Radiohalogenated neopentyl derivatives: A novel scaffold for radioiodinated and astatinated compounds of high stability to \textit{in vivo} dehalogenation

Hiroyuki Suzuki1, Hiroshi Tanaka2, Nana Washiya1, Maho Tatsuta2, Yuta Kaizuka1, Yui Sato1, Shigeki Watanabe3, Tomoya Uehara1, Noriko S. Ishioka3, Yoshifumi Shirakami4, Kazuhiro Ooe4, Atsushi Toyoshima5, Tadashi Watabe4, Jun Hatazawa4, Yasushi Arano1

1Graduate School of Pharmaceutical Sciences, Chiba University, 2Graduate School of Chemical Science and Engineering, Tokyo Institute of Technology, 3Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 4Department of Nuclear Medicine and Tracer Kinetics, Osaka University 5Graduate School of Medicine, Institute for Radiation Sciences, Osaka University
• 211At is one of the most promising α-emitters applicable to TAT.

• Conjugation methods of 211At with targeting molecules such as antibodies and peptides are limited.

• A conventional radioiodination reagent, SIB has been applied to an astatination reagent, SAB. However, the stability of SAB-labeled compounds is lower than SIB-labeled ones.

A scaffold for astatinated compounds of high stability against $\textit{in vivo}$ dehalogenation is strongly required.
Chemical design

- Radioiodination at the neopentyl C-19 position of cholesterol provides a radioiodinated cholesterol derivative of high *in vivo* stability.\(^1\) Neopentyl halides were evaluated as a novel scaffold for astatination.

- Recently, a hypoxia imaging agent that had neopentyl fluoride structure was developed.\(^2\)

\(^1\) Steroids, 16 317-328 (1970)
Chemical design

Before the evaluation of ^{211}At-labeled compounds, ^{125}I-labeled compounds (BHIN and DEIN) were used for preliminary evaluation studies.

$^{[18\text{F}]}\text{DiFA}$

$X = ^{211}\text{At}$: $[^{211}\text{At}]\text{BHAN}$

$X = ^{125}\text{I}$: $[^{125}\text{I}]\text{BHIN}$

$^{[125}\text{I}]\text{DEIN}$

Stability against

1. Nucleophilic attack
2. CYP-mediated metabolism
3. In vivo dehalogenation
Radiolabeling

The concentration of the precursor: 10 mM
68.8±0.9% (37°C, 1 h)

The concentration of the precursor: 10 mM
57.3±0.6% (80°C, 1 h)
1. The stability against nucleophilic substitution reaction

10 mM glutathione (GSH)
1 mM EDTA
in 0.1 M P.B. (pH 7.4)

Incubation at 37°C

In vitro studies

% Intact

![Graph showing % Intact over time for [125I]DEIN and [125I]BHIN](image)

- [125I]DEIN: 95.1 ± 0.7%
- [125I]BHIN: 96.6 ± 1.0%
In vitro studies

1. The stability against nucleophilic substitution reaction

- 10 mM glutathione (GSH)
- 1 mM EDTA
- in 0.1 M P.B. (pH 7.4)
- Incubation at 37°C

2. The stability against CYP-mediated metabolism

- Mouse liver Microsomes (0.2 mg/mL)
- NADPH regenerating system
- 10 mM MgCl₂
- in 0.1 M tris-HCl (pH 7.4)
- Incubation at 37°C for 30 min

 ![Graph showing the stability of [125I]DEIN and [125I]BHIN over time.](image)

<table>
<thead>
<tr>
<th>%Intact</th>
<th>Time after incubation (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.6 ±1.0 %</td>
<td>24 h</td>
</tr>
<tr>
<td>95.1 ±0.7 %</td>
<td>24 h</td>
</tr>
<tr>
<td>98.0 ±2.0 %</td>
<td>0 h</td>
</tr>
<tr>
<td>2.2 ±0.1 %</td>
<td>0 h</td>
</tr>
</tbody>
</table>
CYP-mediated metabolism of $\text{[^{125}I]DEIN}$

Before incubation of $\text{[^{125}I]DEIN}$ with microsomes

After incubation of $\text{[^{125}I]DEIN}$ with microsomes

Radioactivity vs. Retention time (min)
CYP-mediated metabolism of $[^{125}\text{I}]$DEIN

RP-HPLC analyses

Before incubation of $[^{125}\text{I}]$DEIN with microsomes

After incubation of $[^{125}\text{I}]$DEIN with microsomes

This peak was further analyzed by HILIC

$[^{125}\text{I}]$DEIN was dehalogenated to liberate $[^{125}\text{I}]$I⁻
In vivo studies

Liver

- %ID/g vs. Time after injection (h)

Stomach

- %ID vs. Time after injection (h)

Neck

- %ID vs. Time after injection (h)

Kidney

- %ID/g vs. Time after injection (h)

ICR, 6-week-old, male, n=4-5

- **[125I]BHIN**
- **[125I]DEIN**
In vivo studies

- $[^{125}\text{I}]\text{BHIN}$
 - ![Structure of BHIN](image1)

- $[^{125}\text{I}]\text{DEIN}$
 - ![Structure of DEIN](image2)

<table>
<thead>
<tr>
<th></th>
<th>Urine</th>
<th>Feces</th>
</tr>
</thead>
<tbody>
<tr>
<td>6h</td>
<td>60%</td>
<td>0%</td>
</tr>
<tr>
<td>24h</td>
<td>80%</td>
<td>20%</td>
</tr>
</tbody>
</table>

ICR, 6-week-old, male, n=4-5
In vivo studies

- **[125I]BHIN**
- **[125I]DEIN**

The glucuronide conjugate of [125I]BHIN was identified by HILIC analysis. The fraction of intact [125I]DEIN was also analyzed. The radioactivity was measured over time in urine samples collected at 6h and 24h.

(Urine Analyses graphs showing peak retention times and radioactivity over time for [125I]BHIN and [125I]DEIN with annotations indicating the glucuronide conjugate and intact radioisotopes.)
[\(^{211}\text{At}\)]\text{BHAN} – 1: astatination reaction

The concentration of the precursor: 0.25 mM

Radiochemical yield: 14.6 ± 2.3%
Radiochemical purity: >98%

Retention time (min)

Radioactivity

\[\frac{\text{120°C, 1 h}}{\text{H}_2\text{O}} \]

\[\frac{\text{60°C, 0.5 h}}{\text{acetonitrile}} \]

\[\text{[211At]NaAt} \]

\[\text{[211At]BHAN} \]
[²¹¹At]BHAN – 2: stability against nucleophilic attack

[²¹¹At]BHAN (X=²¹¹At)
[¹²⁵I]BHIN (X=¹²⁵I)
[¹²⁵I]DEIN

[²¹¹At]BHAN

OH OH
X

[¹²⁵I]BHIN

[¹²⁵I]DEIN

10 mM glutathione (GSH)
1 mM EDTA
in 0.1 M P.B. (pH 7.4)
Incubation at 37ºC

TLC analyses

98.8 ± 1.7%

% Intact

0 95 90 85

[²¹¹At]BHAN [¹²⁵I]BHIN [¹²⁵I]DEIN
[²¹¹At]BHAN – 3: stability against CYP-mediated metabolism

[²¹¹At]BHAN (X=²¹¹At)
[¹²⁵I]BHIN (X=¹²⁵I)

[¹²⁵I]DEIN

Mouse liver Microsomes (0.2 mg/mL)
NADPH regenerating system
10 mM MgCl₂
in 0.1 M tris-HCl (pH 7.4)
Incubation at 37°C for 30 min

HPLC analyses
TLC analyses

Radioactivity

Retention time (min)

% Intact

96.9 ± 0.8%
In vivo studies

Liver

Stomach

Neck

Kidney

- [²¹¹At]BHAN (X=²¹¹At)
- [¹²⁵I]BHIN (X=¹²⁵I)
- [¹²⁵I]DEIN

ICR, 6-week-old, male, n=4-5

Time after injection (h)

%ID

OH

NO₂

OH

X

N

N

NO₂

125I
Conclusions

• $[^{125}\text{I}]$BHIN and $[^{125}\text{I}]$DEIN possessed high stability to the nucleophilic substitution.

• The presence of the hydroxyl groups in $[^{125}\text{I}]$BHIN provided further stabilization against CYP-mediated metabolism.

• $[^{211}\text{At}]$BHAN also showed high stability against both nucleophilic substitution reaction and CYP-mediated metabolism.

• $[^{125}\text{I}]$BHIN and $[^{211}\text{At}]$BHAN showed similar biodistribution profiles and low radioactivity levels in stomach and neck.

The neopentyl derivatives would serve as a useful scaffold to develop a radiotheranostic pair consisting of radiiodinated and 211At-labeled compounds.
Thank you for your kind attention!