAX phases and only one on oxidation behavior. In 1980, Schuster et al. identified MAX phases in the Cr–Ti–Al–C system. They reacted with mixtures of Cr₆AlC and Ti₃AlC in various proportions under vacuum at 1000°C for 170 h. They estimated to reach about 6 at.% maximum solubility of Cr in Ti₂AlC and around 25 at.% substitution of Cr by Ti in Cr₂AlC. More recently, Kim et al. synthesized Cr-rich mixed 211 MAX phases (substitution rate of 5, 10 and 20 at.% of Cr by Ti). Based on their X-ray diffraction (XRD) analysis, they achieved targeted solid solutions up to 10 at.% substitution while secondary phases formed for the 20 at.% synthesis. They concluded the incorporation limit of Ti in Cr₂AlC lies between 0 and 20 at.% of substitution, in contrast with the value reported by Schuster et al. Further recent work by Lee et al. focused on (Cr₀.₉₅Ti₀.₀₅)₃AlC in comparison to similarly prepared Cr₂AlC (hot-pressed at 25 MPa and 1250°C for 1 h from CrC, TiC, and Al powders). They determined that the addition of Ti, even limited to 5 at.% substitution of Cr had a notable negative impact on oxidation resistance in the 700°C–1100°C range. This was attributed to the local formation of TiO₂ nodules in the Al₂O₃ scale, impairing its passivating nature. In 2014, Ying et al. attempted to synthesize (Cr₂/₃Ti¹/₃)₂AlC MAX phases using SHS (Self-propagating High-temperature Synthesis) with Cr/(Ti+Cr) ratios from 0.125 to 0.75. XRD revealed Cr₂AlC and/or Ti₃AlC₂-like phases as the only MAX phase components in all powder mixtures (TiC, Al₂C₃, and Al₉C₄) composing the other crystalline phases. Unfortunately they did not discuss Cr incorporation in Ti₂AlC and, conversely, Ti incorporation in Cr₂AlC. More recently, Liu et al. synthesized and identified two new MAX phases: (Cr₂/₃Ti¹/₃)₃AlC₂ and (Cr₅/₈Ti₂/₈)₃AlC₄. This is remarkable since among the end-members of these two MAX phase solid solutions, only Ti₃AlC₂ has been experimentally identified. The authors also tried various Cr/(Cr+Ti) ratios and obtained in all cases the exact same MAX phase along with other compounds accommodating the element(s) in excess. They attributed the formation and higher stability of the precise (Cr₂/₃Ti¹/₃)₃AlC₂ composition to the ordering of two M elements onto the two different M Wyckoff sites in 312 MAX phases: the 4f site hosting 2/3 of the M element (here Cr) and the 2a site the remaining 1/3 (Ti). The first was the report of M ordering in (MM')₃AX₂ MAX phases, before Caspi et al. and Anasori et al. demonstrated it in (Cr₀.₅V₀.₅)₃AlC₂ and (Mo₂/₃Ti¹/₃)₃AlC₂, respectively.

Further investigation mixed Ti₂AlC–Cr₂AlC compounds, the first part of this work reports attempts to synthesize five targeted mixed-compositions: (Cr₀.₃₅Ti₀.₆₅)₃AlC₂, (Cr₀.₅₀Ti₀.₅₀)₃AlC₂, (Cr₀.₇₅Ti₀.₂₅)₃AlC₂, (Cr₀.₉₀Ti₀.₁₀)₃AlC₂, and (Cr₂/₃Ti¹/₃)₃AlC₂, hereafter denoted 312-Cr₂Si₇Ti₉, 312-Cr₂AlC, 312-Cr₅0Ti₅0, 312-Cr₇5Ti₂5, and 312-Cr₇5Si₇Ti₉, respectively. These were tentatively prepared by reaction of elemental powders, followed by SPS (Spark Plasma Sintering). As the initial results from this first batch showed the favorable formation of 312-type MAX phases solid solutions, the initial study was extended to attempts to synthesize purer 312 phases using more suitable starting powder mix compositions, with targeted syntheses (Cr₀.₃₅Ti₀.₆₅)₃AlC₂, (Cr₀.₇₅Ti₀.₂₅)₃AlC₂, (Cr₀.₉₀Ti₀.₁₀)₃AlC₂, and (Cr₂/₃Ti¹/₃)₃AlC₂, hereafter noted 312-Cr₂Si₇Ti₉, 312-Cr₂AlC, 312-Cr₅0Ti₅0, 312-Cr₇5Ti₂5, and 312-Cr₇5Si₇Ti₉, respectively. Finally, oxidation resistance at high temperature of all the prepared samples was evaluated by a 12 h exposure test to air at 1400°C to identify potential compositions of interest for ATF.

II. Experimental Procedure

Commercial reactants used were TiH₂ (>99%, ~40 µm), Cr (>99.95%, ~75 µm), Al (~40 µm, >99.5%), all provided by Alfa Aesar, and graphite (>99.9%, ~20 µm) purchased from Sigma-Aldrich (Dorset, UK). Taking into account the risks associated with handling fine metallic powders and also to limit oxygen contamination, mixtures preparations were done under argon in a glove box. Reactants were mixed by 30 minutes ball-milling (Nanjing University Instrument Plant) in Nylon jars using zirconia balls (diameter-10 mm). The jars and balls were “washed” prior to use by 30 minutes milling with a few grams of the main Ti or Cr reactant followed by a new milling step with ethanol. As is the custom for Al-based MAX phase synthesis, stoichiometries were experimentally adjusted to 2/1.05/0.95 (for 211 systems) and to 3/1.1/0.9 (for 312 systems) for Ti+C, Al and C, respectively. This aimed to compensate for the partial sublimation of Al occurring between Al melting and its reaction with graphite to form Al₄C₃ and to account for the partial carbon uptake resulting from the contact with the graphite crucibles and SPS dies and/or the usual substoichiometry in element X in MAX phases, as reported, for example, for Ti₃AlC₂.

Synthesis and sintering were performed using two separate heat treatments. Synthesis was performed in graphite crucibles lined and capped with graphite paper. For 211 syntheses, heat treatment consisted of 10 h at 1300°C under Ar with heating and cooling rates of ~20°C/min. The 1300°C synthesis condition was selected as a compromise to allow good 211 MAX phase formation based on literature data, while trying to limit Ti₃AlC₂ formation which is known to form at 1350°C–1450°C from Ti₂AlC and remnant TiC. For 312 systems, the maximum temperature was raised to 1450°C and maintained for 1 h to comply with what is usually necessary to form Ti₃AlC₂. The pressureless synthesis, the used furnace was a FCT System HP W/25/1, Rauenstein, Germany. Depending on the hardness of the obtained solids, these were simply manually ground in an agate mortar with a pestle and sieved <250 µm (all 312 syntheses), or ball-milled for 4 h in the same jars used for powder mixing (211-Cr₉5Ti₇5 and 211-Cr₇5Ti₂5) and sieved <250 µm orhammered between hard stainless steel or Ti₃SiC₂ blocks and sieved <800 µm (211-Cr₅0Ti₅0, 211-Cr₇5Ti₂5, and 211-Cr₇5Ti₉). Sintering was then achieved by SPS using a HP D/25/1 FCT System equipment and 30 mm graphite cylindrical mold jacketed with graphite paper. Optimized thermal and pressure cycles employed for both the 211 and 312 samples were the following: pressing at 5 kN (7 MPa); heating at 300°C/min to 950°C; heating at 100°C/min to 1050°C while progressively increasing the applied pressure to 24.7 kN (35 MPa); heating at 300°C/min to 1200°C and 10 minutes plateau; cooling at 300°C/min to 950°C with release of pressure to 5 kN between 1050°C and 950°C; natural cooling to room temperature.

XRD was performed with a Bruker D8 Phaser SDD160 (Karlsruhe, Germany) using a 0.03° 20 step and an angular range of 5° to 105° 20. Crystalline phase determination was done with the help of Xpert High Score Plus software (PANalytical, Almelo, the Netherlands) using ICDD (International Center for Diffraction Data) database. Refinement of unit cell parameters was done by full-pattern matching (Le Bail function) using FullProf Suite program. A second refinement was also done by the Rietveld method to determine the volume ratio of each crystalline phase. Cross section and fracture surface characterizations were performed using a JEOL JSM-6400 (Tokyo, Japan) SEM equipped with...
a BSE (Back-Scattered Electron), a SE (Secondary Electron) and an EDX detector (ultra-thin polymer window, INCA; Oxford Instruments, Oxford, U.K.). For resin-embedded samples, a ~10 nm gold coating was applied to ensure electrical conductivity.

Oxidation tests were performed by placing 1200 grit polished coupons of ~1 cm × 0.5 cm × 0.5 cm of the sintered pellets into a self-ventilated furnace heated at 10°C/min to 1400°C and held at this temperature for 12 h.

III. Results and Discussion

(1) Characterization of 211 Targeted Compounds

Figure 1 shows the X-ray diffractograms of the five 211 samples after sintering. It has to be noted that sintering by SPS at 1220°C has, from XRD point of view, no influence on the samples since very similar diffractograms were obtained before sintering (thus after 1300°C pressureless reaction of starting reagents).

From XRD, 211-Cr95Ti5 is almost a monophase 211 MAX phase; the only detected crystalline impurity being a Cr-Al alloy. SEM characterization [Figs. 2(a) and (b)] agrees well with XRD as the predominant microstructure of fractured 211-Cr95Ti5 sample is a lamellar microstructure, typical of MAX phases. EDX analysis confirms the predominant and homogeneous formation of (Cr0.95Ti0.05)2AlC as the expected Cr/Ti/Al ratios are obtained. EDX and BSE also outline the minor presence of Al-Cr alloys (in agreement with XRD) and of TiC. The determined unit cell parameters for (Cr0.93Ti0.07)2AlC (Table I) can be compared to accurate (i.e., post-80') reported values for Cr2AlC (2.844 ≤ a ≤ 2.865 Å and 12.814 ≤ c ≤ 12.857 Å23,29,44-47). As expected from the larger atomic radii of Ti, partial substitution of Cr by Ti causes an expansion of the unit cell parameters. More interestingly, the unit cell volume (V = 91.57(5) Å3) lies exactly where expected when assuming a Vegard’s law relation between Cr2AlC (V = 90.71 Å3)23,29,44-47 and Ti2AlC (V = 110.71 Å3).16,43-52

As revealed in Fig. 1, an increase in titanium content in 211-Cr75Ti25 leads to the formation of different crystalline phases. Three non-MAX phases were found: TiC, Al2Cr5, and AlCr2. These three phases were the most common among the untargeted phases observed in the present work. It has to be noted that from this point onward, these compositions will be used although it is probable that TiC contains some Cr in partial substitution of Ti (up to 3.5 wt%) as determined by Guha and Kolar53 and conversely Al2Cr5 and AlCr2 can contain some Ti (up to 6.2 and 2 at.% respectively, according to Raghavan54) and/or C. Unexpectedly, a 312 MAX phase (M2AlC3) was formed as the main crystalline phase in 211-Cr75Ti25. This is confirmed by SEM/EDX [Figs. 2(c) and (d)] as about half of the microstructure appears laminated (MAX phase) and half exhibits rounded poly crystalline features. EDX spot analyses for the lamellar grains an Al/(Al+Cr+Ti) atomic ratio of 28% ± 6% (12 independent measurements), close to the value of 25% for (Cr,Ti)2AlC. Furthermore, the same spot analyses gave Cr/(Ti+Cr) ratio of 61% ± 8%. Refinement of the XRD data for the 312 MAX phase produced unit cell parameters of a = 2.935(1) Å and c = 17.894(7) Å. These values are close to those reported by Liu et al.55 for (Cr2/3Ti1/3)2AlC2 (a = 2.921 Å and c = 17.878 Å). Thus, all results strongly suggest that the obtained 312 MAX phase is (Cr2/3Ti1/3)2AlC2. Rietveld analysis (Table I) showed the composite produced is composed of ~40% (Cr2/3Ti1/3)2AlC2, ~20% TiC and ~40% Al–Cr alloys.

The same undesired phases observed in 211-Cr75Ti25 are found by XRD in 211-Cr50Ti50. However, the 211-Cr50Ti50 sample also contains a Cr-rich 211 MAX phase. The phase composition of the composite produced (Table I) is similar to that of Ying et al. who were targeting the same MAX phase using SHS.31 Figures 2(e) and (f) show the sample is composed of fine grains (~2 μm) precluding proper EDX characterization. The determined unit cell parameters (Cr5/9Ti4/9)2AlC confirms this phase is Cr-rich compared to the Cr/(Cr+Ti) targeted ratio. Furthermore, these values are close to those determined for 211-Cr95Ti5. This result thus suggests Ti incorporation in Cr2AlC should be limited to a Ti/(Cr+Ti) ratio of ~5%.

211-Cr25Ti75, according to XRD, is also mainly composed of a 312 MAX phase, along with TiC, Al2Cr5, and AlCr2. SEM [Figs. 2(g) and (h)] explicitly shows that the MAX phase microstructure is predominant (Table I). Lattice parameters determined (Table I) are very different to those determined for the 312 phase found in 211-Cr75Ti25 but are close to those usually reported for Ti2AlC (3.065 ≤ a ≤ 3.0786 Å and 18.487 ≤ c ≤ 18.73 Å).46-48,56,57 As a consequence the obtained 312 MAX phase should have a limited amount of Cr in its structure. This is corroborated by the presence of Al2Cr5 and AlCr2 phases, which presumably contain most of the excess chromium. More importantly, EDX point measurements indicated that the Cr/(Cr+Ti) ratio in the 312 MAX phase grains is 2% ± 2%. Also, this result is comparable to Ying et al.’s attempt to synthesize54 (Cr0.75Ti0.25)2AlC by SHS as they determined their composite to be composed of predominantly Ti3AlC2 and TiC with minor Cr2AlC and Al6Cr5.

Finally 211-Cr5Ti95 is, according to XRD (Fig. 1) and SEM/EDX [Figs. 2(i) and (j)], a mixture of a 211 and a 312 MAX phase, along with TiAl2 and CrAl2 present as minor phases. The lattice parameters obtained for the 211 and 312 phases are close to those reported for Ti2AlC36,42,55,56 and Ti2AlC16,23,24,47-52 respectively, suggesting incorporation of Cr in both MAX phases should be very limited. EDX characterization agrees well with that as the Cr/(Cr+Ti) ratio is 2% ± 1% for both phases.

In this first set of experiments, 211-Cr95Ti5 and 211-Cr5Ti95 were found to lead to the formation of MAX phases almost exclusively, with 211-Cr95Ti5 leading to the targeted (Cr0.95Ti0.05)2AlC composition, whereas 211-Cr5Ti95 is a mixture of (Cr0.02Ti0.98)2AlC and (Cr0.02Ti0.98)2AlC2. In agreement with previous work,21,28,32 mutual solubility of Ti2AlC and Cr2AlC is found limited to few atomic percent with Cr2AlC being a better host for Ti than the other way around. As a consequence intermediate compositions (211-Cr25Ti75, 211-Cr50Ti50, and 211-Cr75Ti25) contain substantial amounts of undesired phases along with, respectively, slightly Cr-doped Ti3AlC2, slightly Ti-doped Cr2AlC and (Cr2/3Ti1/3)2AlC2. In light of this last finding, new powder batches aiming at the synthesis of 312 MAX phases were subsequently prepared and are discussed in the next section.

![Fig. 1. X-ray diffractograms of 211 samples. Determination of crystalline phases was made using ICDD database and matched datasheet numbers are indicated in parentheses.](image-url)
Fig. 2. SEM images (left column: SE imaging mode; right column: BSE imaging mode) of (a and b) 211-Cr95Ti5, (c and d) 211-Cr75Ti25, (e and f) 211-Cr50Ti50, (g and h) 211-Cr25Ti75, and (i and j) 211-Cr5Ti95. Phase assignment was not possible for 211-Cr50Ti50 (e and f) as the grains are too small for proper EDX quantification.
The samples were denoted by (Cr0.05Ti0.95)3AlC2, (Cr0.75Ti0.25)3AlC2, (Cr0.5Ti0.5)3AlC2 and (Cr2/3Ti1/3)3AlC2. The lattice parameters of the (Cr2/3Ti1/3)3AlC2 phases of 312-Cr2/3Ti1/3, 312-Cr50Ti50, and 312-Cr5Ti95 were close to each other (Table I) as well as the values given by Liu et al.22,33. The results presented in this section thus confirmed the existence and relative facility to produce the remarkable (Cr2/3Ti1/3)3AlC2 phase obtained almost pure without optimizing any synthesis parameter (thermal cycles, reactant stoichiometry, etc.). More importantly, the ordering of Cr and Ti on the respective 4f and 2a Wyckoff sites apparently offers an enhanced stability which drives the (Cr2/3Ti1/3)3AlC2 formation although the required stoichiometry is inappropriate (i.e., when Cr and C are in excess in 312-Cr75Ti25 or when Ti is in excess compared to Cr in 312-Cr50Ti50). It seems clear that Cr3AlC2 and more generally Cr-based MAX phases with n ≥ 2 are not stable due to Cr not being suited to be on the 2a Wyckoff site. Why Ti and Cr cannot share the 4f positions in the range 1/3 ≤ Cr/(Cr+Ti) < 2/3 as observed for (Cr0.5V0.5)3AlC222,39 remains for the moment unexplained. However, the successful fabrication of (Cr0.05Ti0.95)3AlC2 proved that a disordered solid solution remains achievable but only for low Cr contents since the 312-Cr1/3Ti2/3 sample does not produce any MAX phase.

Table I. Summary of Synthesis and Oxidation Tests Results

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Targeted compound</th>
<th>Observed phases (volume ratio)</th>
<th>MAX unit cell parameters (Å)</th>
<th>“Oxidation resistant”?</th>
</tr>
</thead>
<tbody>
<tr>
<td>211-Cr93Ti5</td>
<td>(Cr0.95Ti0.05)3AlC2</td>
<td>(Cr0.95Ti0.05)3AlC2 (>95%)+ Al2Cr2 (5%)+ TiC§</td>
<td>a = 2.867 (1)</td>
<td>Yes</td>
</tr>
<tr>
<td>211-Cr75Ti25</td>
<td>(Cr0.75Ti0.25)3AlC2</td>
<td>(Cr0.75Ti0.25)3AlC2 (40%)+ TiC (20%)+ Al2Cr5 (25%)</td>
<td>a = 2.935 (1)</td>
<td>Yes</td>
</tr>
<tr>
<td>211-Cr50Ti50</td>
<td>(Cr0.5Ti0.5)3AlC2</td>
<td>(Cr0.5Ti0.5)3AlC2 (50%)+ TiC (1%)+ Al2Cr5 (4%)</td>
<td>a = 3.076 (2)</td>
<td>No</td>
</tr>
<tr>
<td>211-Cr25Ti75</td>
<td>(Cr0.25Ti0.75)3AlC2</td>
<td>(Cr0.25Ti0.75)3AlC2 (55%)+ TiC (23%)+ Al2Cr5 (8%)</td>
<td>a = 3.184 (2)</td>
<td>No</td>
</tr>
<tr>
<td>211-Cr5Ti95</td>
<td>(Cr0.05Ti0.95)3AlC2</td>
<td>(Cr0.05Ti0.95)3AlC2 (85%)+ TiC (15%)+ Al2Cr5§</td>
<td>a = 3.074 (9)</td>
<td>No</td>
</tr>
<tr>
<td>312-Cr95Ti5</td>
<td>(Cr0.05Ti0.95)3AlC2</td>
<td>(Cr0.05Ti0.95)3AlC2 (85%)+ TiC (15%)+ Al2Cr5§</td>
<td>a = 3.074 (9)</td>
<td>No</td>
</tr>
<tr>
<td>312-Cr1/3Ti2/3</td>
<td>(Cr1/3Ti2/3)3AlC2</td>
<td>TiC (65%)+ Al2Cr5 (28%)+ Al2Cr5 (7%)</td>
<td>/</td>
<td>Yes</td>
</tr>
<tr>
<td>312-Cr50Ti50</td>
<td>(Cr0.5Ti0.5)3AlC2</td>
<td>(Cr0.5Ti0.5)3AlC2 (50%)+ TiC (34%)+ Al2Cr5 (6%)</td>
<td>a = 2.930 (3)</td>
<td>Yes</td>
</tr>
<tr>
<td>312-Cr2/3Ti1/3</td>
<td>(Cr2/3Ti1/3)3AlC2</td>
<td>(Cr2/3Ti1/3)3AlC2 (95%)+ TiC (1%)+ Al2Cr5 (4%)</td>
<td>a = 2.9295 (9)</td>
<td>No</td>
</tr>
</tbody>
</table>

*§*Denotes when a phase is detected in a minor presence by SEM/EDX but not by XRD.

†Cr/(Ti+C) ratio are of lesser precision for this phase due to other phases affecting EDX measurements, as suggested by higher scattering of measured values.

‡Cr/(Ti+Al) ratio are of lesser precision for this phase due to other phases affecting EDX measurements, as suggested by higher scattering of measured values.

[**Fig. 3.** X-ray diffractograms of 312 samples. Determination of crystalline phases was made using ICDD database and matched datasset numbers are indicated in parentheses.]
The phases obtained for each sample are summarized in Table I.

(3) 1400°C Oxidation Tests
Oxidation tests in air at 1400°C for 12 h were performed for all sintered samples. Very different oxidation behaviors were noted and the samples can thereby be categorized in two groups: those that are experimentally resistant to oxidation and those which are not (Table I). In other words, some samples showed the ability to develop and maintain a protective ~20 μm alumina scale (Fig. 5), while such a feature was not observed in other samples, leading to complete or almost complete oxidation of the material.

In Fig. 5(a), 211-Cr95Ti5 appears to have formed an adherent alumina layer surmounted by nonadherent TiO₂ and Al₃TiO₅ grains over up to 15 μm. Below the alumina layer the subsurface is found by EDX to be enriched to a depth of ~40 μm by chromium carbide phases (CrCₓ), presumably Cr₃C₇. This carbide is often found at the subsurface of oxidized Cr₂AlC (and of (Cr₉T₀.₉₅)₂AlC) as a by-product of the reaction between Cr₂AlC and O₂. The oxidized...
examples, a lot of 1–10 μm size Al₂O₃ inclusions are found in 211-Cr₇₅Ti₂₅ and these are found with a decreasing concentration up to few hundred microns deep in the coupon. 211-Cr₅₀Ti₅₀ cross section after the oxidation test (not shown) is very similar to 211-Cr₇₅Ti₂₅ with the one difference being it contains far less CrC₃ domains. The oxide surface of 312-Cr₅₀Ti₅₀ [Fig. 5(c)] and 312-Cr₁/₃Ti₂/₃ [Fig. 5(d)] presents some similarities: in both cases the flat Al₂O₃ scale is surmounted by a highly porous and cracked 15 to 60 μm layer of TiO₂ + Al₂TiO₅. The subsurface of the two samples consist of TiC, Al₆Cr₅, and AlCr₂ with some CrC₃ domains found in 312-Cr₅₀Ti₅₀ only, probably due to the comparatively higher Cr content. The subsurface of 312-Cr₅₀Ti₅₀ is depleted in (Cr₂/₃Ti₁/₃)₃AlC₂ and the latter is only found from ~40 μm below the alumina layer [Fig. 5(e)]. From the SEM observations, it is suggested the oxidation mechanisms of the 5 “oxidation resistant” samples probably differ from each other.

At first sight, it is difficult to establish a relationship between the MAX phase composition and the oxidation resistance. A first interesting point is that among the failed samples, all but 312-Cr₁/₃Ti₂/₃ contain (Cr₉₀₉₂Ti₀₉₈₅)₃AlC₂. In agreement with published oxidation kinetics values for Ti₃AlC, Cr₃AlC, and Ti₅AlC₂, the latter thus offers less oxidation resistance which may explain the failure of these samples. Another interesting point concerns the MAX phase (Cr₂/₃Ti₂/₃)₃AlC₂ which is found as the main component in 312-Cr₂/₃Ti₁/₃, 312-Cr₅₀Ti₅₀, and 211-Cr₇₅Ti₂₅. Indeed, while 312-Cr₅₀Ti₅₀ and 211-Cr₇₅Ti₂₅ [Figs. 5(b) and (c)] show similar good oxidation behavior at 1400°C, 312-Cr₂/₃Ti₁/₃ is completely oxidized. It is then obvious that the MAX phase composition alone is, at least for this example, not decisive in determining oxidation resistance. What differentiates the three produced samples is the nature and relative quantities of secondary phases (Table I): 312-Cr₅₀Ti₅₀ and 211-Cr₇₅Ti₂₅ both contains notable amounts of TiC, which is highly suspected to lower MAX phases materials performance against HT oxidation, but they also contain several vol% of Al₈Cr₅ and studied its oxidation and hot-corrosion resistance (up to 1200°C in air). They observed the formation and the retention, even after cyclic testing, of a protective alumina layer and obtained oxidation kinetics similar to those of Cr₃AlC alone under the same conditions. They thus concluded that “the presence of AlC₃ and Al₆Cr₅ could act as reservoir phases of Cr and Al and contribute to the protective scale formation by supplying Al and Cr”.

Based on the above observations and literature investigations, it is suggested Al–Cr alloys may improve the oxidation resistance of MAX phases. The reason why remains unclear at the current stage of this research and will need further investigations, however, it is likely the Al–Cr phases somehow enhance/favor the formation and stabilization of the all-important Al₂O₃ scale and simultaneously preclude the disruptive action of TiO₂ to be expressed. The Al–Cr alloys presumably contain some Ti and/or C, modifying their thermophysical properties, however, it is worth noting AlC₃ and Al₆Cr₅ melting points are below the testing temperature (respectively around 910°C and 1320°C), which indicates liquid phases may play a role.

IV. Conclusions

Synthesis of nine (Cr,Ti)₂AlC and (Cr,Ti)₃AlC₂ MAX phases was attempted by pressureless reaction followed by densification by SPS. From XRD and SEM/EDX characterizations,
mutual solubility of Ti₂AlC and Cr₂AlC appeared limited to a few atomic percent substitution, leading to the formation of several MAX + TiC + Al₃Cr phases. Similarly, Cr incorporation in Ti₃AlC₂ is low but possible as demonstrated by the first report of (Cr₀.05Ti₀.95)₃AlC₂ synthesis. However, we confirm the existence and remarkable stability of (Cr₂.₉₅Tiₐ.₀₅)₃AlC₂ which tends to form even when the starting reactants are out of stoichiometric range.

Each sample was then either tested against oxidation at 1400°C in air for 12 h. Five of the nine samples were found to self-protect against oxidation by forming a passivating 20-μm thick Al₂O₃ layer, whereas the four others were totally oxidized. The results of this oxidation test, along with literature investigation, suggests (Cr₂.₉₅Tiₐ.₀₅)₃AlC₂ and (Cr₀.05Ti₀.95)₃AlC₂ (and Ti₃AlC₂) are not oxidation resistant in the test conditions, contrary to (Cr₂.₉₅Ti₀.₅)₃AlC₂ (and Cr₂AlC and Ti₃AlC) [5]. However, the presence of Al-Cr phases is strongly thought to render the tested composite materials resilient in the test conditions as demonstrated by the formation of a dense, adherent and thus passivating and protective Al₂O₃ outer layer. This protection was even achieved when TiC is copresently in large amounts (Table I), despite that this phase is known to disrupt the formation and stabilization of a protective Al₂O₃ layer. Recalling the industrial application motivating this work, composite materials consisting of a MAX phase or possibly a simple carbide associated with Al₂O₃ and/or Al₃Cr₂ promoting the all-important alumina scale formation shall be considered for high-temperature Zr clad protection.

The use of such composites, however, still needs to be evaluated in respect to the ageing behavior in nuclear reactor operating conditions (irradiation, 350°C pressurized water contact, etc.). Also numerous investigations (other testing temperatures and duration, notably) will be required to try to understand the mechanisms governing the high-temperature oxidation response of these Cr–Ti–Al–C composites.

Acknowledgments

This work has been funded through EPSRC research project (EPSRC grant EP/K005749/1). D.H. is grateful to D. Shepherd (National Nuclear Lab) and the other members of the CARAT consortium managed by Westhouse for their support and fruitful discussions. E. Parry, S. Humphry-Baker and B. Milsom contributed to this work from a summer internship, help for Rietveld refinement and help for SPS, respectively, are also acknowledged.

References
